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Abstract

Background: Gene expression data are a rich source of information about the transcriptional dis-
regulation of genes in cancer. Genes that display differential regulation in cancer are a subtype of
cancer biomarkers.

Results: We present an approach to mine expressed sequence tags to discover cancer
biomarkers. A false discovery rate analysis suggests that the approach generates less than 22% false
discoveries when applied to combined human and mouse whole genome screens. With this
approach, we identify the 200 genes most consistently differentially expressed in cancer (called
HM?200) and proceed to characterize these genes. When used for prediction in a variety of cancer
classification tasks (in 24 independent cancer microarray datasets, 59 classifications total), we show
that HM200 and the shorter gene list HM100 are very competitive cancer biomarker sets. Indeed,
when compared to |3 published cancer marker gene lists, HM200 achieves the best or second best
classification performance in 79% of the classifications considered.

Conclusion: These results indicate the existence of at least one general cancer marker set whose
predictive value spans several tumor types and classification types. Our comparison with other
marker gene lists shows that HM200 markers are mostly novel cancer markers. We also identify
the previously published Pomeroy-400 list as another general cancer marker set. Strikingly,
Pomeroy-400 has 27 genes in common with HM200. Our data suggest that a core set of genes are
responsive to the deregulation of pathways involved in tumorigenesis in a variety of tumor types
and that these genes could serve as transcriptional cancer markers in applications of clinical
interest. Finally, our study suggests new strategies to select and evaluate cancer biomarkers in
microarray studies.

Background

Endogenous biomarkers are molecules whose levels in a
tissue or fluid of an organism correlate with the presence
of a given disease. For instance, the Prostate Specific Anti-
gen (PSA) is an FDA-approved endogenous biomarker for
prostate cancer [1,2]. Identifying biomarkers for specific

cancer types is expected to lead to the development of
early diagnostic methods that can reduce morbidity and
mortality [3,4]. Here, we show that cancer biomarkers can
be discovered by mining human and mouse Expressed
Sequence Tags (ESTs). Furthermore, we show that biomar-
kers identified in this way perform well over the wide

Page 1 of 13

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/7/481
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17078886
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:481

range of tumor types and classifications used in microar-
ray studies. Our results demonstrate the existence of a
small group of genes whose expression levels are affected
in a wide array of cancers.

Various approaches have been used to search for cancer
biomarkers. Methods that mine gene expression include
Serial Analysis of Gene Expression (SAGE) [5,6], microar-
ray analysis involving the comparison of tumor samples
versus normal tissues (e.g., [7-10]), large scale meta anal-
ysis of cancer microarray data [11], or Massively Parallel
Signature Sequencing (MPSS) [12]. Expressed Sequence
Tags such as found in dbEST [13] are another abundant
source of gene expression data. We have previously
described Tissuelnfo, an approach to determine whole
genome tissue expression profiles using data in dbEST
[14]. In this article, we asked whether EST data could be
mined to identify cancer biomarkers.

Results and discussion

Mining dbEST

We extended Tissuelnfo to mine ESTs for genes that are
differentially expressed in non-tumor versus tumor tissues
(see [14] for details about Tissuelnfo and Methods for the
description of the cancer discovery extension). Figure 1
presents how many times human transcripts appear in
tumor versus non-tumor tissues. The slope of the line that
best fit the points is a consequence of how many EST
libraries are available in tumor and non-tumor samples.
The variation around the regression line, however, reflects
both the random sampling effect of EST sequencing
(sequencing effectively randomly picks mRNA molecules
from the pool available in a given tissue sample) and the
differential regulation of the genes between the tumor and
non tumor conditions. The scatter observed when consid-
ering all transcripts (top left panel of Figure 1) can be con-
siderably reduced when focusing on transcripts
preferentially expressed in a given tissue. This noise reduc-
tion technique is central to the EST mining approach pre-
sented in this manuscript. After filtering, we used a two-
tailed Fisher Exact Test to assign a P-value to each tran-
script and quantify the likelihood of differential expres-
sion between tumor and non-tumor (see Methods for
details).

Human-mouse comparison

We mined mouse ESTs in the same way and compared the
results to those obtained with the human data. Ortholog
information was obtained from Ensembl (see Methods
for build numbers). Plotting the P-values obtained for
human and mouse orthologs, we confirmed that the Tis-
suelnfo cancer P-value is uniformly distributed in regions
where the P-value is not significant (e.g., 0.9 < P-value < 1,
data not shown). Further, we asked if selecting genes in
human by P-value provided more overlap with mouse
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than would be expected by chance if P-values were distrib-
uted randomly in the human/mouse ortholog gene set.
We selected 355 human genes (P-value <= 1 10-17) and
186 mouse genes (P-value <= 1 10-14) and observed an
overlap of 39 genes. Randomly selecting 355 genes and
186 genes in the human/mouse ortholog gene set yielded
overlaps of ~3 (mean 3.25, max = 4, n = 4). The difference
is significant (P < 1 10-8 Fisher Exact Test using the maxi-
mum value, one tailed), indicating that the overlap
observed cannot be explained by chance alone. These data
are a strong indication that our approach works consist-
ently in the two organisms, despite important differences
in tissue and EST availability or cancer biology. The list of
39 genes is annotated and provided in Supplementary
Table 1 [see Additional file 2]. The references cited in the
table show that most genes on this list have been studied
and found to be differentially regulated in cancer. Interest-
ingly, of the 39 genes that both our mouse and human
screens detect at high stringency, there is only one gene in
common with the Perou-Brown-Botstein proliferation
cluster [15]. This indicates that these 39 genes common
between human and mouse are not the usual markers of
proliferation and poor differentiation.

False discovery rate

To confirm that small P-values indicate transcripts that are
differentially expressed between tumor and non-tumor
tissues, we estimated the False Discovery Rate, a statistical
measure used to estimate the bias introduced by multiple
hypothesis testing [16]. The False Discovery Rate (FDR) is
the ratio FDR = FP/(TP + FP), where FP is the number of
false positives detected below a threshold and TP is the
number of true positives (true positives are transcripts/
genes that are differentially expressed between tumors
and non-tumors and are selected by the method). To cal-
culate FDR, FP and TP need to be known. We estimated FP
as the number of genes selected in a control experiment
(normal tissue vs. normal tissue). We estimated TP by
comparing the control to the tumor vs. non-tumor data
(TP = R - FP, where R stands for the number of genes
selected in the tumor vs. non-tumor experiment). Figure 2
compares the number of transcripts found below various
thresholds of the P-value in the data and in the control
experiment, and plots 1-FDR as a function of the expo-
nent of the P-value threshold. Figure 2 indicates that com-
bining P-values for the human and mouse screens lowers
the false discovery rate of our approach, from about 30%
with the human data only to about 20% when human
and mouse data are combined.

HM200

We focused on human/mouse orthologous genes and
selected the 200 genes that were ranked best by the com-
bined human/mouse P-value Py;,,, where Py, = Py x P,
(threshold Pj,<= 1 104223). We called this gene set
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Number of hits in non tumor tissues versus hits in tumor tissues. The left top panel plots one point per transcript in
the human genome (total number of hits <=1,000). The other panels were filtered to show only those transcripts for which the
'most expressed in' Tissuelnfo attribute had value "gland", "lung", and "spleen". Filtering shows that transcripts most expressed in
"gland" are on average equally likely to appear in tumor tissues as in non tumor tissues. In contrast, transcripts most expressed
in "spleen" are five times more likely to appear in non tumor tissues. Filtering on other tissues shows average ratios of expres-
sion intermediate between gland and spleen. These plots reflect that EST libraries sequenced from different tissues have varied
ratios of tumor/non tumor representation and that this ratio can be determined when grouping transcripts by the calculated
most expressed in Tissuelnfo attribute. The consequence of grouping transcripts by the most expressed in attribute is that the
scatter observed on the "all tissues" panel is greatly reduced after filtering. This observation motivated the development of the
EST mining approach described in this manuscript.

HM200. Each gene which is part of HM200 has an orthol-  cer, mouse cancer, or both, as measured by our approach.
ogous counterpart in human or mouse, and has been  From Figure 2 (panel C), we estimate that over 78% of the
selected because of differential expression in human can-  genes in HM200 are truly differentially expressed between
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False Discovery Rate Analysis. A comparison of the number of transcripts (left axis) with differential expression found
below various thresholds of the P-value in the data and in a control experiment for the human (Panel A) and mouse (Panel B)
genomes. False Discovery Rate (see text) is shown on the right axis as |-FDR. Panel C plots these values for the combined
screen in which we combined P-values for the human and mouse experiment.

tumor and non-tumor tissues. In contrast, if one were to
randomly select genes from the genome to identify 200
genes truly significantly differentially expressed between
tumor and non-tumors, the expected precision of the task
would be 0.6015% (200/33,248). Using our approach
with the combined human and mouse dbEST data is
therefore 129 times (78%/0.6015%) more precise than a
random selection.

HM200 is enriched in cancer-associated genes

We asked if genes in HM200 were more likely to be onco-
genes or tumor suppressor genes. To address this ques-
tion, we counted how many genes in HM200 overlap with
a set of 1,485 genes previously studied for their role in
oncogenesis (the construction of this list was described in
[17], see also Methods). We found that 16.5% of genes in
HM200 overlap with this list (33/200), a number to be
compared to 8.7% (1,403/16,093) in the whole human/
mouse ortholog gene set. The difference is significant (P-
value = 0.0011 Fisher Exact Test, two tailed), and compa-
rable to the enrichment recently reported by Aouacheria
and colleagues when identifying genes bearing cancer-
associated nonsynonymous SNPs in dbEST [17].

HM200 as predictive biomarkers

Although HM200 genes were identified in EST data, we
reasoned that they should be accurate predictors in cancer
microarray data sets. Testing HM200 on microarray data is
an independent test of their biomarker abilities. This is a
strong test because the only common point between
microarray and expressed sequence tags is that these tech-
nologies measure gene expression. Therefore, to deter-
mine whether HM200 genes could be used as cancer
biomarkers in human, we asked how well HM200 com-
pared to other gene lists in a variety of microarray cancer

classification tasks. Lists of gene markers have been
derived in many microarray studies for different types of
cancer and we collected 13 such gene lists from published
studies (see Methods). Because gene lists vary in the
number of genes that they contain, in addition to the
HM?200 gene list, we evaluated HM 100, HM50 and HM10
gene lists with the top 100, 50 and 10 genes from HM200,
respectively (see Methods). We also used a negative con-
trol gene list NC01-2000, of 420 genes with high Tissue-
Info cancer P-values (not expected to be accurate
predictors). Although the complete list of genes on an
array is not a practical biomarker list (some arrays contain
more than 20,000 probes), we included the full set of
genes found on the array used for each study as a positive
control. In total, our evaluation compared the predictive
performance of 19 gene lists over 24 different microarray
datasets (listed in Supplementary Table 2 [see Additional
file 3]). We included in this study all the microarray data-
sets that we could obtain. The number of gene lists
included in the study was limited only by the computa-
tional cost of performing the evaluation (gene lists were
not selected in any other way).

Microarray studies of cancer frequently compare two dif-
ferent conditions. In some studies, one condition is a
tumor and the other the normal tissue. In other studies,
conditions are derived from cytology, and tumor grades
are used as conditions. The most interesting studies define
conditions from data obtained about the patient after the
tumor sample has been taken (these studies can be used
to try and predict cancer outcome or response to treat-
ment). The microarray datasets collected for this study
include at least one representative of each of these types of
classifications. Some microarray datasets are annotated
such that multiple different classification tasks can be per-
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formed with them. For instance, in the Pomeroy2002
dataset, five classifications can be performed: normal cer-
ebellum/medulloblastoma, normal/malignant glioma,
normal/atypical teratoid or rhabdoid tumor, normal/
primitive neuroectodermal tumor, and medulloblast-
oma/malignant glioma. In such cases, we included each
possible classification if this classification had at least
three patients in each class. Supplementary Table 3 lists
the classifications considered in this study [see Additional
file 4]. In our evaluation, the number of gene lists, data-
sets and classification conditions combine to produce
1,121 different cancer classification tasks. We evaluate the
leave-one-out accuracy of each gene list on each classifica-
tion task, filter out classification tasks for which the P-
value of the label permutation test exceeds 0.05 (5% con-
fidence level), and then rank gene lists in each dataset
from highest to lowest accuracy (see Methods). Briefly, a
gene list obtains rank 1 on a classification task if it yielded
the highest accuracy for that task among the gene lists
included in the evaluation. Figure 3 presents a tally of the
rank for each gene list in our evaluation. (The data, pro-
grams and source code needed to reproduce the complete
microarray evaluation are distributed as supplementary
material and can also be downloaded from [18]). Supple-
mentary Table 4 shows the statistical data used to build
Figure 3 [see Additional file 5].

The 1,121 classification tasks measure two properties of
each gene list: robustness and generality. We define
robustness as the property of a biomarker set to perform
well on independent datasets obtained for the same
tumor type. Robustness should not be confused with
leave-one-out performance, which estimates how well a
predictor can generalize using information from a single
training set. Robustness is a more important property
than leave-one-out performance for clinical applications
because any training set is unlikely to sample most of the
variability found in the patient population. Thus, a good
performance with one training set may not translate to
another training set. For example, when we classify the
Pomeroy2002 dataset using the GDS232 gene list ([7]),
we test the robustness of the GDS232 gene list because
both datasets include data from patients with medullob-
lastoma, and patients for these studies were recruited
independently. These tests are performed to measure
robustness. In contrast to robustness, we define generality
as the property of a biomarker set to perform well on a tis-
sue, tumor type or classification task other than the one it
was trained for.

A perfect biomarker set is one that would be both robust
and general. In the test presented in Figure 3, such a
biomarker set would appear with one peak only, at rank
1, and the height of the peak would coincide with the total
number of classifications performed in the evaluation. In
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contrast, the peaks of sets of genes unrelated to cancer
should be randomly distributed across ranks and show no
preference for the better ranks. Our negative control gene
list NC01-2000 (see Methods) shows precisely this behav-
ior (also, the negative control survives the permutation P-
value filter in only one or two classifications per rank).
Gene lists obtained from published studies generally
show a skewed distribution towards the best ranks (e.g.,
Pomeroy-400, Pomeroy-1, GDS1070, GDS232). We
observe that HM200 and HM 100 present the most skewed
distributions of the cancer marker gene lists. Given the
range of classification tasks, tissue and tumor types sam-
pled in our evaluation, Figure 3 indicates that the HM200
and HM100 marker sets are both robust and general can-
cer marker sets over the range of cancer classifications
evaluated.

Prior comparisons of EST data and microarray data have
confirmed that these two approaches to measuring gene
expression have different strengths and drawbacks
(including biases [19]). It is therefore notable to see that
both EST and microarray data indicate that the genes in
the HM200 gene list are differentially expressed in cancer
and can predict cancer-related conditions (e.g., tumor/
non-tumor, tumor cytology, likelihood of tumors to
develop metastasis). This clearly shows that the HM200
gene list is not random and that our approach to mining
expressed sequence tags is effective.

HM200 are mostly novel biomarkers

We asked if genes in HM200 had been recognized before
as biomarkers. We calculated the overlap between genes
in HM200 and the 14 lists used in our evaluation
(obtained from published studies, see Supplementary
Table 5 [see Additional file 6], and the negative control).
Numbers of genes overlapping between HM200 and these
gene lists are shown in Table 1 with a gene list similarity
measure (in the column labeled 'pseudo-p-value'). See
Methods for calculations and a discussion of the validity
of the pseudo P-values shown in Table 1. Table 1 shows
that three of the previously reported cancer marker gene
lists overlap more significantly with HM200 than others.
These lists are Pomeroy-400-classic-desmoplastic (27
gene overlap), Pomeroy-class-1 (9 gene overlap), and
GDS1070 (5 gene overlap). Interestingly, these three lists
also showed better generality when tested across datasets
than most other gene lists (excluding the HM gene lists)
in the rank evaluation test shown in Figure 3. This shows
that although 27 HM200 genes have been identified by
Pomeroy and colleagues as central nervous system tumor
markers, most genes in HM200 had not been previously
recognized as cancer markers as a group. Table 1 also
includes a comparison between HM200 and the prolifer-
ation cluster described by Perou, Brown, Botstein and col-
leagues in [15]. The comparison identifies only two genes
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Relative performance of gene lists compared across 1,121 classifications. The number of classifications for which a
list obtains a given accuracy rank is shown. Distributions skewed towards best ranks indicate gene lists that generalize well

across different types of tumor classifications.

in common between HM200 and the proliferation cluster
The main contribution of our study is to show that a small
group of genes (HM200 or subsets thereof) are predictive
cancer markers that outperform other cancer marker lists
over different tumor types and classification tasks. These
results demonstrate the existence of a set of genes whose
transcription levels are perturbed in a variety of tumors
types, irrespective of the tissue of origin of the tumor.

HM200 and cancer pathways

Since the products of genes in HM200 are differentially
expressed in tumor and non-tumor (as shown with EST
data) and tumor grade or tumor evolution (as shown with
microarray data), we hypothesized that HM200 would be
likely to interact with genes shown to be altered in tumor-
igenesis (e.g.,, members of the central cancer pathways
(reviewed in [3]). To test this hypothesis, we queried the
Ingenuity Pathways Knowledge Base with accession codes

for protein products of HM200. The Ingenuity Pathway
database is a curated database that provides access to 1.3
million protein-protein and gene-protein interactions and
offers tools that cluster genes into interaction networks.
Supplementary Table 6 [see Additional file 7] and Supple-
mentary Figures 1-10 [see Additional file 1] present gene
networks identified when HM200 genes are used as focus
genes (the best 10 networks, ranked by score are shown).
Documentation available on the Ingenuity web site does
not describe how the score is calculated, but indicates that
the P-value of observing a network by chance is estimated
to be 110-S¢re. The networks shown on Supplementary
Table 6 [see Additional file 7] are thus unlikely to have
been generated by chance (P-value<1 10-11). Genes shown
in bold (Supplementary Table 6 [see Additional file 7]) or
in gray (Supplementary figures [see Additional file 1]) are
members of HM200. Notably, network 1 contains the
cancer-related genes FOS, FOSB, FOSL1, and JUNB; net-
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Table I: Gene overlap between HM200 and published cancer marker gene lists.

List | List 2 Overlap Size of list | Size of list 2 pseudo-p-value
HM200 Pomeroy-400 27 200 305 1.04E-15
HM200 Pomeroy-1 9 200 103 5.41E-06
HM200 GDS1070 5 200 82 3.55E-03
HM200 NCO01-2000 0 200 420 I.13E-02
HM200 GDS232 4 200 82 1.91E-02
HM200 NuttGBM 3 200 50 2.42E-02
HM200 vantVeer2002 4 200 93 2.87E-02
HM200 Pomeroy-3 4 200 95 3.07E-02
HM200 Perou-Brown- 2 200 31 5.65E-02
Botstein 1999
HM200 Pomeroy-2 4 200 132 8.25E-02
HM200 Rhodes2004 2 200 57 |.58E-01
HM200 GDS183 [ 200 28 2.96E-01
HM200 Pomeroy-0 3 200 166 4.65E-01
HM200 NuttAO | 200 76 6.14E-01
HM200 Pomeroy-4 0 200 92 6.33E-01

work 2 contains MYCN, BCL2, EGR2 [20]; network 3 con-
tains Kinesin 5A, 5B, and 5C; network 4 contains MYC,
network 5 contains the v-akt murine thymoma viral onco-
gene homolog 1 (AKT1/PKB); network 6 contains the
retinoblastoma protein (RB1) and network 7 contains the
P53 protein (TP53); network 10 contains the peroxisome
proliferator-activated receptor y (PPARG) and the granu-
locyte differentiation factor C/EBPa (CEBPA) [21]. Fol-
lowing this observation, we tested if genes found in these
networks that are not HM200 biomarkers are enriched in
cancer-related genes. Of the 195 genes in the 10 best net-
works shown in Supplementary Table 6 [see Additional
file 7] that are not part of HM200, 27.69% (54/195) over-
lap with cancer-related genes (from reference [17]). In
contrast, the cancer-related genes represent 10.11%
(1,344/13,294) of human genes with a HUGO gene name
(141 of the human genes have no HUGO identifier). The
difference is significant (P-value 3.96 10 Fisher Exact
Test, two tailed). Interestingly, the overlap with cancer-
related genes is significantly higher for genes known to
interact with genes in HM200 than for genes in HM200
themselves (16.5%) (P < 0.01, Fisher Exact Text, one
tailed). This supports our hypothesis that HM200 genes
are interacting directly with genes involved in tumorigen-
esis and that their transcripts are markers of cancer-related
signaling alterations. The cancer-related genes themselves
may not be transcriptionally regulated, but expression of
downstream genes such as those found in HM200 is.

HM200 is enriched in mRNA binding proteins

We performed a Gene Ontology classification screen and
found genes in HM200 to be significantly enriched in
mRNA binding proteins (P-value 1 10-4, EASE score) [22].
This is not surprising because there is growing evidence
that deregulation of protein translation may participate in
malignant transformation [23,24]. The mechanisms by

which tumor cells selectively deregulate protein synthesis
are still unclear [25]. Therefore, the identification of genes
that may participate in selective protein synthesis deregu-
lation is of great interest. The networks provided as Sup-
plementary Figures 1-10 [see Additional file 1] provide
candidates for such genes. For instance, Supplementary
Figure 3 [see Additional file 4] shows that seven genes in
HM200 are connected to Jerky (JRK). The number of con-
nections between JRK and HM200 genes is comparable to
the number of connections between P53 and HM200.
This is surprising because JRK was first studied as a tempo-
ral lobe epilepsy gene candidate [26].

More recent studies indicate that Jerky is an mRNA bind-
ing protein that binds mRNA through a CENP-B domain.
Jerky shows selectivity in the set of mRNA molecules that
it binds, and may regulate the availability of mRNAs to
the translational machinery [27].

The CENP-B domain is found in nine other human pro-
teins (CENP-B, peptidyl tRNA hydrolase 2 and seven Tig-
ger transposable element proteins). The conservation of
this domain suggests that some of these other proteins
may also bind mRNA. However, the ability of these other
proteins to bind mRNA selectively remains to be deter-
mined. We predict that Jerky (or one of the other nine
CENP-B domain containing proteins) is involved in tum-
origenesis by selectively deregulating protein translation.
This hypothesis is supported by the presence of the Fragile
Mental Retardation 1 protein (FMR1) on Network 8 (an
mRNA binding protein connected to three HM200 genes)
[27]. FMR1 binds mRNAs selectively and is believed to
regulate their translation, thereby regulating the protein
expression of specific genes [28]. FMR1 binds mRNAs
through KH motifs. These motifs are also found in Nova-
1, a biomarker for paraneoplastic opsoclonus-myoclonus
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ataxia disorder (such disorders affect the brain of some
patients suffering from cancer and are not caused by
metastasis) [29]. This discussion illustrates how interac-
tion networks containing HM200 genes can be used to
develop new molecular hypotheses for cancer biology.

Potential issues when mining ESTs

We present and validate a new approach to identifying
cancer biomarkers by mining expressed sequence tags.
Because expressed sequence tags are a vastly heterogene-
ous type of data, any approaches that mine this source of
data need to account for several issues. Many of these
issues were discussed in our previous publication and will
not be repeated here [14]. However, it is worth noting that
the evaluation that we conducted in 2001 found that Tis-
suelnfo was accurate in identifying if a gene was expressed
in a tissue in 80-89% of cases [14]. A new issue specific to
mining ESTs for cancer markers is that dbEST contains dif-
ferent proportions of EST libraries from tumor and non-
tumor tissues. This is clearly illustrated in Figure 1, panel
"all tissues", where most transcripts are found to match
double the ESTs in non-tumor tissues than in tumor tis-
sues. In our new approach, we have addressed this issue in
two ways. First, we identify groups of genes that are mostly
expressed in a given tissue/organ or tissue type (e.g.,
gland). (We consider as many groups as there are tissues
types annotated in the target organism.) Second, we calcu-
late a Fisher Exact Test P-value which takes into account
(i) the number of times a given transcript matches an EST
in tumor, and in non-tumor, and (ii) the overall propor-
tion of tumor/non-tumor ESTs for the tissue the transcript
is mostly expressed in. This test adequately corrects for the
tissues with varied proportions of ESTs in tumor and non-
tumor tissues, and at the same time assigns significance as
a function of the number of EST matches for the tran-
script. The second factor is important because we have
shown that Tissuelnfo identifications are more accurate
when a transcript matches more ESTs [14]. The False Dis-
covery Rate analysis that we present in Figure 2 indicates
that despite these various potential issues, our approach
was able to identify genes differentially expressed in
tumor/non-tumor tissues with about 80% precision
(when the human and mouse genome screens are com-
bined, Panel C). Additional independent validations,
such as the overlap with cancer gene lists, the overlap
between human and mouse predictions, and most impor-
tantly the large microarray evaluation study that we con-
ducted, support these conclusions.

Microarray validation confirms EST mining

The microarray evaluation study that we present in this
manuscript is a large study by the current standards of the
field. Indeed, this study considers a test set of 24 microar-
ray datasets, when most marker discovery studies test a set
of markers in one or two independently collected datasets.
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An exception is the study of Rhodes et al, where 12 data-
sets were used for independent validation [11] (The 40
datasets mentioned in the abstract of this publication
were used as a training set and thus are not part of the
independent test sets.) Furthermore, our validation study
considers the set of markers that we identified in compe-
tition with 13 previously published genes lists, one nega-
tive control and a positive control (all genes on the array,
see Figure 3 and Supp. Table 4 [see Additional file 5]).
This contrasts with most published studies where single
lists of markers are typically evaluated in isolation [7-
9,11,12,30,31]. We used a stringent permutation test to
evaluate the impact of the number of samples in each con-
dition and intra-dataset correlations to the performance
observed in a classification (this test, described in detail in
[32] is stronger than the test used in [11]). The negative
control gene list is not expected to perform at a statistically
significant level and indeed, most of its classifications are
filtered out by the permutation test (see Figure 3). Apply-
ing this stringent protocol to the comparison of multiple
marker lists on different datasets and classification tasks
revealed that some marker lists are more general than oth-
ers. (We defined generality as the property of a marker list
to be predictive on classification tasks and tumor types
other than the one the markers were initially selected for.)
To the best of our knowledge, the generality of cancer
marker lists has not been studied before. HM200 achieves
the best or second best classification in 79% of the classi-
fications considered (i.e., those that survived the permuta-
tion test). Further, we report that one previously
published list (Pomeroy-400 from [33]) also shows good
generality across tumor types. Our observation that some
marker lists are predictive over a wide range of tumor
types and classification types strongly suggests the exist-
ence of a subset of genes under the transcriptional control
of pathways consistently deregulated in different cancer
types. (This interpretation is supported by the pathway
analysis presented above and concurs with the view pre-
sented in [3]). Our results also suggest that new cancer
marker studies should report on the generality of the
markers that they identify because results obtained with
general markers are more likely to be reproducible.

HM200 applications

We anticipate that the discovery of the HM200 cancer
marker gene set and the characterization of its predictive
utility across tumor types will open new strategies for the
identification of genes whose alterations are required
steps in tumorigenesis (for instance, mining of microarray
data for robust and general cancer marker genes can be
envisioned). Also, since HM200 markers are predictive
across tumor types, a subset of these markers can be
selected a priori for gene selection in microarray data, and
complemented with genes selected from the specific
study. This strategy will substantially reduce the amount
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of over-learning that occurs when genes/features are
selected from the same dataset that is used for classifica-
tion. Further, patient diagnostics will benefit from the
knowledge that a small set of genes are predictive for a
large array of cancers, because molecular tools that are
more sensitive and accurate than microarrays (e.g., anti-
bodies, primers for RT-PCR, etc.) can be developed and
used with small gene lists.

Conclusion

We have presented a new approach to mining expressed
sequence tags to discover cancer transcriptional markers.
We validated this new approach with a series of tests,
including False Discovery Rate analysis. We used this new
approach to identify a set of 200 cancer biomarker genes
(the HM200 biomarker set) from human and mouse EST
data. We further validated HM200 with data from 24 pub-
licly available microarray datasets and showed that, as a
set, HM200 genes were effective in predicting conditions
of clinical interest. The microarray validation protocol
which we describe in this manuscript helps compare the
predictive ability of a given gene list against previously
published gene lists and helps assess the level of generality
and robustness of the gene list under study across a variety
of conditions. With this protocol, we showed that HM200
is a general cancer biomarker set which is predictive across
a variety of tumor types and clinical conditions. The man-
uscript also presents a pathway analysis of genes in
HM200 which suggests that genes in HM200 are under
transcriptional control of pathways known to be deregu-
lated in tumorigenesis.

Methods

Human and mouse transcripts data

We obtained known and predicted transcripts from
Ensembl (human build NCBI35, mouse build
NCBIM33). Ensembl transcripts were filtered for repeti-
tive sequence regions with RepeatBeater (graciously pro-
vided by Dr. Coward). Similarity searches between ESTs
and Ensembl transcripts were conducted for each organ-
ism (human or mouse) with megablast [34]. ESTs that
matched transcripts with less than 95% sequence identity
or over less than 150 base pairs were rejected (timegablast
parameters — error 0.05 -required-length 150 -assemble-hsps).

Mining of dbEST

Our EST mining pipeline is based on Tissuelnfo, previ-
ously described in [14]. Briefly, Tissuelnfo identifies ESTs
that match a set of query sequences and provides curated
data and analysis tools to query the set of matching ESTs
for information about the tissues and organs from which
the EST was sequenced. Curated data consists of a tissue
ontology (formerly called TissueHierarchy). The Tissue-
Info ontology is provided in OWL format on the Tissue-
Info web site [35]. Tissuelnfo also provides tissue
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annotations that map most ESTs in dbEST to concepts in
the Tissuelnfo ontology (formerly called curated tissue
information). This mapping makes it possible to effec-
tively mine data from multiple EST sequencing projects.
Together, the ontology and the EST annotations provided
by Tissuelnfo support the rich semantic queries needed to
implement the cancer biomarker approach described
here.

Cancer Tissuelnfo extensions

To mine dbEST for transcripts differentially expressed in
cancer, we extended Tissuelnfo as follows: (1) We
extended EST annotations to note if the EST was
sequenced from a tumor tissue. For instance, if an EST
library description is "cervical tumor", we annotate this EST
with "+cervix, [cancer", to reflect the fact that the tissue
anatomical provenance was cervix, and that the tissue was
tumorous. (2) We implemented ways to calculate hitTu-
mor() and hitNonTumor() for each query sequence. The
calculation hitTumor() returns the count of ESTs match-
ing the query sequence whose tissue provenances have the
[cancer attribute. Conversely, the calculation hitNonTu-
mor() returns the count of ESTs that do not have the /can-
cer attribute. (3) We devised and implemented a P-value
calculation method to allow ranking transcripts by the
likelihood that they are differentially expressed in cancer
tissues (see below).

Cancer P-value calculations

As shown in Figure 1, grouping transcripts by the tissue in
which they are most abundantly expressed (mostExpres-
sedIn() calculation, see [14]) removes the variation of the
ratio hitTumor()/hitNonTumor() observed across tissues.
We define groups of transcripts G such that each transcript
t in the group is mostly expressed in the same tissue (i.e.,
t.mostExpressedIn() is constant in a group G). For each
transcript ¢ in a group G, we define:

x = t.hitTumor()

y = t.hitNonTumor()
Ny =D 5Ny =y
G G

From these definitions, we can calculate the Tissuelnfo
cancer P-value:

P - value,,,,, = FisherTwoTail(x, y, N;, N,)

where FisherTwoTail is a Fisher Exact Test (two tailed), as
described and implemented in [36].
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False discovery rate

The control experiment is designed to estimate the
number of transcripts that are falsely marked as being dif-
ferentially expressed between tumor and non-tumor tis-
sue at different thresholds of the P-value. Each query
transcript matches a number of ESTs that can come from
a number of different libraries. In the control experiment,
all non-tumor libraries are randomly split into two groups
based on their raw tissue information. For instance, the
raw tissue labels "whole eye", "eye", "eye anterior seg-
ment", "Pterygium" or "Trabecular meshwork " are all
equivalent to +eye in the Tissuelnfo ontology; each raw
tissue designation is randomly assigned to one group or
the other at each step of the simulation. (Because there are
a number of raw tissue designation for a given tissue type,
and because groupings are redone at each simulation step,
the grouping procedure is not expected to result in more
homogeneous groups in the control than in the real exper-
iment.) After this grouping, the number of ESTs matching
a transcript in each group is counted. The P-value of the
difference of the counts in the two library sets is then cal-
culated as for the cancer P-value calculations above,
grouping transcripts by the tissue in which they are most
abundantly expressed. This control experiment was
repeated 10,000 times. We counted the number of tran-
scripts identified below a certain P-value for a genome and
averaged this number over the number of simulations.
This value is the estimated number of false positives (FP)
observed in the control, and can be used to calculate the
False Discovery Rate (FDR) as shown in Figures 2A and
2B. Figure 2 indicates that when mouse and human data
are combined, the approach presented in this manuscript
generates less than 22% false positive predictions.

Gene list constructions

Gene lists were obtained from the supplementary material
of published articles whenever possible. We collected 13
gene lists from six microarray studies [7-9,30,33,37] and
one meta analysis study [11]. In addition to HM200, we
evaluated smaller subsets of HM200 constructed by select-
ing the 10, 50, and 100 genes ranked highest by the Tis-
suelnfo cancer P-value. We called these lists HM10,
HM50, HM100. We constructed a gene list to be used as
negative control (NCO01-2000) by selecting 420 genes
with a Tissuelnfo cancer P-value between 0.9 and 1.0.
Genes in NC01-2000 are not expected to be good predic-
tors in cancer classification tasks. Finally, for each dataset,
we considered the gene list that consists of all the
probesets on that array (gene list: full). Accession code
conversions (e.g., from Affymetrix to Genbank, or from
SwissProt to Ensembl gene IDs were done using Ensmart/
Biomart [38]). The Rhodes2004 gene list was obtained by
manually typing the HUGO IDs that appear in Figure 2 of
[11]. The figure contains 67 gene names, but only 57 of
these mapped to HUGO gene names and could be

http://www.biomedcentral.com/1471-2105/7/481

mapped to Ensembl gene IDs (some genes could not be
identified unambiguously by the name listed in the Fig-
ure, for instance "p100" or "OK/SW-0l56"). Gene lists
used for our evaluation can be found with the programs
distributed as Supplementary Material to this manuscript.

Microrray datasets

The datasets used in our evaluation were obtained from
the Gene Expression Omnibus [39], the Broad Institute
web site [40], or the Tmm database at Columbia Univer-
sity[41,42]. Datasets were parsed and processed with the
Tissuelnfo software (distributed under the GPL and avail-
able from [35]). A complete list of datasets is given in Sup-
plementary Table 2 [see Additional file 3].

Microarray classification tasks

Supplementary Table 3 [see Additional file 4] lists the con-
ditions and number of samples for each classification task
for which a machine learning classifier was trained (see
below).

Machine learning

A Support Vector Machine (SVM) is a modern machine
learning algorithm [43] that has been found to outper-
form other machine learning approaches (e.g., artificial
neural networks) in a variety of application domains and
applications [41,44]. Array signals were mean normalized
across each condition of the array. After normalization,
and following [33], low signals were set to a constant sig-
nal, Specifically, for one channel arrays, if the signal was
lower than f;, the signal was set to f, (we used f; = 300 con-
sistently throughout the evaluation). For two color arrays,
if abs((signal-1)+1) <=f,, the signal was setto 1.0 (we used
f,=1.15 consistently throughout the evaluation). This sig-
nal transformation sets low signals to a constant value.
When used with feature scaling (see below), this signifi-
cantly reduced the impact of noisy features on the out-
come of the predictions. The resulting signals were used as
features of the SVM. Features were scaled to the range |[-
1,+1] to reduce the risk that features with large variance
dominate the decision function of the SVM. Learning was
performed with a linear kernel. Since we trained with
small training sets (n < 50), we did not optimize the learn-
ing parameter C of the SVM. This parameter was set con-
sistently for each dataset and classification to the value n/
X - X, where n is the number of training examples and x
is the feature vector. We measured the performance of the
SVM with the leave-one-out protocol. This protocol pro-
vides a nearly unbiased estimate of the classification error
and is tractable for small training sets [45]. We performed
the machine learning evaluation with two different sup-
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port vector machine implementations (Thorsten
Joachims' SVMIlight program [46] and libSVM). Results
were qualitatively similar across implementations (data
shown for the SVMlight evaluation).

Classifier P-Values

Similar to [32], we estimate the significance of the classi-
fiers trained from each dataset/classification task. This test
evaluates the likelihood that the machine learning per-
formance observed on the training set is the result of cor-
relations in the features unrelated to the class that the
classifier is trained to predict. For microarray data, features
encode information about the expression levels of genes,
which may contain an experimental noise/error compo-
nent. Other factors that can affect classification tasks are
the size of the training set and the number of features. In
this test, many artificial training sets are constructed by
shuffling the labels of the reference training set. This will
not affect the size of the training set or the number of fea-
tures, but will control for random noise. Each artificial
training set is used to train and evaluate a classifier (see
Machine Learning above). The test counts how many clas-
sifiers built with artificial training sets achieve the same
performance as, or better than, the reference training set.
Dividing this count by the number of artificial training
sets tested yields a P-value that indicates how dependent
the performance measured for the reference training set is
on experimental noise or feature distributions. Classifier
P-values reported in this manuscript were obtained after
constructing 1,000 artificial training sets for each dataset/
classification pair.

Ranking gene lists

SVMs are trained for a classification task with different
gene lists. This results in multiple accuracy measurements
for each classification task (there is one accuracy for each
gene list on a given classification task). To facilitate com-
parison of the predictive ability of gene lists, we rank gene
lists by decreasing leave-one-out accuracy on each classifi-
cation task. The gene list that obtains the best leave-one
out accuracy is assigned a rank of 1 (if several gene lists
reach the same accuracy, they are given equal rank). The
gene list with the second best accuracy is assigned a rank
of 2, and so on. Supplementary Table 4 [see Additional
file 5] lists the raw performance measures and the ranks
for each combination of gene list and classification task in
our evaluation.

Comparing gene lists

In Table 1, we use a Fisher Exact Test to determine which
gene lists are more similar to HM200. The result of this
test must be considered a pseudo P-value, because we do
not control for correlations that may exist across the gene
lists and would create artificially low P-values. A number
of such correlations can be excluded because we always
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compare gene lists obtained from microarray and
expressed sequence tags (excluding the comparison
between HM200 and NCO01-2000). For instance, this pro-
tocol excludes correlations due to the ability of probes to
hybridize to the array (since this effect does not apply to
HM200). However, we cannot totally exclude the possi-
bility that the overlap observed in Table 1 is due to the
level of expression that is necessary to detect gene expres-
sion with either microarray data or with our EST mining
approach (this effect would reduce the total pool of genes
that should be considered in the Fisher Exact Test). To
acknowledge this effect, we report a pseudo P-value and
use it as a gene list similarity measure. The pseudo P-value
is useful because it takes into account the effect of differ-
ent gene list sizes, while the number of genes that overlap
do not.

Description of ingenuity pathways analysis

Data in Supplementary Table 6 [see Additional file 7] were
generated through the use of Ingenuity Pathways Analysis,
a web-delivered application that enables biologists to dis-
cover, visualize and explore therapeutically relevant net-
works significant to their experimental results, such as
gene expression array data sets. For a detailed description
of Ingenuity Pathways Analysis, see [47].

Swiss-Prot accession codes for proteins coded by genes in
the HM200 gene set were uploaded to Ingenuity Pathways
Analysis. Each gene accession code was mapped to its cor-
responding gene object in the Ingenuity Pathways Knowl-
edge Base. These genes, called Focus Genes, were then
used as the starting point for generating biological net-
works. To start building networks, the application queries
the Ingenuity Pathways Knowledge Base for interactions
between Focus Genes and all other gene objects stored in
the knowledge base, and generates a set of networks with
a network size of 20 genes/proteins. Ingenuity Pathways
Analysis then computes a score for each network accord-
ing to the fit of the user's set of significant genes. The score
is derived from a P-value and indicates the likelihood of
the Focus Genes in a network being found together due to
random chance. A score of 2 indicates that there is a 1 in
100 chance that the Focus Genes are together in a network
due to random chance. Therefore, scores of 2 or higher
have at least a 99% confidence of not being generated by
random chance alone. Biological functions are then calcu-
lated and assigned to each network.

Biological functions were assigned to each gene network
by using the findings that have been extracted from the
scientific literature and stored in the Ingenuity Pathways
Knowledge Base. The biological functions assigned to
each network are ranked according to the significance of
that biological function to the network. A Fisher Exact Test
is used to calculate a P-value determining the probability
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that the biological function assigned to that network is
explained by chance alone.

GO category analysis

We searched GO functional categories for categories statis-
tically enriched in HM200. We used the EASE software
[22] with 189 SwissProt/UniProt identifiers (from
HM200) and compared to 17,915 human proteins in
UniProt. The P-value reported is the EASE Score [22].
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