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Abstract

Background: We consider the problem of parameter estimation (model calibration) in nonlinear
dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of
many of these problems, traditional local methods usually fail (unless initialized with very good
guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO)
methods have been suggested as robust alternatives. Currently, deterministic GO methods can not
solve problems of realistic size within this class in reasonable computation times. In contrast,
certain types of stochastic GO methods have shown promising results, although the computational
cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-
deterministic GO methods which could reduce computation time by one order of magnitude while
guaranteeing robustness. Our goal here was to further reduce the computational effort without
loosing robustness.

Results: We have developed a new procedure based on the scatter search methodology for
nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box
models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent
developments in the field of operations research, to a set of complex identification problems and
we make a critical comparison with respect to the previous (above mentioned) successful methods.

Conclusion: Robust and efficient methods for parameter estimation are of key importance in
systems biology and related areas. The new metaheuristic presented in this paper aims to ensure
the proper solution of these problems by adopting a global optimization approach, while keeping
the computational effort under reasonable values. This new metaheuristic was applied to a set of
three challenging parameter estimation problems of nonlinear dynamic biological systems,
outperforming very significantly all the methods previously used for these benchmark problems.

Background provide systematic strategies for key issues in medicine [4]
Modelling approaches are central in systems biology and  and the pharmaceutical and biotechnological industries.
provide new ways towards the analysis of omics data, ulti-  For example, model-based approaches can provide a

mately leading to a greater understanding of the language  rational framework to guide drug development, taking
of cells and organisms [1-3]. Further, these approaches  into account the effects of possible new drugs on bio-
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chemical pathways and physiology [5]. A common
approach to model inter- and intra-cellular dynamic proc-
esses is by means of dynamic models, usually consisting
of sets of differential equations [6].

The general area of system identification deals with the
development of mathematical models of dynamic sys-
tems from input/output data [7,8]. When building math-
ematical models, one starts from the definition of the
purpose of the model and uses the a priori available
knowledge (i.e. physical, chemical or biological laws, ini-
tial hypothesis and/or preliminary data) to choose a
model framework and to propose a model structure. This
model contain parameters and we need to know whether
is it possible to uniquely determine their values (identifi-
ability analysis) and if so, to estimate them with maxi-
mum precision and accuracy. This leads to a first working
model that must be validated with new experiments,
revealing in most cases a number of deficiencies. In this
case, a new model structure and/or a new experimental
design must be planned, and the process is repeated itera-
tively until the validation step is considered satisfactory.
This iterative process (i.e. the model building cycle)
should also contain other elements like optimal experi-
mental design and model discrimination steps [9-13].

This work is focused on the key step of parameter estima-
tion, assuming the structure of the nonlinear dynamic
model as given. Parameter estimation (also known as
model calibration) aims to find the parameters of the
model which give the best fit to a set of experimental data.
Examples of recent efforts in the particular case of bio-
chemical pathways are the works of Sugimoto and cow-
orkers [14], Voit and Almeida [15], Rodriguez-Fernandez
and coworkers [13] and Polisetty and coworkers [16]. The
key issues considered here in this work were to ensure reli-
able and accurate parameter estimation, paying especial
attention to the computational cost, and also to perform
the identifiability analysis of the models.

Parameter estimation in nonlinear dynamic biological
models

Estimating the parameters of a nonlinear dynamic model
is more difficult than for the linear case, as no general ana-
lytic result exists. Biological models are often dynamic
and highly nonlinear, thus, in order to find the estimates,
we must resort to nonlinear optimization techniques
where a measure of the distance between model predic-

tions and experimental data (Z = Y - Y) is used as the
optimality criterion to be minimized. The criterion selec-
tion will depend on the assumptions about the data dis-
turbance and on the amount of information provided by
the user. As explained in detail in the Methods section, the
maximum likelihood estimator maximizes the probabil-
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ity of the occurrence of the observed measurements. If we
make the assumption that the residuals are normally dis-
tributed and independent with the same variance 02, then
the maximum likelihood criterion is equivalent to the

least squares and we aim to find p which minimizes the

sum of squared residuals of all the responses. That is, the
estimation criterion would be to minimize the trace of ZT
Z [17]. This is subject to the dynamics of the system, plus
possibly other algebraic constraints, and model parame-
ters are also subject to upper and lower bounds. This for-
mulation is that of a non-linear programming problem
(NLP) with differential-algebraic (DAEs) constraints. In
this work, we have followed the so-called single shooting
approach [18], where an initial value problem (IVP, i.e.,
the systems dynamics) is solved as an inner problem of
the master NLP problem. When estimating parameters of
dynamical systems a number of difficulties may arise, like
e.g. convergence to local solutions if standard local meth-
ods are used, very flat objective function in the neighbor-
hood of the solution, over-determined models, badly
scaled model functions or non-differentiable terms in the
systems dynamics [18].

Due to the nonlinear and constrained nature of the sys-
tems dynamics, these problems are very often multimodal
(non-convex). Thus, traditional gradient based methods,
like Levenberg-Marquardt or Gauss-Newton, may fail to
identify the global solution and may converge to a local
minimum when a better solution exists just a small dis-
tance away. Moreover, in the presence of a bad fit, there is
no way of knowing if it is due to a wrong model formula-
tion, or if it is simply a consequence of local convergence.
Thus, there is a distinct need for using global optimization
methods which provide more guarantees of converging to
the globally optimal solution, as shown in [19]. The
importance of using global optimization methods for
parameter estimation in systems biology has been increas-
ingly recognized in recent years [16,20-23]. Global opti-
mization methods can be roughly classified as
deterministic, stochastic and hybrid strategies. Determin-
istic methods can guarantee, under some conditions and
for certain problems, the location of the global optimum
solution. Nevertheless, no deterministic algorithm can
solve global optimization problems of the class consid-
ered here with certainty in finite time. Actually, computa-
tional effort increases very rapidly (often exponentially)
with the problem size. Although very significant advances
have been recently made [24-26], these methods have a
number of requirements about the dynamics of the sys-
tem, and currently they do not seem to be applicable to
problems with a relatively large number of parameters.
Stochastic methods are based on probabilistic algorithms,
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and they rely on statistical arguments to prove their con-
vergence in a weak way. However, many stochastic meth-
ods can locate the vicinity of global solutions in modest
computational times [27]. Additionally, stochastic meth-
ods do not require transformation of the original prob-
lem, which can be treated as a black-box.

In our group, and during the last decade, we have com-
pared a number of different stochastic and deterministic
global optimization methods. The overall conclusions
from these studies indicate that modern evolution strate-
gies have several key advantages over genetic algorithms
and simulated annealing, namely better efficiency/robust-
ness ratio, good scaling properties, an inherent parallel
nature and an almost self-tuning mechanism for the
search parameters of the method. Our tests and compari-
sons indicate that DE [28] and SRES [29] are one of the
most competitive algorithms, with the additional advan-
tage of being able to handle arbitrary constraints if
needed. The main problem presented by these methods is
that they require too many evaluations of the objective
function [19]. In order to surmount this difficulty, we
have recently proposed a hybrid method [13] that speeds
up these methodologies while retaining their robustness.

The key concept behind hybrid methods is the well
known idea of synergy, that is, a mutually advantageous
conjunction of distinct elements. There are several non-
trivial questions associated with the actual development
of such method, namely choosing which methods to
combine, and how to structure such combination. Our
work is then focused on selecting more efficient stochastic
GO methods and designing better hybrid methods in
order to improve the ratio efficiency/robustness. Rod-
riguez-Fernandez and coworkers [13] combined a global
and a local optimization method in a sequential, two-
phase hybrid method in order to speedup the stochastic
global optimization methods while retaining their robust-
ness. However, computational times were still rather sig-
nificant, especially if one considers its possible
application to larger scale problems.

In order to further increase computational efficiency, in
the present work we present a novel metaheuristic
approach based on extensions of scatter search combined
with various local methods. As it will be shown below,
this metaheuristic shows speeds up of between one and
two orders of magnitude with respect to previous results
obtained with the above mentioned methods. Moreover,
this method eliminates the delicate task of deciding where
to set the switching point from the global to the local
method.

http://www.biomedcentral.com/1471-2105/7/483

Global optimization: novel metaheuristic

Scatter search (SS) is a population-based method based
on formulations originally proposed in the 1960s for
combining decision rules and problem constraints, such
as the surrogate constraint method. It was first introduced
by Glover [30] as a heuristic for integer programming,
although it has been extended for other problem classes
more recently [31,32]. Scatter search orients its explora-
tions systematically relative to a set of reference points
that typically consist of good solutions obtained by prior
problem solving efforts.

The justification for choosing this algorithm as the start-
ing framework for our metaheuristic was based on a recent
review comparing a number of global optimization solv-
ers over a set of over 1000 constrained GO problems [33],
in which a solver based on scatter search proved to be the
best among all the stochastic solvers, and the best among
all methods for black-box problems. Furthermore, for
problems with a large number of decision variables, this
solver also proved to be the most reliable.

Scatter search, when the local search is activated, can be
defined as a hybrid method since it combines a global
search with an intensification phase (i.e. local search). The
algorithm uses different heuristics to efficiently choose
suitable initial points for the local search, based on merit
and distance filters as well as a memory term. This feature
helps overcome the problem of switching from global to
local search as explained in [13]. The user does not have
to worry about stopping the global search and starting the
local solver since the algorithm performs this work auto-
matically.

A scatter search framework in a five-step template is given
by Laguna and Marti [31] to describe the basic steps of the
algorithm (see Figure 1):

* A diversification generation method to generate a collection
of diverse trial solutions.

¢ An improvement method to transform a trial solution into
one or more enhanced trial solutions.

® A reference set update method to build and maintain a ref-
erence set consisting of the b "best" solutions found
(where the value of b is typically small, e.g., no more than
20), organized to provide efficient accessing by other parts
of the method. Solutions gain membership to the refer-
ence set according to their quality or their diversity.

® A subset generation method to operate on the reference set,
to produce several subsets of its solutions as a basis for cre-
ating combined solutions.
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Scatter search pseudo-code diagram.

® A solution combination method to transform a given subset
of solutions produced by the subset generation method into
one or more combined solution vectors.

Of the five methods in the SS methodology, only four are
strictly required. The improvement method is usually
needed if high quality outcomes are desired, but a scatter
search procedure can be implemented without it. Differ-
ences among scatter search implementations are based in
the level of sophistication in which these steps are imple-
mented, not in the presence or absence of other steps. In
the algorithm presented here, we have added some
advanced features in order to improve its performance
when solving parameter estimation problems:

e A logarithmic distribution for generating initial trial
solutions can be chosen by the user to favor their presence
close to the bounds in terms of Fuclidean distance, since
the location of the global optimum near or even touching
the bounds (i.e. being active at any of the bounds) is quite
usual in parameter estimation problems.

http://www.biomedcentral.com/1471-2105/7/483

® Mechanisms to avoid flat zones (also frequent in param-
eter estimation problems), as well as others to avoid get-
ting stuck in local solutions, have been added. In every
iteration the algorithm analyzes if the elite solutions have
very similar objective function values regardless their
Euclidean distances. If the variance of these values is too
low, our procedure considers that the search is located in
a flat zone and resets the elite solutions to explore differ-
ent (and scattered) areas. This mechanism also prevents
the algorithm getting stuck in a local solution when the
elite solutions have converged to that minimum.

¢ A new solution combination method allows to explore
deeper the search space. Apart from the traditional
method of linear combination between solutions,
another method based on building hypercubes around
the solutions to generate new solutions inside them has
been implemented. Now new points around elite solu-
tions (and not only on the segments joining these elite
solutions) can be generated, which favors the intensifica-
tion and accelerates the convergence.

¢ When all the combinations among elite solutions have
been done, the algorithm can stop or continue by partially
rebuilding the set of the elite solutions. A new strategy for
rebuilding this set, based in orthogonal search directions
has been implemented. Instead of simply maximizing the
Euclidean distances between the new elite solutions to be
generated and the remaining ones, the algorithm takes
into account the directions generated by every pair of elite
solutions and force the generator to build new solutions
that create new search directions.

¢ The user can choose a number of different local solvers
such us SQP methods like fmincon (The MathWorks
Inc.), SOLNP [34], SNOPT [35], direct methods like
Nomad [36] for the cases of very noisy data, and others
specifically designed for parameter estimation problems
such as N2FB/DN2FB [37].

It is interesting to observe similarities and contrasts
between scatter search and the original genetic algorithm
proposals. Both are instances of what are sometimes
called "population based" or "evolutionary" approaches.
Both incorporate the idea that a key aspect of producing
new elements is to generate some form of combination of
existing elements. However, genetic algorithm approaches
are predicated on the idea of choosing parents randomly
to produce offspring, and further on introducing rand-
omization to determine which components of the parents
should be combined. By contrast, the scatter search
approach does not emphasize randomization, particu-
larly in the sense of being indifferent to choices among
alternatives. Instead, the approach is designed to incorpo-
rate strategic responses, both deterministic and probabil-
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istic, that take account of evaluations and history. Scatter
search focuses on generating relevant outcomes without
losing the ability to produce diverse solutions, due to the
way the generation process is implemented.

A detailed description of the method is given in the Meth-
odology section.

Confidence intervals

Determining the parameter values with the maximum
likelihood of being correct is only part of the parameter
estimation problem. Moreover, it is equally important to
find a realistic measure of the precision of those parame-
ters [38,39].

It should be noted that, unlike for the linear case for
which a neat theory already exists, there is no exact theory
for the evaluation of confidence intervals for systems
which are nonlinear in the parameters. An approximate
method based on a local linearization of the output func-
tion is often used and was also adopted in this study, thus
the confidence region is evaluated as a function of the
parameter covariance matrix C, based on the Fisher infor-
mation matrix (see details in the Methods section).

However, the confidence intervals obtained with the
Fisher method are statistically optimistic due to the use of
a linear approximation of the non-linear model in the
neighborhood of the best parameter estimates [40].

Alternatively, more robust techniques such as the jackknife
and bootstrap methods produce parameter variances that
are more realistic. As a drawback, one should mention
that these methods are very computing intensive. Another
way to obtain the true confidence region of the parameters
in non-linear models is by a systematic exploration of the
objective functional for an extensive number of parameter
combinations. This is a computing intensive task as well,
because the number of evaluations increases as a power
function of the number of parameters. Therefore, in this
study we will make use of the method based on the FIM.

Precision of parameter estimates

Many difficulties found during parameter estimation are
due to a poor identifiability of the model parameters.
Parameter identifiability tests should be performed prior
to the estimation process to ensure that the parameter esti-
mation problem is well-posed [11]. The identifiability
analysis investigates if the unknown parameters of the
postulated model can be estimated in a unique way.

Regarding this problem, we can distinguish between struc-
tural and practical (or a posteriori) identifiability [41].
Structural identifiability is a theoretical property of the
model structure depending only on the observation func-
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tion and the input function. The parameters of a model
are structurally globally identifiable if, under ideal condi-
tions of noise-free observations and error-free model
structure, and independently of the particular values of
the parameters, they can be uniquely estimated from the
designed experiment [8].

The requirements for global structural identifiability are
rather strict, since we can find realistic situations where
the parameters are not identifiable according to this defi-
nition, but nevertheless they would be identifiable for a
reasonably restricted set of all possible parameters. This
leads to the definition of local structural identifiability,
where the requirement for the parameters is to be identi-
fiable in a € neighborhood of a parameter set. Although
necessary, structural identifiability is obviously not suffi-
cient to guarantee successful parameter estimation from
real data, and this is when the concept of practical identi-
fiability comes into play. In contrast to the theoretical
properties of structural identifiability, the practical identi-
fiability is limited by the finite amount of data and the
observational noise. Hence, in the presence of large obser-
vation errors and/or few data, no reliable estimate is pos-
sible and these parameters are called practical non-
identifiable.

Assessing a priori global identifiability is very difficult for
nonlinear dynamic models, although techniques based
on differential algebra have shown very promising results
[42]. However, it has been argued that these techniques
have somewhat limited applicability [43,44]. These limi-
tations, taken in conjunction with the need for practical
methods, provides a key argument for emphasizing the
use of practical identifiability despite its limitations
derived from its local nature. The question addressed in
the a posteriori or practical identifiability analysis is the
following: with the available experimental data, can the
parameters be uniquely estimated? Or, in other words, if
a small deviation of the parameter set occurs, does this
have a great impact on the quality of the fit?

The output sensitivity functions (partial derivatives of the
measured states with respect to the parameters), are cen-
tral to the evaluation of practical identifiability. If the sen-
sitivity functions are linearly dependent the model is not
identifiable, and sensitivity functions that are nearly line-
arly dependent, result in parameter estimates that are
highly correlated. An easy way to study the practical iden-
tifiability of a simple model is to plot the sensitivity func-
tions calculated for a given parameter set. However, this
straightforward procedure becomes intractable when the
number of measured states and parameters is of realistic
size. In the Methods section, a numerical procedure to test
practical identifiability based on the Fisher information
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matrix (FIM), as well as an approximate computation of
the correlation matrix, are described.

The correlation matrix measures the interrelationship
between the parameters and gives an idea of the compen-
sation effects of changes in the parameter values on the
model output. If two parameters are highly correlated, a
change in the model output caused by a change in a
model parameter can be (nearly) compensated by an
appropriate change in the other parameter value. This pre-
vents the parameters from being uniquely identifiable
even if the model output is very sensitive to changes in the
individual parameters.

In order to perform the practical identifiability analysis,
prior knowledge of the model parameters is required. In
an experimental situation, the parameters values will not
be known a priori, and the identifiability analysis will be
an important step in an iterative process involving experi-
mental design and parameter estimation [45].

In this work, the new global optimization metaheuristic
described above has been coupled with a computational
procedure to check identifiability and related measures.
This has resulted in an integrated environment to perform
robust parameter estimation and identifiability analysis.

Results and discussion

In order to evaluate the performance and reliability of the
novel metaheuristic presented here, which we will denote
SSm (scatter search method), we have considered three
challenging benchmark problems of increasing order of
complexity. All the computations were carried out using a
PC/Pentium 4 (1.80 GHz).

Isomerization of o~-pinene

In this case study, we want to estimate 5 rate constants
(py,---p5) of a complex biochemical reaction originally
studied by Box and coworkers [46], which is also part of
COPS (Collection of large-scale Constrained Optimiza-
tion ProblemS) maintained by Dolan and coworkers [47].
Figure 2 contains the proposed reaction scheme for this
homogeneous chemical reaction describing the thermal
isomerization of o~pinene (y,) to dipentene (y,) and allo-
ocimen (y;) which in turn yields ¢+ and S-pyronene (y,)
and a dimer (ys). This process was studied by Fuguitt and
Hawkins [48], who reported the concentrations of the
reactant and the four products at eight time intervals (z).
If the chemical reaction orders are known, then mathe-
matical models can be derived giving the concentration of
the various species as a function of time. Hunter and Mac-
Gregor [49] assumed first-order kinetics and derived the
following linear equations for the five responses:

http://www.biomedcentral.com/1471-2105/7/483

3
e
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Figure 2

Mechanism for thermal isomerization of o~pinene.
Reaction scheme for the thermal isomerization of a-pinene
(y,) to dipentene (y,) and allo-ocimen (y;) which in turn yields
o~ and f-pyronene (y,) and a dimer (ys).

an _

= 1
it (1 +P2)n1 (1)
dy,
72 _ 2
i pin (2)
d
—;}: = pay1 —(P3 +Pa)y3 + PsYs (3)
dy,
s S 4
It p3Y3 (4)
dys
205 5
it PaY3 t PsVs (5)

Assuming this model to be appropriate, the initial condi-
tions for the five species are known, and we can estimate
the unknown coefficients p;,...,ps by minimization of a
cost function which is usually a weighted distance meas-
ure between the experimental values corresponding to the
measured variables and the predicted values for those var-
iables. For this problem the cost function can be formu-
lated as:
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5 8
I0)= 2. 2 (i (ptd) = 75)° (7)
j=li=1

Box and coworkers [46] tried, in a first instance, to solve
this problem without analyzing the multiresponse data,
finding parameter values which provided an unsatisfac-
tory data fit. Since ignoring possible dependencies among
the responses can lead to difficulties when estimating the
parameters (e.g. multiple local minima, very flat objective
function, etc.), Box and coworkers described a method for
detecting and handling these linear relationships. They
showed that there are dependencies in the data and thus
only three independent linear combinations of the five
responses are used in the identification improving signif-
icantly the fit of the data. This analysis of multiresponse
data, although efficient, requires a considerable effort spe-
cially to uncover the dependencies causes once they have
been found, and a deep understanding of the model (that
can no longer be considered as a black-box) is essential.
Moreover, it becomes unaffordable when the model com-
plexity increases.

Tjoa and Biegler [50] also considered this problem and
used a robust local estimation approach to estimate the
unknown parameters. They considered the entire data set
in order to asses the performance of this method with
dependencies in the data, finally reaching the same opti-
mal parameters reported by Box et al. However, the initial
value considered for the parameters was very close to the
truly optimal solution, which explains why this local
method reached the global optimum without getting
trapped in a local solution. As pointed out by Averick and
coworkers [51], the solution of this problem is not diffi-
cult to obtain from initial values of p which are close to
the global solution, but becomes increasingly difficult to
solve from more remote starting points.

In order to avoid the convergence to local solutions with-
out a good initialization value for the parameters and/or
further analysis of the multiresponse data, the use of a glo-
bal optimization approach is proposed here. The lower
bounds considered for the five parameters arise from
physical considerations, p; 2 0, and we took the upper
bounds to be p;< 1, very far from the best known solution
(p;=5.93e-5,p,=2.96e-5,p;=2.05e-5,p,=27.5e-5,
ps=4.00e - 5). As initial point, we chose p;= 0.5. It should
be noted that all the local solvers that we tried with this
initial point failed to converge, or converged to bad local
solutions.

Figure 3 (value of cost function versus computation time,
the latter in log scale) clearly shows that SSm always con-
verged to the global solution after a short computational
time, while two other highly reputed global optimization

http://www.biomedcentral.com/1471-2105/7/483

methods (SRES and DE) failed, or converged in a much
larger computational time. In order to help the visualiza-
tion, the convergence curve corresponding to SSm is rep-
resented in a different subplot (with log-log scales), since
SRES and DE got trapped in local solutions close to the
initial point while SSm converged to the global optimum
without difficulties.

Figure 4 shows a comparison between the model pre-
dicted values and the experimental data reported by
Fuguitt and Hawkins [48] corresponding to the concentra-
tion of the reactant and the four products. The estimated
parameters allow to reproduce almost exactly the experi-
mental data. Furthermore, the homoscedasticity assump-
tion is confirmed by the lack of correlation between the
residuals and time (see Figure 5).

The confidence intervals obtained for the optimal param-
eters, presented in Table 1, are small, indicating a precise
estimation. Moreover, the color plot of the correlation
matrix in Figure 6 shows a good identifiability at the opti-
mal value with a maximum correlation coefficient of 0.82
between parameters p, and ps. This fact leads us to think
that the existence of multiple local minima is the cause of
the identification problems experienced in most of the
previous studies. These difficulties can be surmounted by
proper global optimization methods, as shown here.

Inhibition of HIV proteinase

This problem consists of the estimation of a number of
rate constants of a model for the reaction mechanism of
irreversible inhibition of HIV proteinase as originally

50000
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3
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Figure 3

Convergence curves for the alpha-pinene case study.
Value of cost function versus computation time for SSm,
SRES and DE.
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Experimental data versus model prediction for the alpha-
pinene case study.

studied by Kuzmic [52] (Figure 7). The problem considers
an experiment where HIV proteinase (assay concentration
0.004 uM) was added to a solution of an irreversible
inhibitor and a fluorogenic substrate (25 uM). The fluo-
rescence changes were monitored for 1 h in each of the
five experiments conducted at four different concentra-
tions of the inhibitor (0, 0.0015, 0.003, and 0.004 uM in
replicate).

We considered the same problem solved by Kuzmic [52]
and Mendes and Kell [53] fitting five of the rate constants
to the experimental data. In this fit, a certain degree of
uncertainty (+ 50 %) in the value of the initial concentra-
tions of substrate and enzyme (titration errors) was also
assumed. In addition, the offset (baseline) of the fluorim-
eter was also considered as a degree of freedom. Given
that there are five time course curves, there are a total of

Table I: Optimal parameters for the alpha pinene isomerization
problem

Optimal parameters () = 19.87)

Parameter Optimal value
P, 5.9259e-5 + 1.4391e-6
P, 2.9634e-5 £ 1.303%e-6
Ps 2.0473e-5 + 6.6657e-6
P, 2.7449e-4 £ 5.5314e-5
Ps 3.9980e-5 + 1.9514e-5
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Residuals for the alpha-pinene case study.

20 adjustable parameters: the five rate constants, five ini-
tial concentrations of enzyme, five initial concentrations
of substrate and five offset values.

By minimization of the sum-of-squares function of the
residuals between the measured and the simulated data,
the best known solution was obtained by Mendes and Kell
using simulated annealing, with a computational cost of
3 million simulations. The next best solution was
obtained using a Levenberg-Marquardt method in a con-
siderable shorter computational time (4000 simulations)
although this method is only guaranteed to converge to
the global minimum if started in its vicinity.

p1 p2 p3 p4 p5

Figure 6
Correlation matrix for the alpha-pinene case study.
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M+M &= E k, ky,

S+E &= ES ky, ky,

ES —> E+P k,

E+P === EP Ky ki

E+I &« EI oy oy

EI —— FJ ke
Figure 7

Mechanism of irreversible inhibition of HIV protein-
ase. The HIV proteinase (E) was added to a solution of an
irreversible inhibitor (I) and a fluorogenic substrate (S). The
enzyme is only active in a dimer form, the product is a com-
petitive inhibitor for the substrate and the inhibitor is irre-
versible.

In our study, SSm converged to a better solution in less
that 1500 simulations, which confirms the good perform-
ance of this method even with challenging parameter esti-
mation problems. Moreover, when compared with other
performant stochastic methods such as SRES or DE, SSm
reached better solutions with speed-ups of almost 3 orders
of magnitude (see Figure 8).

Despite SSm converged in every run to solutions with a
very good values of the cost function (always lower than
the best value previously published), the values of the
parameters were not always the same (see examples in
Table 2) indicating a very flat objective function in the
region of parameter space near the optimum. The correla-
tion matrix (see Figure 9) helps to explain this fact since
there are correlation values of 0.9999 between some pairs
of parameters, (like k,, and k,,) indicating the lack of
identifiability for this problem. This characteristic is first
reported here and explains the difficulties (i.e. multiple
solutions almost equivalent) experienced by previous
researches, confirming the importance of coupling identi-
fiability tests with parameter estimation procedures.

However, it is worth noting the very good correlation
between the experimental and predicted data for the best
decision vector and the lack of correlation between the
residuals and time (see Figure 10 and Figure 11).

http://www.biomedcentral.com/1471-2105/7/483
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Figure 8

Convergence curves for the inhibition of the HIV
proteinase. Value of cost function versus computation time
(in log scale) for SSm, SRES and DE.

Three-step biochemical pathway

This case study, considered as a challenging becnhmark
problem by Moles and coworkers [19], involves a bio-
chemical pathway with three enzymatic steps, including
the enzymes and mRNAs explicitly. Figure 12 contains a
diagram illustrating the network of reactions and kinetics
effects (feedback loops).

The identification problem consists of the estimation of
36 kinetic parameters of the nonlinear biochemical
dynamic model (8 nonlinear ODEs) which describes the
variation of the metabolite concentration with time.
Moles and coworkers tried to solve this problem using
several deterministic and stochastic global optimization
algorithms. They found that only a certain type of stochas-
tic algorithms, evolution strategies (implemented as the
SRES code), was able to successfully solve it, although at a
rather large computational cost. In Figure 13 we can see
how the two-phase hybrid method recently presented by
Rodriguez-Fernandez and coworkers [13] converged to
better solutions, with speeds up of more than one order of
magnitude with respect to the previous results.

The novel metaheuristic, SSm, presented in this work was
able to improve this result in an additional order of mag-
nitude regarding the computational time. Moreover, SSm
had the additional advantage of not requiring preliminary
runs, or any user inputs, for tuning the method, making it
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Table 2: Optimal parameters for the HIV proteinase inhibition problem
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Results SSm

Parameter

kSZ

Soexp 1)
So(exp 2)
So (exp 3)
So (exp 4)
So (exp 5)
Eq (exp 1)
Es (exp 2)
Eq (exp 3)
Eo (exp 4)
Eo (exp 5)
offset (exp 1)
offset (exp 2)
offset (exp 3)
offset (exp 4)
offset (exp 5)

Parameter value (J = 0.0199)

6.235 + 3.2546
8772 + 46120
473.0 + 624.6
0.09726 + 0.1288
0.01417 £ 0.01032
24.63 £ 0.07817
23.32 + 1.349
26.93 + 1.222
13.34 + 1.822
12.50 + 1.812
0.005516 + 0.001968
0.005321 + 0.001309
0.006000 + 0.001111
0.004391 + 0.00008686
0.003981 + 0.00008844
-0.004339 + 0.001788
-0.001577 £ 0.002966
-0.01117 +0.002734
-0.001661 +0.001881
0.007133 + 0.001764

Parameter value () = 0.0203)

5.656 + 1.953
688.4 + 3436
120.6 + 508.1
4.615 + 583.4
3.531 £ 4554
24.69 + 0.08049
23.43 £ 0.1541
27.11 £0.1672
17.07 £ 1.986
14.49 + 1.757
0.005397 + 0.0009091
0.005199 + 0.0005520
0.006000 + 0.0005489
0.004264 + 0.0000582 1
0.003973 + 0.00005648
-0.005611 +0.001836
-0.004247 + 0.003432
-0.01522 + 0.003865
-0.009649 + 0.003277
0.001329 + 0.003178

a very easy to use strategy. In short, using SSm we have
reduced the computation time from two days [19] to a
couple of minutes, while ensuring robustness.

Figure 14 shows a comparison (between the predicted and
experimental data) for one of the experiments evidencing
the accuracy of the fit. Figure 15 confirms that the residu-
als are white. The representation of the dynamic behavior
for the other experiments is quite similar and is not
included here for the sake of brevity.

It is sometimes argued that a multistart local method can
solve almost all global optimization problems. This can
be false for even small problems [54]. The histogram in
Figure 16 represents the frequency of the solutions for a
multistart of 100 runs using N2FB. The global optimum is
in this region close to zero but we can see that it was never
reached while a very large number of solutions are far
from the global optimum. Despite the identifiability diffi-
culties of this problem, which make most of the solvers
fail when trying to solve it, the confidence intervals of the
global solution are small indicating a precise parameter
estimation. This fact is discussed in more detail in [13].

Conclusion

Parameter estimation from experimental data remains a
bottleneck for a major breakthrough in systems biology.
Traditional global optimization methods can ensure
proper solutions, but suffer from the large computational
burden required for large-scale model identification. In

this contribution, we have presented a novel global opti-
mization metaheuristic, SSm, which increases very signif-
icantly the efficiency of the estimation while keeping
robustness. Its capabilities were tested considering three
challenging benchmark problems. This new method was
able to successfully find the best known solutions for
these problems while reducing the computation time by
several orders of magnitude with respect to previous
approaches.

Methods

Problem statement

In this work, we consider deterministic, nonlinear
dynamic models of biochemical systems, i.e. those
described by deterministic ordinary differential equations
(ODEs), or differential-algebraic equations (DAEs). In the
case of ODEs, a popular statement is the so called state-
space formulation:

x(p,t) = flx(p,1), u(1).p], x(0) = %o, (8)
y(p.t) = glx(p.1), u(p,t), p] (9)

where x is the vector of N, state variables and p the vector
of N, model parameters. Note that f specify the model, u
specifies the vector of inputs (i.e. for a particular experi-
ment) and y the vector of N, measured states. An experi-
ment is specified by the initial conditions x(0), the inputs
u chosen from among some set of possible inputs U and
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offset(3)
EO(3)
S0(3)
offset(2)

Figure 9
Correlation matrix for the inhibition of the HIV proteinase.

the observations y. Note that the inputs can be time
dependent.

Given a model structure and a set of experimental data,
the goal of the parameter estimation problem is to cali-
brate the model so as to reproduce the experimental
results in the best possible way. This is performed by min-
imizing a cost function that measures the goodness of the
fit. Several estimator functions have been suggested as
metrics, standing out the maximum likelihood estimator
introduced by Fisher (1912), for being the one that maxi-
mizes the probability of the observed event.

0.7 ;
—— Experiment 1
—— Experiment 2
0.6/{ — Experiment 3 4
' Experiment 4
—— Experiment 5 s
0.5r e —
&2
0.41 l
©
c P
2 0.3f /. —
(] 7
,fl
02r |
0.1 /# W 4
or 4
-0.1

1500 2000 2500 3000 3500 4000
Time (s)

0 500 1000

Figure 10
Experimental data versus model prediction for the HIV pro-
teinase case study.
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Figure 11
Residuals for the HIV proteinase case study.

Maximum likelihood estimation consists of maximizing
the so-called likelihood function, J,,;, which is the proba-
bility density of a model for the occurrence of the meas-
urements for given parameters. The likelihood function
depends on the probability of the measurements. Assum-
ing these to be uncorrelated normal distributions, the log-
likelihood function (which yields the same estimate that

G <G

S <v—> M1<V—>M2<v—>

O ey

Figure 12

Three-step biochemical pathway scheme. The pathway
substrate (S) and the product (P) are held at constant con-
centrations; Ml and M2 are intermediate metabolites of the
pathway; El, E2, and E3 are the enzymes and GI, G2, and G3
are the mRNA species for the enzymes. Solid arrows indicate
mass transfer reactions and point to the positive direction of
flux but are chemical reversible. Dashed arrows indicate acti-
vation and dashed curves with blunt ends indicate inhibition.
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SRES
— SRES
- - DN2GB
— SSm {

——e=r[
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2 3 4 5
10 10 10
CPU time (s)

Figure 13
Convergence curves for the three-step biochemical
pathway case study. Value of cost function versus compu-

tation time (in log scale) for SSm, SRES and two-phase hybrid
method formed by SRES+DN2FB.

the likelihood function but is easier to handle in practice)
is given as:

N

~ 2
Imz(P):[jl”(zﬂ)JF;Z{l"(Giz)‘*(yi ~(p)) ] (10)
G,

i=1 i
For given measurements ¥;, the maximum likelihood

estimates of the parameters are those values of p for which

Concentration

120

Time (min)

Figure 14
Experimental data versus model prediction for the three-step
biochemical pathway case study.
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Residuals for the three-step biochemical pathway case study.

the likelihood function has its minimum. Moreover, if we
assume the noise to be Gaussian with known of constant
(homoscedastic) variance, minimizing J,; (Equation 10)
is equivalent to minimizing the function:

J(p) =wil yi -vi(p)I>  (11)

Frequency

0 200 400 600 800
Objective Function

1000 1200
Figure 16
Multistart for the three-step biochemical pathway

case study. Frequency of the solutions for a multistart using
N2FB.
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. . 1 . .
with the weights W; = —-. One thus obtains a weighted
o}

least-squares estimator. If all o;'s are equal, unweighed
least-squares should be used (w; = 1) and the noise vari-

ance do not need to be known a priori and can be esti-
mated a posteriori from the residuals [7,8].

Confidence intervals
In general, confidence regions can be expressed as:

T 1 T 1—
:(o=p) C(p-p) <mpF {3 (12)
The covariance matrix obtained for a linear case can be

extended for nonlinear models leading an approximate
covariance matrix as:

-1

T
1) | <[ i -1 i
Ci(p)=—"— )| v | = 13
=0 5 T | v e | (13)
where the term N](—p) is an unbiased approximation of
-n
p

. . d e
the residual variance 02 and a—y(p) the sensitivity func-
p
tions with respect to the parameters evaluated at p .

Under the assumption of uncorrelated measurement
noise with Gaussian distribution with a mean of zero, the
approximation of the covariance matrix C; given by the
Equation 13 is just the inverse of the Fisher information
matrix of the estimation problem defined as:

N . T .
FIM(p)=2{%(p)J V‘z(%(p)J (14)

i=1
According to the Cramer-Rao theorem, C;( p ) = FIM-! rep-
resents the error covariance matrix of the minimum vari-
ance unbiased estimator, thus substituting C; from
Equation 13 into Equation 12, yields the approximate
confidence ellipsoids.

Therefore, a lower bound for the individual parameter
confidence interval ¢; (i = 1,...,n,) can be obtained from
the diagonal of the covariance matrix as:

6i = it}\;g;l!p/z)1 | Cii (15)

http://www.biomedcentral.com/1471-2105/7/483

where t}\;g)i/ 2 is the two-tails Student's ¢ distribution for
P

the given confidence level and N - n, degrees of freedom

which converges to a linear distribution when the number
of measurements N is high. Assuming that the measure-
ment noise is white and uncorrelated we consider the
error correlation matrix as diagonal, neglecting the off-
diagonal elements of C, that is, the covariances among the
parameters. When parameters are simultaneously deter-
mined they usually have a significant covariance thus the
confidence intervals might be underestimated. That is
why these confidence intervals obtained from the FIM can
only be taken as lower bounds and never as an exact con-
fidence region.

A posteriori local identifiability analysis

Under the assumption of uncorrelated measurement
noise with Gaussian distribution with a mean of zero, the
covariance matrix can be approximated by the inverse of
the Fisher information matrix involving the output sensi-
tivity functions. If the sensitivity equations shows linear
dependence at the experimental data points, the FIM
becomes singular and the model is not identifiable.

Useful information about the correlation between esti-
mated parameters can be also obtained from the covari-
ance matrix. The correlation matrix, which elements are
the approximate correlation coefficients between the i-th
and the j-th parameter, is defined by:

C;i
Ri=—3—,i+]j, 16
i~ e (16)
Rij=1,i=j (17)

A singular FIM indicates the presence of unidentifiable
parameters, and correlations between parameters that are
greater than 0.99 may lead to singular FIM.

SSm algorithm

SSm is an advanced design of the scatter search algorithm
for real variables. The method uses a relatively short
number, b, of elite decision vectors in a so-called reference
set (refset). These elite vectors are combined in pairs to gen-
erate new ones that may enter the refset replacing existing
vectors in it (i.e. the refset always maintains a fixed
number of vectors). This evolutionary approach is com-
bined with local searches from selected vectors.

In a n-dimensional problem, vectors of decision variables
are represented by, x € R"so that a particular decision var-
iable in the population of size NP can be symbolized as
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xf, wherei=1,2,.,nand r =1, 2,..,NP. The refset will
have NP = b, whose default value is 10.

The main steps of the algorithm are shown below, with a
diagram presented in Figure 1.

Generation of diverse vectors within the search space

The first step consists of generating a set S of m (default m
=10 - b) diverse vectors in the search space. Unlike other
diversification strategies, SSm does not only generate vec-
tors with their components uniformly distributed within
the search space, but also drives the generation of values
for each decision variable onto parts of the space where
they have not appeared very often during the search proc-
ess. For that, the method makes use of memory taking
into account the number of times that every decision var-
iable appears in different parts of the search space.

Initially, the range of every decision variable, defined by
its lower and upper bounds, xI; and xu; respectively, is
divided in p (default p = 4) subranges of equal size, (xu; -
xl;)/p. Therefore, the limits that define each subrange j €
[1, 2,...,p] for the variable i are given by

e Lower bound:

(18)

Ib;; = xl; +xui——xli(],_1)
p
e Upper bound:

xu; —xl;

. (19)

Frequencies f;; are defined as the number of times that the
variable i is in the sub range j along all the generated vec-
tors, withi € [1,2,...,n] and j € [1,2,....p].

Ubl] = xli +

To initialize all the frequencies to a value of 1, p vectors are
first generated, each of them having all their variables ran-
domly generated in the same sub range using a uniform
distribution (e.g. vector 1, x!, has all its variables in sub
range 1, and every decision variable i is randomly gener-
ated using a uniform distribution within the bounds xI,
xu; — xI; .

and «, +M). This first set of vectors forms the
initial matrix of diverse vectors Sp *  that will be extended
up to a size of S" *" by adding new diverse vectors.

http://www.biomedcentral.com/1471-2105/7/483

x! hi ha o fip
S= X:Z with f = f21 f22 fzﬂ = ones(n, p) (20)
xp fnl fn2 fnp

New vectors will be generated using the following proce-
dure:

For each new vector xP*'to be generated, the probability of
having its decision variable i in the sub range j is calcu-
lated as

1
pu_ Ji
Yoy b

k=1 fik
withte [1,2,...m-p], i€ [1,2,..,n] andj e [1,2,...p].

prob

(21)

Then, a uniformly distributed random number, rnd, in the
interval [0 1] is generated. The next generated vector xP+
will have its i-th component in the subrange j = a for the
first value of a that accomplishes

a
ptt o _
md < Z{probi,j a=12,..,p
J:

(22)

p+t

Each component, x; ", will take a value randomly

selected using an uniform distribution in the range [Ib
uby|.

ijr

Thus, for a new vector to be generated, the probability of
having the variable i in the subrange j is inversely propor-
tional to the frequency of appearance of the variables i in
this subrange along the already created vectors. Therefore,
the method has to "remember" and update these frequen-
cies to enhance diversity. As new vectors x*t are generated,
they are added to the matrix S in rows until it becomes m-
by-n dimensional.

Refset formation

When the diverse vectors have been generated a selected
number of them will create the first refset, R. There are two
strategies to do it.

The first one consists of evaluating the fitness f (x) (i.e. the
cost function) of all diverse vectors and select the b/2 best
ones in term of fitness. For example in a minimization
problem, provided the diverse vectors are sorted accord-
ing to their fitness (the best one first), the initial selection
is Rb/2xn=[x1, x2,...,x%/2] such that
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) <fWw)Vj>iie[1,2,..b/2],j€ [2,3,...m] (23)
The current number of vectors present in the refset is com-
puted as h. Therefore, in this stage h = b/2 and the maxi-
mum value of h is b. We complete the refset with the
remaining diverse vectors not yet included by maximizing
the minimum Euclidean distance to the included vectors
in the refset.

For every diverse vector not yet included in the refset, x4
withd € [h + 1, h + 2,...,m], Euclidean distances to all cur-
rent refset vectors are computed. The minimum of these
distances, d,,;,, is stored for each vector x:

dpin(xd) = min{d(xd, R}  (24)

where d(x, R), represents a vector whose components are
the Euclidean distances between vector x and all the vec-
tors in the matrix R.

Then, the vector x having the highest minimum distance
will join the refset, R = R U x such that
dpin(x) = max(d,;,(x))Vd=h+1,h+2,..m (25)

and the value of h is increased one unit since a new vector

has been added to the refset. This is repeated until the refset
is filled with b vectors (i.e. h = b) so that R € Rb~n,

The second strategy does not take into account the fitness
of the diverse vectors. The initial refset is formed by 3 vec-
tors: one having all the variables in their lower bounds,
one having all the variables in their upper bounds and the
middle point between these two vectors. This initial refset
R € R3*nis completed using the same distance criterion
described in the first strategy until it is composed of b deci-
sion vectors. Please note that the first strategy involves a
higher computational cost since the fitness of all the
diverse vectors has to be evaluated. However, this strategy
ensures a better quality of the initial refset which can help
to converge faster to the global solution.

Combination

Unlike genetic algorithms or other evolutionary strategies,
scatter search does not use mutation or crossover opera-
tors among its members, but combinations among them.
SSm combines all the vectors in the refset in pairs, making
use of memory to avoid the combination of two vectors
that have already been combined. The number of vectors
created from each pair of elite vectors depends on the
quality of the latter. These combinations are of the follow-
ing three types, assuming x' and x" being the elite vectors
to be combined and being x' superior in quality to x":

eType l:i¢c;=x"'-d

http://www.biomedcentral.com/1471-2105/7/483

eType2:c,=x"+d
eType3:c;=x"+d
whered =r.- (x" - x')/2

And r is a vector of dimension n with all its components
being uniform random numbers in the interval [0 1].

Please note that the notation.- above indicates that the
vectors are multiplied component by component, thus

that is not an scalar product.

The vector has the form

[ n(xf —x) |
dy 2,
d (x5 —x3)
d=|"7|= 2 (26)
Wl | =)
L 2 B

If both x' and x" belong to the best b/2 elements of the ref-
set in terms of fitness, then 4 vectors are generated: one of
type 1, one of type 3 and two of type 2.

If only x' belongs to the best b/2 elements of the refset in
terms of fitness, then 3 vectors are generated: one of each

type.

If neither x" nor x' belong to the best b/2 elements of the
refset in terms of fitness, then 2 vectors are generated: one
of type 2 and another one of type 1 or 3 (randomly cho-
sen).

This type of combination allows more diversity in the gen-
erated vectors than the linear combination used in classi-
cal implementations of scatter search. These vectors
generated by combination of refset members will be
named x¢with ¢ € [1, 2,..., nc], and form a matrix C € Rne
* n where nc is the total number of vectors generated by
combination, which is not a fixed number. It may change
every iteration depending on the number of combina-
tions made among refset members (remember that the
method avoids doing combinations with pairs of vectors
already combined).

Refset update

Once the combinations have been done, the new vectors
generated may replace the elite vectors if the refset can
increase its quality. Each new vector created by combina-
tion which is better than the worst vector in refset is com-
pared with all the elite vectors. If new vectors outperform
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elite vectors in terms of fitness they replace them as long as
they comply with a minimum diversity (i.e. the method
avoids vector duplication in the refset by computing Eucli-
dean distances among all vectors).

The best generated vector by combination is compared
with the worst vector in refset. If the former outperforms
the latter and is not included in the refset, the replacement
is carried out. Otherwise, the algorithm tries to find
another vector in the refset to accomplish both conditions
and do the replacement.

The first candidate vector to join the refset among the nc
generated vectors by combination is z such that
fR)<f(x)Vi=1.2,.nc (27)

The possible vector to be replaced in the refset is the worst
in the refset, x¥ such that

fa) 2 f(W) Vj=1,2,..b (28)

The replacement will be carried out if

flz)<f(x*)andz¢ R (29)

Regardless the replacement is done or not, z is deleted
from the matrix C, therefore nc is decreased in one unit.
This is repeated with every generated vector by combina-
tion until no new vectors are better in quality than the cur-
rent worst vector in refset.

There is an exception to these rules: if one vector has the
best fitness in terms of quality found so far, it will join the
refset replacing the worst vector in it or, in case that the
diversity condition can not be achieved, the closest elite
vector to it.

A mechanism to avoid flat zones is added to the refset
update. In flat areas, many vectors with very similar (and
sometimes the same) fitness can appear. To avoid includ-
ing vectors from the same flat area, new vectors can only
join the refset if the candidate vector has a different fitness
value apart from being diverse enough. This prevents vec-
tors in the same flat area from joining the refset at the same
time.

Provided the diversity criterion is accomplished, the can-
didate vector z will join the refset only if
fz) <f(x))(1-€) Vxie R (30)

where gis a small value defined by the user.
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Refset regeneration

When all possible new combinations have been done and
none of the generated vectors can replace any of the elite
vectors, the algorithm can either stop or continue by
regenerating the refset. The latter strategy is used in our
algorithm. The worst g elite vectors (in terms of fitness) are
deleted. New diverse vectors are generated (see above)
and the refset is refilled according to a diversity criterion as
the one described in the refset formation.

Normally g = b/2 but in aggressive implementations it can
besetto b -1 (i.e. all the vectors in the refset except the best
one are deleted).

A new strategy for regenerating the refset has been imple-
mented in SSm. Because the classical diversity criterion
based on Euclidean distances described above does not
ensure that the search will be performed along the differ-
ent dimensions of the space. In our new strategy the vec-
tors refilling the refset are chosen to maximize the number
of relative directions defined by them and the existing vec-
tors in the refset.

After deleting the g worst solutions the refset is (b - §) x n
dimensional. Again, we compute h as the number of exist-
ing vectors in the current refset thus when the regeneration
startsh=b - g.

A new matrix M containing the vectors that define the seg-
ments formed by the best vector in refset and the rest of
vector in it is defined as
Mh-1xn=xl k¥ k=23,.,h (31)

with x! being the best element not deleted in refset in

terms of fitness and x* the rest of the elements in it (note
that the refset is ordered according to fitness).

For every diverse vector x* with v € [1, 2,...,m] to join the
refset in the regeneration phase a vector P of scalar prod-
ucts is also defined:

Pr=(x'-xv)-MT (32)

where x1is again the best not deleted element in refset and

MTis the transpose matrix of M. For every x¥ the maximum
value of its vector ¥ is computed as msp(xV).

The solution v € x¥ will join the refset in the regeneration
phase if

msp(v) = min{msp(x*)}  (33)

with v € x%. In this stage, the value of h is increased one
unit and the process continues until i = b. The application
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of this strategy results in a maximum diversity in search
directions on the regenerated refset.

Local search — filters

Local searches are carried out from different vectors as ini-
tial points to accelerate the convergence to the minima as
shown in Figure 1. The user can use a different set of local
solvers (see list above) to solve their problems. When a
local (maybe global) solution provided by a local search
outperforms the vector used as initial point to start the
local search in terms of fitness, the former replaces the lat-
ter and becomes a member to join the refset. Otherwise,
the solution obtained in the local search is discarded.

To avoid doing too many local searches or start from dif-
ferent initial points that might provide the same local
solutions, two filters are implemented in the routine. The
first one is a merit filter that takes into account the fitness
of the vectors so that a local search is not started from bad
vectors in terms of fitness. The other filter takes into
account distances from initial points to the local solutions
they provide, thus it avoids starting local searches from
the area of influence of already found minima.

In principle, both filters must be passed to start a local
search, but depending on the characteristics of the prob-
lem, any of them (or both) can be deactivated. Further-
more, they can be relaxed if no vectors passing them are
found after a number of consecutive iterations.

Stopping criterion
The stopping criterion is taken as a combination of three
conditions:

e maximum number of evaluations exceeded
e maximum computational time exceeded
e value to reach of the cost function satisfied

By default, the algorithm will stop when any of these con-
ditions is satisfied.
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