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Abstract

Background: Circular Dichroism (CD) spectroscopy is a widely used method for studying protein
structures in solution. Modern synchrotron radiation CD (SRCD) instruments have considerably
higher photon fluxes than do conventional lab-based CD instruments, and hence have the ability to
routinely measure CD data to much lower wavelengths. Recently a new reference dataset of SRCD
spectra of proteins of known structure, designed to cover secondary structure and fold space, has
been produced which includes low wavelength (vacuum ultraviolet — VUV) data. However, the
existing algorithms used to calculate protein secondary structures from CD data have not been
designed to take optimal advantage of the additional information in these low wavelength data.

Results: In this study, we have optimised secondary structure calculation methods based on the
low wavelength CD data by examining existing algorithms and secondary structure assignment
schemes, and then developing new methods which have produced clear improvements in
prediction accuracy, especially for beta-sheet components. We have further shown that if precise
measurements of protein concentrations, and therefore spectral magnitudes, are not available, the
inclusion of the low wavelength data will significantly improve the analyses. However, we have also
demonstrated that the new reference dataset, methods, and assignments can also improve the
analyses of conventional circular dichroism data, even if the low wavelength data is not available.

Conclusion: YUV CD data include important information on protein structure which can be
exploited with the algorithms and methodologies described.

Background

Circular dichroism (CD) spectroscopy measures the dif-
ferential absorbance of left- and right-handed circularly
polarised light as it passes through a sample of chiral mol-
ecules. In the far ultraviolet (UV) region of the electro-
magnetic spectrum, the electronic transitions of amide
backbone groups dominate the CD spectra of proteins,
with different types of secondary structures producing

characteristic spectra. Hence, the far UV CD data have
been used for empirical determinations of protein second-
ary structure contents by employing the different refer-
ence dataset/algorithm combinations currently available
[1,2]. A reference dataset consists of the CD spectra of a
group of proteins, along with their corresponding second-
ary structure assignments derived from crystal structures.
There are many methods of assigning protein secondary
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structures from crystallographic data including those
based on C, coordinates [3] or hydrogen bonding pat-
terns only [4], or in combination with phi and psi angles
[5]- In addition, the Xtlsstr algorithm [6] (based on vari-
ous dihedral angles) was developed with the aim of being
more relevant to spectroscopic measurements. Currently,
however, there is no consensus as to which of these sec-
ondary structure assignment methods correlates best with
CD spectroscopic data.

The accuracy of an empirical analysis depends on the ref-
erence dataset containing representations of the types of
structures present in the unknown protein [7]. Whilst
existing methods tend to produce excellent results for the
helical content, they are generally not very accurate in
defining -sheet and B-turn structures, and for the most
part do not break down the secondary structural types into
several of the components that are now seen to be func-
tionally important, namely polyproline II (PP-1I) helixes,
3, helices and different types of turns.

Synchrotron radiation circular dichroism (SRCD) beam-
lines, which provide very bright light sources, can rou-
tinely enable the measurement of CD data to much lower
wavelengths than can be achieved in conventional lab-
based CD instruments [8]. Recently a new larger and
broader-based reference dataset containing the SRCD
spectra of proteins of known structure has been produced
[9]- This contains the spectra of more than 70 proteins
and has been designed for extensive coverage of both sec-
ondary structure and fold space. The components were
chosen based on the CATH classification of protein struc-
tures to include representatives of all major CATH archi-
tectures and examples from each identified "superfamily"
as well as to encompass the range of secondary structures
present in all proteins found in the Protein Data Bank. It
also incorporates low wavelength (vacuum ultraviolet -
VUV) data [9]. Electronic transitions in this wavelength
range also includes information on protein secondary
structure [10,11], however, the existing algorithms used to
calculate protein secondary structures from far UV CD
data have not been designed to take optimal advantage of
the additional information in the low wavelength data.

The availability of this new, significantly larger reference
dataset has now provided the means by which to assess
both existing and new algorithms as well as different sec-
ondary structure assignment schemes, and to examine the
utility of the lower wavelength data for improving these
analyses.

Results and discussion

Accuracy prediction indicators

The performances of CD structure determination methods
are typically measured using the widely reported Pearsons
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correlation coefficient (r), and the root mean squared
deviation (0) (eqn.1).

z(flCD _fiX)2

i=1

- (eqn. 1)

where f€P = fraction of secondary structure determined
from CD data, fX = fraction of secondary structure calcu-
lated from the Protein Data Bank [13] (PDB) structure,
and n = number of CD spectra.

In addition to these values, it is useful to consider J in
relation to the population standard deviation of the
experimentally determined secondary structure fractions
of the reference dataset (oy) [12].

The ratio of dto oy (¢) gives an indication of how much
better a prediction method is than random (eqn. 2). Val-
ues of {'less than 1.0 indicate that the secondary structure
prediction is worse than what would be obtained from
random guesses. The ¢ parameter thus flags instances
where secondary structure content analyses are meaning-
less.

(eqn. 2)

It is essential that any assessment of a dataset's predictive
ability is carried out using a full cross-validation proce-
dure. In this method the predictive performance is deter-
mined by sequentially removing a spectrum from the
dataset and running the prediction method on that spec-
trum using the remaining spectra.

Comparisons of algorithms

The accuracy prediction parameters were used to test and
compare a number of algorithms, including several ver-
sions of SELMAT [1], one of the currently available best
methods for CD analyses, several popular chemometric
methods, including partial least squares (PLS), simultane-
ous partial least squares (SIMPLS) and principal compo-
nent regression (PCR), as well as neural network (NN)
and support vector machine (SVM) techniques (Tables 1,
2,3,4,5).The best results (lowest dor highest r) produced
by any of the algorithms for each secondary structure type
are shown in bold in Tables 1, 3, 4, and 5.

In the first instance, the most commonly cited secondary
structure assignment method, the regular/distorted helix/
sheet structure classification [14] was used to assess the
methods. The new SP175 dataset has been shown to give
a good prediction accuracy (low §, high r) using this sec-
ondary structure assignment method [9] with the
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Table I: The cross-validation performance of various algorithms using the SP175 reference dataset [9] with the standard [1]

secondary structure assignment scheme.

Dataset Structure SELMAT3 SELMATI| _norm PLS PLS-opt
) r ) r o r ) r
SPI175 OR 0.048 0.956 0.046 0.960 0.040 0.971 0.041 0.970
Op 0.035 0.809 0.035 0.811 0.036 0.791 0.037 0.779
Br 0.073 0.792 0.064 0.849 0.063 0.853 0.059 0.870
Bo 0.020 0913 0.019 0.921 0.023 0.889 0.025 0.867
turn 0.052 0.325 0.053 0.297 0.052 0.332 0.051 0319
other 0.050 0.717 0.046 0.770 0.050 0.720 0.045 0.771
SPI175 (nr) OR 0.049 0.954 0.048 0.956 0.041 0.970 0.042 0.969
Op 0.037 0.776 0.036 0.790 0.037 0.778 0.038 0.764
Br 0.083 0.725 0.067 0.832 0.065 0.841 0.061 0.862
Bo 0.023 0.891 0.021 0.902 0.024 0.880 0.026 0.857
turn 0.055 0.261 0.054 0.277 0.053 0.302 0.052 0.295
other 0.055 0.671 0.047 0.754 0.054 0.683 0.046 0.764

The (nr) tag indicates that the cross-validation was carried out under more stringent (non-redundant) conditions such that no proteins in the
training set with the same CATH homologous superfamily as that of the test protein were included. The best results (lowest d or highest r) for
each secondary structure type with the SP175 and SP175(nr) datasets are shown in bold.

SELMAT3 algorithm. Improvements relative to SELMAT3
were seen for the oR, BR, turn, and 'other' fractions using
the PLS or PLS-opt algorithms (Table 1). Furthermore,
normalising the spectral data at each wavelength such that
L = 0 and 6 = 1 before running SELMAT1 (ie.
SELMAT1_norm) resulted in improvements in most of
the performance accuracies relative to SELMATS3.
SELMAT3 could not be used with the normalised data
because the Hennessey & Johnson solution [15] for the
data scaled in this way was very poor. However, SELMAT3
and SELMAT1_norm both gave greater accuracy for the
oD and BD fractions relative to either of the PLS-based
algorithms. But it should be noted that the oD and D
types were originally defined for use with the SELMAT3-
type method.

The SIMPLS and PCR algorithms could not be tested with
the standard assignment scheme because six dependent
variables exceeded the maximum that could be used with
these algorithms with the SP175 data.

Cross-validations were also carried out under more strin-
gent (non-redundant) conditions such that no proteins in
the training set from the same CATH homologous super-
family as that of the test protein were included (Tables 1,
3, and 4). These analyses showed little difference from
those done with the dataset containing proteins from the
same superfamily.

To summarise the results for the standard secondary struc-
ture assignment scheme, either of the PLS methods or

Table 2: The cross-validation performances for different types of secondary structure assignments using the SP175 dataset with the

PLS algorithm.

Structure J r 4 k n
3,¢-helix (G) 0.031 0.385 1.04 7 0.04
Br 0.060 0.867 2.00 6 0.16
core B-sheet 0.042 0.879 2.09 6 0.13
B-sheet (,raiiel) 0.060 0.233 0.99 6 0.02
B-sheet (,_paraller) 0.098 0.806 1.68 6 0.07
B-Turnl 0.065 0.463 1.10 4 0.13
B-Turn Il 0.032 0.125 1.00 | 0.03
PP-Il helix 0.034 0.641 1.30 4 0.09

The results shown are for the optimal number of principal components k:n is the proportion of residues in the reference dataset identified as having
this type of secondary structure. Those secondary structures with { values greater than 1.0 are shown in bold.
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Table 3: The cross-validation performances of various algorithms using the alternative secondary structure assignment scheme.

SPI75 SP175(nr)

Method Parameter  o-helix Bo Core B-sheet  PP-Il helix other o-helix Bo Core B-sheet  PP-Il helix  other
SIMPLS r 0.968 0.895 0.875 0.687 0.842 0.968 0.883 0.861 0.678 0.839

5 0.054 0.022 0.034 0.036 0.052 0.055 0.023 0.036 0.036 0.052

PCR r 0.966 0.894 0.876 0.684 0.841 0.965 0.88I 0.862 0.677 0.837

5 0.056 0.022 0.034 0.036 0.052 0.057 0.023 0.035 0.036 0.053

PLS r 0.971 0.889 0.863 0.641 0.839 0.970 0.88l 0.854 0.628 0.833

5 0.052 0.023 0.035 0.038 0.052 0.053 0.024 0.036 0.039 0.053

PLS-opt r 0.971 0.868 0.867 0.702 0.835 0.969 0.856 0.846 0.696 0.830

5 0.053 0.025 0.035 0.035 0.053 0.054 0.026 0.037 0.035 0.054

SELMAT3 r 0.957 0911 0.8l11 0.640 0.827 0.954 0.888 0.751 0.530 0.772

5 0.063 0.021 0.041 0.039 0.054 0.065 0.023 0.047 0.043 0.062

SELMATI_norm r 0.958 0.923 0815 0.669 0.796 0.955 0.903 0.774 0.668 0.771
5 0.062 0.019 0.040 0.037 0.058 0.065 0.021 0.045 0.037 0.062

The (nr) tag indicates that the cross-validation was carried out under the more stringent conditions where no proteins in the training set with the
same CATH homologous superfamily as that of the test protein were included. The best results for each secondary structure type for the standard

and non-redundant datasets are shown in bold.

SELMAT1_norm work well and generally produced better
results than the SELMAT3 algorithm.

Alternative secondary structure assignments

An important issue with respect to the assignment scheme
described above is that it is not easily reconciled with the
definitions of secondary structures found in the crystallo-
graphically-derived assignments produced by the DSSP
algorithm (where H is an a-helix, B is an isolated 3-bridge,
E is a B-strand, G is a 3,,-helix, I is a m-helix, T is a hydro-
gen-bonded turn, S is a bend, and O is any other type of
structure) or those used by graphical packages for the dis-
play of protein structures, nor with the definitions used in
sequence-based methods for prediction of secondary
structures. Hence correlation of CD data with an assign-
ment scheme that more closely relates to these definitions
could find significant utility in structural biology studies.

Another issue to be considered is which additional types
of secondary structures could be quantitatively predicted
from the SP175 dataset that have not been separately
assigned by the existing scheme. As a result of both of
these issues, in this study several other secondary structure
assignment schemes were examined (Table 2). Analyses
were done using the PLS algorithm and choosing the best
cross-validated result after varying the number of princi-
pal components (k) from 1 to 8. The results show that j3-
turns IT and parallel B-sheet fractions have { values less
than or equal to 1.0, and even 3, helices have values near
1.0, indicating that the predictions for these types of struc-
tures are little better than random. It is expected that the
reason for this poor performance may be the small
number of residues present in these conformations in the
SP175 dataset (Table 2) [they are represented by only 3, 2,
and 4% of the residues, respectively]. The parallel B-sheet

Table 4: The cross-validation performances of various algorithms using the three-state a-helix (H), f-sheet (E) and other (O)

assignment scheme.

Method SPI75 SP175(nr)
H E o H E o
5 r ) r 5 r ) r 5 r ) r

SELMAT3 0.063 0.957 0.083 0.862 0.078 0.701 0.065 0.954 0.090 0.833 0.083 0.672
SELMATI_norm 0.062 0.958 0.070 0.904 0.071 0.757 0.065 0.955 0.072 0.897 0.073 0.746
SIMPLS 0.055 0.968 0.070 0.905 0.065 0.800 0.056 0.967 0.071 0.901 0.065 0.797
PCR 0.057 0.966 0.069 0.906 0.066 0.796 0.058 0.965 0.071 0.902 0.066 0.792
PLS 0.053 0.971 0.073 0.895 0.068 0.781 0.053 0.970 0.074 0.893 0.069 0.774
PLS-opt 0.052 0.971 0.070 0.902 0.066 0.796 0.054 0.970 0.072 0.900 0.066 0.790
NN 0.055 0.968 0.067 0.912 0.062 0.816 0.056 0.967 0.068 0.909 0.064 0.805
SIMPL-NN 0.057 0.965 0.064 0.923 0.055 0.860 0.056 0.964 0.065 0.918 0.057 0.850
SVM 0.057 0.966 0.069 0.908 0.066 0.792 0.060 0.964 0.072 0.902 0.067 0.785

The (nr) tag indicates that the cross-validation was carried out under more stringent conditions where no proteins in the training or validation set
with the same CATH homologous superfamily as that of the test protein were included. The best results for each secondary structure type are

shown in bold.
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Table 5: The cross-validation performance of the NN method using various numbers of hidden neurons.

Hidden Neurons H E o
) r o r ) r
| 0.058 0.965 0.081 0.873 0.086 0.609
3 0.055 0.968 0.067 0.912 0.063 0.816
5 0.055 0.968 0.068 0.909 0.063 0.815
7 0.055 0.968 0.067 0.912 0.062 0.816
9 0.055 0.967 0.067 0.912 0.063 0.815

The secondary structure assignment scheme is the three-state o-helix (H), B-sheet (E) and other (O). The best results for each secondary
structural type are highlighted in bold; they indicate that 7 neurons are marginally optimal overall for the SP175 dataset.

assignment has a much poorer performance than the case
where the [-sheet assignment is not sub-divided,
although the separate anti-parallel sheet assignment is
reasonable and provided additional information content.
Filtering the DSSP B-sheet to only include residues in the
core B-sheet region of the Ramachandran plot [16] pro-
duced a slightly better result than did the By definition.
The PP-II helical content, which has been shown to have
important biological functions in a number of proteins, is
reasonably well predicted.

In view of the above results a possible novel overall sec-
ondary structure assignment scheme of a-helix, B, core 3-
sheet, PP-1I helix and other was tested. The results showed
high secondary structure prediction accuracies (Table 3).
Four of the five types of secondary structures have r > 0.8,
with even PP-II helix having a reasonable r value of ~0.7.
Using this scheme, the PLS, PCR and SIMPLS methods
perform similarly well and outperform the SELMAT3
method for all secondary structural types except the B
structures.

A simpler three-state secondary structure assignment
scheme o-helix (H), B-sheet (E) and 'other' (O) (which
includes G,I,T,B, and S), that has previously been shown
to give good results for CD as well as FTIR data [12] was
also tested. Cross-validation of the SP175 reference data-
sets with this secondary structure assignment show very
high prediction accuracies (Table 4), with all of the 8 new
methods giving better results for all structural types com-
pared to SELMATS3.

Neural network (NN) and support vector machine (SYM)
methods

For neural network methods, the number of network
weights must be kept to a minimum. Hence only the
three-state assignment scheme was used. The performance
of the neural network trials undertaken with varying num-
bers of hidden layer nodes greater than 1 gave similar
results (Table 5), with 7 hidden nodes giving marginally
the best overall performance. Using the extra inputs to the
neural network from the SIMPLS helix and sheet predic-

tions (SIMPL-NN) improved their prediction accuracies
further (Table 4). The best NN performance was for the
SIMPL-NN algorithms and, indeed, this produced the best
overall results for the three-state model.

Effect of low-wavelength cut-off

The effect of the low wavelength cut-off on the SIMPLS,
PLS, PCR and SELMATS3 algorithms was assessed. SIMPLS,
PLS and PCR algorithms gave similar results so only
results from SIMPLS are shown (Figure 1). If 8 principal
components are used, the results for helical secondary
structures are relatively insensitive to the low-wavelength
cut-off as long as data to 205 nm is included. When the
low-wavelength cut-off is above ~205 nm there is a mas-
sive drop in the prediction accuracies. For 3-sheet determi-
nations, there is a slow but significant decrease in
performance over the region from 175 to 208 nm, suggest-
ing the availability of the low wavelength data may be
more important for accurate analyses of 3-sheets, a type of
secondary structure not particularly well-analyzed with
only far UV data. None of the alternative values of k for
the algorithms are able to prevent the drop in perform-
ance in this region so the effect is not due to including
either an excessive or inadequate number of principal
components. Hence it would appear that for general use
of the SIMPLS algorithm, k = 8 is the optimal value for the
SP175 dataset. For 3,, helices, there is little difference in
the accuracy with the inclusion of the low wavelength data
(data not shown), however, for PP-II helices, the accuracy
is, like B-sheets, slightly improved as more low wave-
length data is included.

These modest wavelength cut-off results are somewhat
surprising given that the peptide backbone produces a
number of electronic transitions below 205 nm. This sug-
gests that perhaps the magnitudes of the peaks at wave-
lengths higher than 205 nm dominate the analyses. To
test this, the spectral shapes were left unchanged but scale
factors of different magnitudes were applied to change the
spectral magnitudes and the analyses were repeated. This
was done because an important practical consideration in
analyses of CD spectra is the correctness of the spectral
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The effect of low-wavelength cut-off on performance accuracy. The { parameter was calculated for the SIMPLS algo-
rithm using various low wavelength cut-offs applied to the SP175 dataset. In shades of red are the performance curves for o-
helices (H) and in shades of blue are those for 3-sheets (E). The thick solid lines indicate the performance using k = 8 (ie. 8
principal components). The thin lines are derived using progressively smaller values of k. The dashed lines are for values calcu-

lated using SELMAT3 instead of SIMPLS.

magnitude. Significant errors in magnitude can arise from
inaccurate determinations of protein concentration or
optical cell pathlength [17,18]. To understand the effects
of these errors on the accuracy, analyses as a function of
low wavelength cut-off were undertaken. The results (Fig-
ure 2) show that for the o-helix secondary structure the
cross-validated performance of the correctly scaled SP175
dataset was similar to that of the SP175 dataset with a
small scaling error added (variance = 0.01) for all the low
wavelength cutoff values used. However, as progressively
greater magnitude scale factors were applied, the cross-
validated performance accuracy became more dependent
on the low-wavelength cut-off value. For instance, when
errors on the order of only 10% are present, the improve-
ment in accuracy with the addition of low wavelength
data is quite dramatic: the value of r increases from 0.86
to 0.92. This suggests that the lack of correlation of low-
wavelength data cut-off with cross-validated performance
of the SP175 dataset can be partly attributed to the high
accuracy of the concentration and pathlength determina-
tions in the component spectra of the dataset. It also indi-
cates that when the SP175 dataset is used for analyses of
other proteins, the low wavelength data will provide some
robustness against magnitude error.

Conclusion

We have described several novel algorithms, including
support vector machine and neural network methodolo-
gies, that produced higher accuracies for secondary struc-
ture determination than those currently in use for CD
analyses. The SELMAT algorithms remain the best for pre-
dicting the o, and B, secondary structures, but these clas-
sifications are not easily correlated with standard
secondary structure categories.

We have shown which structures can and cannot be quan-
titatively determined from the CD spectra of the new
larger and broader-based SP175 dataset (Table 2). Exclud-
ing non-core B-sheet residues from the P-sheet fraction
makes sense in view of the large variety of dihedral angles
assigned as B-sheet by the DSSP algorithm. This method
improves the general prediction of the remaining second-
ary structures. A simple 3-state prediction of o-helix (H),
B-sheet (E) and 'other' (O, which includes G,I,T,B, and S)
has been shown to give very good quantitative prediction
for all fractions (Table 3). With this method o-helix (H)
and B-sheet (E) have values of r as high as 0.97 and 0.92,
respectively. The alternative three-state assignment
scheme discussed here mimics the types of secondary
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a-c — The effect of low wavelength cut-off as a func-
tion of increasing errors in magnitude. An example of
the effect of the low-wavelength cut-off as a function of
increasing errors in spectral magnitude on the performance
as judged by the parameters A) , B) r, and C) §, respectively,
using the SIMPLS algorithm with the SP175 dataset. The dif-
ferent curves on each plot represent different results
obtained after applying progressively larger scale factors to
represent errors in magnitude. The numbers represent the
variance of the normal distribution from which the scaling
factors were randomly chosen. These were for the o-helix
(H) secondary structure component as assigned by DSSP.

http://www.biomedcentral.com/1471-2105/7/507

structures described for crystal structures and identified by
graphics programs and sequence/secondary structure pre-
diction programs more closely than some of the more
obscure assignment methods often used for CD data anal-
yses. It is anticipated that this will be a robust method
since proteins with high 3,, helix (G) and B-bridge (B)
content will not necessarily have an o-helical or B-sheet
type spectrum because of length effects. Also this second-
ary structure assignment method can be easily applied in
conjunction with three-state sequence prediction meth-
ods using a compatible secondary structure assignment
algorithm such as the SSPro8 server [19]. The alternative
secondary structure assignments of o-helix (H,G1I), B-
sheet (E,B) and 'other' (T,S,C) would need to be used with
some commonly-used sequence-based structure predic-
tion methods [20]. We would expect the H, E, O assign-
ment to be better in cases where proteins have large
amounts of G relative to H, or large amounts of B relative
to E since length effects will be important in these
instances. It should be noted, however, that the SP175
dataset is particularly lacking in proteins with significant
disorder (in part because there is a dearth of good struc-
tures of such proteins in the PDB), so these types of struc-
tures have not been separated out from "other"
components in this study.

In order to examine the effect of spectral redundancy in
the reference dataset, the accuracies of the methods were
tested with redundant and non-redundant versions of the
reference dataset. In this study, there was little degrada-
tion of either the analysis quality associated with removal
of these data from the reference dataset nor was there a
change in the ordering of which method works best.
Hence, the improvements described do not arise from the
algorithms exploiting structural redundancy in the data-
set. However, the results do suggest that in the future the
most valuable additions to the reference dataset will be
from proteins with unique structures.

All of the methods implemented in this paper, with the
exception of SELMAT, are only capable of mapping linear
relationships in the data. The neural network and SVR
methods used linear transfer/kernel functions, respec-
tively. As the SP175 reference dataset is expanded in the
future by supplementation with additional spectra, it may
be possible to use non-linear versions of the SVR (polyno-
mial kernel) and NN (sigmoidal transfer function) which
are more demanding of input data to allow mapping of
non-linear relationships.

Paradoxically, an important result emerges in the sharp
cut-off of prediction accuracy observed when the broadly-
based dataset is truncated to a low-wavelength cut-off at
~205 nm. With SRCD it is possible to collect data to <205
nm in almost any solvent and buffer commonly used in

Page 7 of 10

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:507

biological studies, including 6 M guanidine hydrochlo-
ride and urea. Thus, these methods should provide espe-
cially good improvements for assessing secondary
structure in protein folding and unfolding studies.

A final, and very significant result, which will find practi-
cal application in CD analyses, is that when accurate
information on protein concentration is unavailable (very
often the case), the inclusion of the low wavelength VUV
data will produce much better analyses than if only the far
UV data is used.

In conclusion, the SIMPLS and PLS methods appear to
work consistently amongst the best methods with all of
the secondary structure assignment schemes tested. For
the three-state (H,E,O) scheme, the more complicated
SIMPL-NN produced the best overall results. However,
due to its much greater simplicity, the SIMPLS method
should be preferred over the SIMPL-NN method until a
larger CD reference dataset is available.

Methods

Reference dataset

The SP175 dataset currently contains SRCD spectra for 72
proteins with a low wavelength cut-off at or below 175
nm [9]. It was designed to extensively cover secondary
structure and fold space, and to combine high quality
spectroscopic data with high resolution, well-defined crys-
tal structure data.

Secondary structure assignments

The DSSP algorithm [4] was used to assign secondary
structures from the PDB files [13]. The helical and sheet
secondary structures were further divided into distorted
and regular helices (op,05) and distorted and regular
sheet (Bp, Br) classes, as previously defined [14]. Any res-
idues not present in the crystal structures were assigned to
the 'other' fraction. A script was written to implement the
PP-II helix assignment method previously employed for
CD analyses [21]. For this we chose to use the less strin-
gent criterion, allowing PP-1I helix assignment even for
PP-II helix stretches of 1 residue in length.

As an alternative means of division into secondary struc-
tural types, the "core" B-sheet structures were assigned to
those residues designed as (3-sheet (E) by DSSP and also
lying in the "most favoured" B region [16] of the Ramach-
andran map. This area was taken to be an ellipse centred
at ¢ =-120° ¢ = 135°, with major and minor axis lengths
of 100° and 55°, respectively. The axis of the ellipse was
parallel to the main diagonal (top left, bottom-right) of
the Ramachandran map. B-turn secondary structure
assignments were implemented using the definitions of
PROMOTIF [22]. The parallel and antiparallel B-sheets
were assigned using the assignment from the DSSP algo-

http://www.biomedcentral.com/1471-2105/7/507

rithm. Three of the four characteristic B-turn backbone
angles were allowed to deviate by + 30° and one by + 40°
from the ideal values. The hierarchy of secondary structure
assignment for B-turn was a-helix (H) > B-sheet (E) > B-
turn [ > B-turn II > 'other'. n is the number of residues in
the reference dataset proteins identified as having a partic-
ular type of secondary structure divided by the total
number of residues (22,372) in the dataset proteins.

Calculation algorithms

Several different methods were compared: A re-imple-
mentation of SELCON3 [14] (SELMAT3), described previ-
ously [9] was used as a representative of the currently
available best methods, all of which have been shown to
have a similar accuracy [23]. SELMAT1 is the stage of the
SELMAT3 algorithm before application of the spectral fit-
ting rule and so corresponds to the CDPro SELCON1
algorithm [24].

To assess the effects of data normalisation, the SP175
dataset was scaled so that the CD values at each wave-
length had a zero mean (#) and a standard deviation (o)
of 1 [12]. (In other words, each individual wavelength
first had the mean subtracted, then there was a subsequent
scaling so that the standard deviation of the CD measure-
ments was 1.0) When this dataset was used with the
SELMAT1 algorithm, the method was referred to as
SELMAT1_norm.

Methods of analyses widely used in the field of chemo-
metrics include partial least squares (PLS), simultaneous
partial least squares (SIMPLS) and principal component
regression (PCR). These have been previously tested on a
limited CD dataset [12] but the algorithms are not cur-
rently available for CD analyses. In this study, these algo-
rithms were accessed using the 'csimpls' and ‘cpcr'
functions implemented in the freely available LIBRA pack-
age [25] for MATLAB [26] and tested with our large and
broadly-based CD dataset SP175. The default number of
principal components (k) used in the calculations
reported in this study was set to be the same as the infor-
mation content calculated for the SRCD reference datasets
(k = 8) [9].

An alternative version of the PLS algorithm, designated as
PLS-opt, was developed using an extra cross-validation
step to find the optimal value of k. After the test protein
was removed from the dataset the second series of cross-
validations was carried out on the remaining proteins
with k values varied from 4 to 8. The value of k found to
give the best result was then used with the PLS algorithm
to analyze the test protein.

Backpropagation neural networks (NN) have previously

been implemented for secondary structure prediction by
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CD [27]. However, the numbers of weights in the network
were very high in comparison to the number of training
patterns due to the limited number of proteins in the ref-
erence dataset. In addition, the reported prediction accu-
racies were on the validation set rather than the test set.
Under these conditions it is very common to overfit the
data. In the implementation described here, we used the
new larger SP175 reference dataset and the Levenberg-
Marquardt backpropagation method which is better
suited to relatively small datasets. Although the dimen-
sions of the input vectors are quite large (points at 1 nm
intervals from 240-175 nm) the variables of the CD spec-
tra are highly correlated. In this situation it is useful to
reduce the dimensionality of the data using principal
component analysis (PCA). This allows the number of
input neurons in the neural network to be kept to a mini-
mum. Before being subjected to PCA, the dataset was nor-
malised as described above so that the CD values at each
wavelength had =0, o= 1 (a common procedure before
PCA). Only the six most significant principal components
were retained since these components accounted for all of
the gross features of the data and because it is important
to keep the number of free parameters small for NN. The
inputs to the network were then all scaled to fall in the
range [+1,-1]. The hidden layer and output transfer func-
tions were both linear, thus creating a smoother error sur-
face, which simplifies NN training. The training was
carried out using full cross-validation. At each stage of the
cross-validation 10% of the training set was removed and
used as the validation set. Over-training was prevented by
stopping the network at the point where the validation set
mean squared error of prediction started to increase. The
analysis of the test protein CD spectrum by the neural net-
work was then carried out. This testing procedure satisfies
the criterion that the testing data is not used in the train-
ing or validation steps. The performance of the network
was evaluated for 1, 3, 5, 7 and 9 hidden neurons. After
finding the optimal number of hidden neurons, the train-
ing/validation/testing procedure was repeated with the o-
helix and B-sheet predictions of the SIMPLS algorithms
given as two additional inputs to the neural network
(SIMPL-NN).

Support vector machines (SVMs) were created as an addi-
tional method for secondary structure prediction using
the linar kernel function to carry out epsilon support vec-
tor regression implemented in the LibSVM v2.4 package
[28]. The SP175 dataset was processed in the same way as
for the neural networks. Assessment of the SVM perform-
ance was carried out by leave-one-out cross-validation.
After the test protein was removed from the dataset, the
remaining protein spectra were used to determine the
optimal C and rho parameters for the SVM [28]. Repeated
7-fold cross-validations of the remaining protein spectra

http://www.biomedcentral.com/1471-2105/7/507

were calculated. At no point was the test protein used in
optimising the SVM parameters for its own analysis.

The cross-validated values from the SIMPLS, PLS, PCR,
NN, SIMPL-NN and SVM algorithms were adjusted so that
any predicted negative fractions were set to 0%. The
remaining secondary structure fractions were then
rescaled to give a total of 100%, resulting in constrained,
normalized solutions.

Non-redundant cross-validations [14], designated (nr),
were implemented for each of the methods. These assess
the effects of removing proteins with homology to the test
protein from the reference dataset during the cross-valida-
tion procedure, so that an approximation of potential
effects from structural redundancy in the dataset can be
determined. This was accomplished by removing any pro-
tein in the training set from the same CATH homologous
superfamily [29] as that of the test protein.

Low wavelength effects as a function of concentration
uncertainty

Numbers were randomly drawn from a normal distribu-
tion with a mean of 1.0 and a given variance for each of
the spectra in the SP175 dataset. Each spectrum was then
scaled by its corresponding random value to generate a
new dataset with extra scaling error in comparison to the
SP175 dataset. This was repeated several times where the
variance of the normal distribution from which the ran-
dom scaling factors was chosen ranged from 0.01 to 0.10.
Each of the datasets generated was then cross-validated a
number of times with different low wavelength cut-off
values.

Availability and requirements
Algorithms
Project name: Algorithms for CD Spectroscopic Analyses

Project home page: http://www.qmul.ac.uk/~ugbt760/

janes/algorithms.htm

Operating system(s): Windows (2000 and later versions)
or Linux

Programming language: Perl

Licence: Scripts are available free (no licence required)
from this site as a zipfile, and include a README.txt file
with instructions for use. Requirement that the user has
access to MATLAB and LIBRA MATLAB.

Restrictions to non-academics: None
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Reference data set
The SP175 reference data set is available as noted in the
paper describing its creation [9], namely in the Dichroweb

webserver [2] located at http://www.cryst.bbk.ac.uk/
cdweb/html/home.html and will be available in the Pro-

tein Circular Dichroism Data Bank (PCDDB) website [30]
located at http://pcddb.cryst.bbk.ac.uk.
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