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Abstract
Background: Expression microarrays represent a powerful technique for the simultaneous
investigation of thousands of genes. The evidence that genes are not randomly distributed in the
genome and that their coordinated expression depends on their position on chromosomes has
highlighted the need for mathematical approaches to exploit this dependency for the analysis of
expression data-sets.

Results: We have devised a novel mathematical technique (CHROMOWAVE) based on the Haar
wavelet transform and applied it to a dataset obtained with the Affymetrix® HG-U133_Plus_2 array
in 27 gliomas. CHROMOWAVE generated multi-chromosomal pattern featuring low expression in
chromosomes 1p, 4, 9q, 13, 18, and 19q. This pattern was not only statistically robust but also
clinically relevant as it was predictive of favourable outcome. This finding was replicated on a data-
set independently acquired by another laboratory. FISH analysis indicated that monosomy 1p and
19q was a frequent feature of tumours displaying the CHROMOWAVE pattern but that allelic loss
on chromosomes 4, 9q, 13 and 18 was much less common.

Conclusion: The ability to detect expression changes of spatially related genes and to map their
position on chromosomes makes CHROMOWAVE a valuable screening method for the
identification and display of regional gene expression changes of clinical relevance. In this study,
FISH data showed that monosomy was frequently associated with diffuse low gene expression on
chromosome 1p and 19q but not on chromosomes 4, 9q, 13 and 18. Comparative genomic
hybridisation, allelic polymorphism analysis and methylation studies are in progress in order to
identify the various mechanisms involved in this multi-chromosomal expression pattern.
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Background
Genes are not randomly distributed and their coordinated
expression is regulated by their position along chromo-
somes [1-3]. New mathematical approaches are therefore
needed for the analysis of expression microarrays in order
to identify variations in expression of spatially related
genes and map them along chromosomes.  The relation-
ship between changes in DNA copy number and varia-
tions of mRNA expression has been previously
investigated (for example [4-7]) but only a few studies
have used microarrays to examine large chromosomal
abnormalities [7-12].

Here we propose a novel mathematical model based on
single value decomposition (SVD) and Haar wavelets,
named CHROMOWAVE, that detect variations in expres-
sion of spatially related gene and visualise them on chro-
mosomes. Wavelets are a recently introduced
mathematical tool for the treatment of signals with "non-
stationary behaviour" [13] (e.g a hammer blow, a plane
flyover noise etc.). The counterpart of the wavelet trans-
form is the Fourier transform that achieves optimal
encoding of periodic signals. The use of wavelets for data
encoding, transmission and compression is now pervasive
in many fields including analysis of gene sequences and
functional genomics data [14]. Application to microarrays
has been proposed for the analysis of light signals of
microarrays plates [15-17] or to de-noise microarray time-
series [18]. Only three studies applied wavelets to explore
the variation in expression of gene clusters and identify
their position on chromosomes [19-21]. Allen et al. [19]
first adopted the wavelet transform and used smooth
wavelets to study periodical patterns of mRNA expression
elicited by different promoters in the E. coli genome.
Using a supervised statistical approach, we introduced the
Haar wavelet analysis for the detection of chromosomal
patterns of expression in neurodegenerative diseases [20].
The same methodology was validated by Hsu et al. [22] to
denoise array-based comparative genomic hybridization
(array-CGH) data. Aggarwal et al [21] combined wavelets
with an empirical supervised approach to analyze chro-
mosomal expression in a set of tumour cell-lines and
matched the extracted clusters with abnormal karyotypes.
Their technique was limited as it allowed the analysis of
only one cell-line at a time. These two studies demon-
strated that wavelets have the ability to identify the areas
on chromosomes where genes show similar and coherent
levels of expression.

In CHROMOWAVE, the Haar wavelet model has been fur-
ther refined relaxing the previous approximation of con-
stant gene-gene distance by taking into account the
variability of inter-probe distance throughout the
genome. Here, we have applied CHROMOWAVE to a
sample of 27 low grade and anaplastic diffuse gliomas

(Table 1) and we have demonstrated its ability of extract-
ing and visualizing large patterns of chromosomal expres-
sion that underpin meaningful biological variation and
that are relevant to clinical outcome. Results were cross-
validated by application of the technique to a matching
data-set previously published by another laboratory [23].

Results
When applied to the data-set containing the 27 tumour
cases, the first pattern generated by CHROMOWAVE
(40% of the overall variance) consisted in a multi-chro-
mosomal pattern of variation that revealed considerably
reduced gene expression in large regions of chromosomes
1p, 9q, and 19q and of the whole chromosomes 4, 13, 15
and 18. Smaller clusters of differentially expressed genes
were also observed on the other chromosomes, particu-
larly 2, 3, 5, 7, 12 and negligible variations were present
on chromosomes 8, 20, 21, and Xp. This pattern is illus-
trated in Figure 1 and relative data are contained in the
Additional file 1. Remaining patterns accounted for <
10% of the data variability and were not considered. Note
the clean display of the profiles that are completely de-
noised. Figure 2 illustrates the individual profile for case
O10 extracted using the supervised technique previously
developed [20](see below for discussion of this particular
profile).

For this data-set, FISH analysis demonstrated various
combinations of monosomy on chromosomes 1p, 9q, 4,
13, 15, 18 and 19q, (Table 2).

We then compared FISH measurements to the individual
chromosomal expressions extracted by CHROMOWAVE.
When applied to one chromosome at a time, the SVD
extracted as main components (> 70% of the total varia-
bility) chromosome wide diffuse signals on chromo-
somes 4, 9, 13, 15 and 18 and diffuse homogeneous
expression on the chromosomal arms 1p and 19q. Case
loadings for these patterns are displayed in Table 2. Note
that the case-loadings in Table 2 reflect the normalization
to the average that is performed by the SVD. Therefore, the
more positive the case loading is the more the pattern is
expressed (in this case the bigger the loss), the more neg-
ative the loading the less the pattern is expressed. When
we compared the FISH measurements with these case-
loadings we observed significant association for chromo-
some 1p (Pearson correlation R = 0.522, p = 0.005) and
19q (Pearson correlation R = 0.392, p = 0.043) indicating
that loss of genetic material was the main cause of the
reduction of expression seen by CHROMOWAVE.

Interestingly, one oligodendroglioma (case 010, see figure
2) clearly demonstrated low expression 1p/19q with
CHROMOWAVE but no structural loss could be detected
by FISH (Table 2). The reduced mRNA expression
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Table 1: Clinico Pathological Data

Case Gender Age Tumour location Karnovski score Histology Treatment Follow up (weeks) Status

1 – O1 M 27 right frontal 80 Oligodendroglioma grade II Incomplete surgical resection 884 alive and well

2 – O20 F 69 left temporal 80 Oligodendroglioma grade II subtotal surgical resection, radiotherapy and 
chemotherapy

99 alive

3 – O4 F 50 right frontal 80 Oligodendroglioma grade II complete surgical resection, radiotherapy 216 alive and well

4 – O23 F 59 left frontal 80 Oligodendroglioma grade II subtotal surgical resection and radiotherapy 135 alive and well

5 – O19 M 24 right frontal 90 Mixed oligoastrocytoma grade II complete surgical resection, radiotherapy 306 alive and well

6 – O15 M 56 left frontal 60 Mixed oligoastrocytoma grade II complete surgical resection, radiotherapy, 
chemotherapy

35 dead of tumour recurrence

7 – O10 F 30 right frontal 70 Mixed oligoastrocytoma grade II complete surgical resection and radiotherapy 198 alive and well

8 – O7 M 32 left frontal 80 Mixed oligoastrocytoma grade II complete surgical resection, radiotherapy 643 alive and well

9 – O8 M 38 left temporal 90 Mixed oligoastrocytoma grade II subtotal surgical resection, radiotherapy, 
chemotherapy

50 dead of tumour recurrence

10 – O6 F 47 left temporal 80 Mixed oligoastrocytoma grade II complete surgical resection 143 alive and well

11 – O16 F 31 right parietal 80 Astrocytoma grade II complete surgical resection 105 alive and well after 1 recurrence

12 – AD6 M 40 left temporo-occipital 80 Astrocytoma grade II complete surgical resection 169 alive and well

13 – AD9 M 38 left frontal 90 Astrocytoma grade II complete surgical resection 136 recurrence

14 – AD10 M 70 left temporal 80 Astrocytoma grade II complete surgical resection and radiotherapy 90 recurrence (PET Scan)

15 – AD11 M 25 left temporal 80 Astrocytoma grade II subtotal surgical resection 137 recurrence (PET scan)

16 – AD12 M 34 left temporal 80 Astrocytoma grade II complete surgical resection 25 alive and well

17 – O2 F 26 right frontal 80 Anaplastic Oligodendroglioma complete surgical resection, chemotherapy 310 dead of tumour recurrence

18 – O3 M 21 right frontal 90 Anaplastic Oligodendroglioma subtotal surgical resection and chemotherapy 867 recurrence

19 – O17 F 24 left temporal 80 Anaplastic Oligodendroglioma complete surgical resection and chemotherapy 578 alive and well

20 – O18 F 45 right parietal 80 Anaplastic Oligodendroglioma subtotal surgical resection and chemotherapy 105 dead of tumour recurrence

21 – O9 F 46 left parietal 80 Anaplastic oligodendroglioma complete surgical resection and chemotherapy 624 dead of tumour recurrence

22 – O24 M 57 left fronto-temporal 80 Anaplastic Oligoastrocytoma complete surgical resection and radiotherapy 15 alive and well

23 – O12 F 27 left temporal 60 Anaplastic Astrocytoma complete surgical resection and radiotherapy 6 dead of cerebral venous thrombosis

24 – AA3 F 25 right frontal 80 Anaplastic Astrocytoma complete surgical resection, chemotherapy 307 dead of tumour recurrence

25 – AA6 F 36 left fronto-temporal 80 Anaplastic Astrocytoma subtotal surgical resection and radiotherapy 447 alive and well

26 – AA5 M 44 right temporal 90 Anaplastic Astrocytoma subtotal surgical resection and chemotherapy 74 alive and well
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detected by CHROMOWAVE on chromosomes 4, 9q, 13,
15 and 18 was less commonly associated with chromo-
somal alterations seen by FISH (Table 2). In particular, six
tumours showed low expression of 9q without alteration
detected by FISH and among the seven lesions demon-
strating low expression in chromosome 18, only one
showed monosomy.

The discrepancy between FISH counts and expression data
raises several hypotheses. First, this may be inherent to the
FISH method where the probe targets only a short DNA
sequence on the chromosome and is not informative of
possible large losses of genetic material in regions flank-

ing the probe target. The chromosomal areas targeted by
the FISH probes are shown on Figure 1. Second, alterna-
tive genetic and epigenetic mechanisms can cause expres-
sion changes in adjacent genes in the absence of
chromosomal loss such as translocation, uniparental dis-
omy or methylation/acetylation silencing, all frequently
reported in cancer. Third, hyperploidy which is frequently
seen in malignant gliomas may also account for some of
these observations.

Conversely, in three cases, CHROMOWAVE case loading
was quite negative while FISH demonstrated loss of
genetic material (Table 2). However, inspection of indi-

Main pattern of chromosomal expression extracted by CHROMOWAVEFigure 1
Main pattern of chromosomal expression extracted by CHROMOWAVE. This pattern corresponds to the main 
eigenvalue extracted by CHROMOWAVE for the tumour data-set. X axis represents the genomic distance along each of the 
24 chromosomes and the Y axis represents the gene expression contribution (intensity and direction, log2 scale). Chromo-
somes on which similar levels of gene expression are seen along the entire chromosome (chromosomes 4, 18, 13, 15) or a 
chromosome arm (chromosomes 1p, 19q) are shown in a dark frame. Red arrows point to the location of the FISH probes 
used for structural analysis.
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vidual cases (Figure 3) allowed the following observa-
tions. In case 02, CHROMOWAVE did not display a
chromosome wide reduction but in 9q.34.1 showed a
region of 825 Kb with selective loss of expression around
the ASS gene that is targeted by the FISH probe (Figure
3A). For case O17, CHROMOWAVE showed loss of
expression but restricted to small clusters including a tel-
omeric region of 1.526 Mb in chromosome 13q14 before
and around the RB gene where the FISH target is located
(Figure 3B). Case O18 also had loss of expression on 1p
but restricted to a telomeric segment of 10 Mb that
included the chr1p36.32 locus targeted by the FISH probe
(Figure 3C). This finding suggests that in these cases FISH
recognized small alterations and not large structural
anomalies that were instead identified by CHRO-
MOWAVE.

When we tested the case loadings identified by CHRO-
MOWAVE with outcome (tumour recurrence and patient

survival) using Cox regression, we found that the pattern
in Figure 1 was significantly predictive of favourable out-
come (p = 0.007). By testing each of the chromosomes
and their various combinations we then observed that the
covariation of chromosomes 1p, 13 and 18had the strong-
est correlation with survival (p = 0.002).

In contrast, the major gene expression pattern obtained
with the same SVD analysis but without Haar wavelet
transformation did not correlate with survival (p = 0.802)
suggesting that the distribution of gene expression
changes on chromosomes is more relevant to tumour
behaviour than their raw variations of amplitude.

Sensitivity to Individual Cases
In order to verify the stability of the pattern and its
dependency upon single cases, we performed a jack-knife
test to verify that association remained significant with the
exclusion of single cases. The genome-wide SVD analysis

Single Case AnalysisFigure 2
Single Case Analysis. This is a representative example of chromosomal expression for a single case (O10) extracted by 
CHROMOWAVE by contrasting its chromosomal mRNA distribution with that of a normal data-base. X axis represents the 
genomic distance along each of the 24 chromosomes and the Y axis represents the gene expression contribution (intensity and 
direction, log2 scale).
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)Table 2: Chromowave and FISH results for the glioma data-set.

Case Diagnosis FISH 
Load 
Chr1
p36

Chromowave 
Load Chr1 
(+ = loss)

FISH 
Load 
Chr4c

Chromowave 
Load Chr4 
(+ = loss)

FISH 
Load 
Chr9
q34

Chromowave 
Load Chr9 
(+ = loss)

FISH 
Load 
Chr1
3q14

Chromowave 
Load Chr13 

(+ = loss)

FISH 
Load 
Chr1

5c

Chromowave 
Load Chr15 

(+ = loss)

FISH 
Load 
Chr1

8c

Chromowave 
Load Chr18 

(+ = loss)

FISH 
Load 
Chr1
9q13

Chromowave 
Load Chr19 

(+ = loss)

Gender Chromowave 
Load ChrY 
(+ = loss)

1 OII 
(O1)

Mono 0.21 0.03 0.06 0.08 0.06 0.02 Mono 0.37 M -0.20

2 OII 
(O20)

Mono 0.17 -0.15 0.25 -0.22 -0.18 0.40 Mono 0.20 F 0.22

3 OII
(O4)

Mono 0.09 0.00 -0.01 -0.01 -0.16 0.03 0.03 F 0.14

4 OII 
(O23)

0.04 Mono 0.00 -0.19 -0.18 -0.22 -0.17 Mono 0.02 F 0.17

5 OAII 
(O19)

0.09 -0.22 -0.18 -0.32 -0.14 -0.19 Mono 0.16 M -0.28

6 OAII 
(O15)

-0.17 -0.15 0.42 -0.19 -0.12 -0.08 -0.51 M -0.22

7 OII 
(O10)

0.25 0.15 0.14 Mono 0.26 0.03 0.14 0.2 F 0.18

8 OAII 
(O7)

-0.04 0.06 0.07 Mono 0.30 Mono 0.11 -0.02 0.01 M -0.24

9 OAII 
(O8)

-0.19 -0.12 Mono 0.08 Mono 0.03 -0.24 -0.19 -0.22 M -0.16

10 OAII 
(O6)

-0.06 NA 0.20 -0.01 0.04 0.1 0.05 0.1 F 0.16

11 OII 
(O16)

-0.08 -0.12 0.12 -0.08 -0.01 0.06 0.05 F 0.23

13 AII 
(AD6)

-0.08 -0.01 -0.12 -0.12 0.03 -0.02 -0.12 M -0.20

14 AII 
(AD9)

-0.12 -0.04 -0.07 -0.04 0.01 -0.07 0.07 M -0.22

15 AII 
(AD10)

-0.15 -0.12 -0.23 -0.22 -0.1 -0.17 -0.13 M -0.20

16 AII 
(AD11)

Mono 0. 1 0.12 0.12 0.12 Mono 0.27 0.09 0.01 M -0.19

17 AII 
(AD12)

-0.11 -0.09 -0.01 -0.14 -0.01 -0.13 -0.12 M -0.21

18 OIII 
(O2)

Mono 0.09 0.28 Mono -0.23 Mono 0.27 -0.22 0.00 Mono 0.03 F 0.20

19 OIII 
(O3)

Mono 0.33 Mono 0.64 0.14 Mono 0.48 Mono 0.05 Mono 0.68 Mono 0.06 M 0.01

20 OIII 
(O17)

Mono 0.27 -0.05 0.17 Mono -0.10 Mono -0.08 -0.07 Mono 0.4 F 0.18

21 OIII 
(O18)

Mono -0.16 -0.15 -0.13 -0.17 Mono 0.22 -0.16 -0.36 F 0.13

22 OIII 
(O9)

Mono 0.31 0.19 0.23 0.11 Mono 0.7 0.09 Mono 0.02 F 0.19

23 OAIII 
(O24)

-0.15 -0.14 -0.17 -0.14 Mono 0.03 -0.17 -0.19 M -0.22

24 OIII 
(O12)

-0.17 0.29 -0.04 0.30 0.25 0.19 0.03 F 0.13

25 AIII 
(AA3)

-0.15 -0.10 -0.48 0.02 -0.11 -0.26 -0.1 F 0.25

26 AIII 
(AA6)

-0.07 -0.04 0.32 0.15 -0.11 0.09 -0.03 F 0.15

27 AIII 
(AA5)

-0.05 -0.30 -0.10 -0.10 -0.08 -0.04 0.09 M -0.18

This table illustrates the combined variation of gene expression of chromosomes 1p, 4, 9p, 13, 15, 18, 19q detected by CHROMOWAVE and the variations detected by FISH analysis. Note that the case-
loadings reflect the normalization to the average that is performed by the SVD. Therefore, the more positive the case loading is the greater is the loss. As a rule of thumb loadings close to or grater than 
zero indicate monosomy. Positive cases are highlighted in bold. Cases underlined are hyperploid and cases highlighted in italics showed a discrepancy between FISH and CHROMOWAVE (loss detected in 
FISH not detected by CHROMOWAVE) – O: Oligodendroglioma – OA: Oligoastrocytoma – A: Astrocytoma – AA: Anaplastic astrocytoma; II grade II, III grade III – NA: not available.
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Mismatches Between CHROMOWAVE and FISHFigure 3
Mismatches Between CHROMOWAVE and FISH. This figure shows the three cases illustrated in Table 2 where FISH 
LOH was not matched by chromosomal expression loss estimated by CHROMOWAVE. These mismatches can be explained 
by the localized losses of expressions detected by CHROMOWAVE that were around the loci targeted by the FISH probes 
(red circles). This indicates that in these cases FISH measurements reflected localized and not chromosome wide structural 
deficits or anomalies.

CASE O18 

CASE O17 

CASE O2 A.

B.

C.
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was repeated after removal of one case (27 iterations), the
chromosomal pattern was extracted and stored, and the
correlation of the resulting case loadings with survival re-
calculated using Cox regression, This process generated 27
p-values. The 95% confidence interval of the empirical p-
value distribution obtained was calculated by normal
approximation of the log-transformed p-values. Through-
out the 27 permutations, the global patterns recovered
were indistinguishable from that obtained with all cases,
all the 27 patterns were significantly associated with out-
come (p < 0.05) and resulting p-values were tightly distrib-
uted (p-values 95% confidence interval was [0.0372–
0.0022]).

Sensitivity to Chromosome Biology: Chromosome Y and 
Gender Sensitivity
For validation purposes, CHROMOWAVE was applied
only to the probes of chromosome Y only for the 27
tumour cases. The main pattern of variation was extracted
and the association between resulting case loadings and
gender was tested by means of a Student t-test. The main
component extracted by the algorithm, which accounted
for 94% of the variability, was a uniform pattern on the
chromosome (Figure 4A). The corresponding case load-
ings are shown in Figure 4B and illustrate the perfect sep-
aration of arrays according to gender (p < 10-5).
Numerical values for the loadings are also contained in
Table 2.

Sensitivity to Denoising Parameters
The settings used in this work (choice of a redundant
wavelet transform, statistical threshold at Eq.(5), inter-
probe distance penalization at Eq.(6)) were chosen at the
very conservative end of standard wavelet methodology
with the deliberate aim to minimize false positives at the
expense of sensitivity. Figure 5 illustrates the incremental
effect of the applied methodology (SVD, denoising, inter-
probe distance penalization) to the analysis of Chr.1 for
this data-set. Note the ability of the technique to render a
clean profile for the Chr1p anomaly that is common in
the types of gliomas considered here. Importantly, the
additional penalization for inter-probe distance (Fig. 5d)
removes entirely the remaining spikes on Chr1p render-
ing a clean and biologically sensible profile.

As independent validation of the pattern extracted by
CHROMOWAVE on Chr.1, we calculated the power spec-
trum of the ordered probes on Chr1p. The spectrum of the
raw data and the one of the de-noised pattern are illus-
trated in Figure 6. Note that the de-noising procedure
removes the noise in the high frequencies but preserves
the large structure in the signal that is obviously present at
frequencies of less than 10 Hz. The power spectrum calcu-
lation adopts the FFT and is based on the assumption of

equidistant probes. This assumption is relaxed in CHRO-
MOWAVE.

Sensitivity/Specificity Analysis
Although the technique presented here is unsupervised,
its sensitivity/specificity can be evaluated through simula-
tion studies by assuming the signal distribution known.
The main problem with simulations in this context is the
faithful generation of the noise covariance structure of
chromosomal expression that is unknown. To recover the
noise covariance we have selected Chr1 that has evident
Chr1p loss pattern in this data-set. We have removed from
the data-set this specific monosomy by zeroing the first
singular component. The remaining singular components
had Morgera's Complexity ~1 [24] indicating that all that
was left was noise. We have therefore built a simulation by
adding a telomeric pattern of various intensities (when
signal was 0 the specificity was obtained) and of varying
spatial dimensions (500 Kb, 1.5 MB, the whole "petit"
arm and the whole chromosome) to 13 of the 27 arrays.
In the second simulation we maintained a Chr1p loss pat-
tern but varied the number of arrays to which the pattern
was added.

The detection/specificity measure was obtained by gener-
ating, for each intensity, 100 permutations of the arrays
and therefore adding the signal to a random sub-set. At
each iteration, CHROMOWAVE extracted the first eigen-
vector of the wavelet transformed data and a Student's T-
test (2 tails, α = 0.05) was performed between the two
groups of arrays (with and without signal). The detection
metric was calculated as the number the null-hypothesis
rejected divided by the number of permutations. Results
for the 2 simulations are shown in Figure 7 in terms of
detection versus intensity. The latter is shown in log2 scale
(0.5 corresponds to a 40% increase in expression, 0.05 to
a 4% increase etc.). In general terms, any pattern change
greater than ~0.2 (15%) is detected with probability 1
whatever the size or the sub-set of arrays it affects. Specif-
icity was always below or equal the specified limit (0.05)
in all conditions tested confirming that noise distribution
adhered to the assumptions.

Clinical Reproducibility: Application to Freije et al. (2004) 
dataset
Final validation was performed by assessing the reproduc-
ibility of the association between chromosomes 1p, 13
and 18 and outcome in a published set of arrays of com-
parable tumour types. The only comparable data-set that
was publicly available at the time of writing was pub-
lished by Freije et al. [23]. Microarray files (Affymetrix HG
U133A and B oligonucleotide arrays) and clinical data
were downloaded from the authors' website [25]. We
excluded glioblastomas from the set and we examined the
25 arrays that included 10 anaplastic oligodendroglio-
Page 8 of 18
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mas, 8 anaplastic astrocytomas and 7 mixed anaplastic
oligo-astrocytomas. Microarray files were pre-processed
and normalized using the same procedure adopted for
our data and then entered into CHROMOWAVE. Chro-
mosomal expressions were obtained by application of the
SVD to each chromosome independently. As in our data-
set, diffuse patterns of expression were found in chromo-
somes 1p, 4, 9, 13, 18 and 19q. Case loadings for chromo-
somes 1p, 13 and 18 were then entered into a Cox
regression model to test their association with survival
that resulted being remarkably strong (p = 0.0028) and
similar to what found in our data-set.

Discussion
CHROMOWAVE allows the unsupervised identification
of clusters of adjacent genes with homogeneous changes

of expression and their mapping on chromosomes, result-
ing in the display of multi-chromosomal gene expression
patterns. Here we have demonstrated that these patterns
are reliable, reproducible and statistically robust but that
they are also clinically relevant. In this application, the
SVD was the method of choice for statistical analysis in
wavelet space: however this approach is amenable to
treatment with any other unsupervised technique (inde-
pendent component analysis, clustering etc.).

Low grade and anaplastic diffuse gliomas represent an
interesting model to explore the variation of expression of
spatially related genes rather than their individual expres-
sion. Characteristic genetic and epigenetic alterations
have been found that predict favourable outcome in some
tumour histological subtypes while being non informa-

Chr Y Analysis and Sensitivity to GenderFigure 4
Chr Y Analysis and Sensitivity to Gender. A) The SVD decomposition of Chr.Y alone determined a uniform pattern 
spanning the entire chromosome. B) Illustration of the corresponding case loadings indicating the amount of expression of the 
chromosomal pattern expressed by each case. In this convention, positive values indicate loss of expression. Dark bars indicate 
male cases while white bars indicate female cases. There is an obvious and clear separation between arrays due to gender 
although a loss of Y expression is detected in tumour tissue for case O3.
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Denoising Step-by-StepFigure 5
Denoising Step-by-Step. Demonstration of the contribution of each step of the analysis for pattern extraction on Chr.1 for 
the glioma data-set. A) Average profile of expression for Chr 1 for all the 27 tumour cases. B) Main pattern of expression 
(81% of total variability) detected by SVD. C) Effect of de-noising on the SVD pattern. D) Additional noise removal by inter-
probe distance penalization.
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tive or even carrying a poor prognosis in others. For
instance, the extensively investigated allelic loss of chro-
mosomes 1p/19q or the hypermethylation of the pro-
moter of the drug-resistance gene O6-methylguanine-
DNA methyltranferase are associated with chemosensitiv-
ity and therefore longer survival in a subset of oligoden-
drogliomas [26-30] but have unclear prognostic value or
even correlate with more aggressive behaviour in astrocy-
tomas and mixed oligoastrocytomas [28]. Moreover, no
strong candidate tumour suppressor/promoter gene has
been singled out yet on these frequently lost chromo-
somal segments [31]. A few studies have used expression

microarrays to investigate diffuse gliomas [9,23,32-41]
but none explored the expression change of gene clusters
that could be relevant to tumour progression with regards
to their distribution on chromosomes.

In our microarray dataset, derived for a group of 27 WHO
grade II and III gliomas, CHROMOWAVE generated a
multi-chromosomal pattern of variation that correlated
with outcome. The pattern included diffuse losses on 1p
and 19q but also on 4, 9q, 13 and 18. Among these,
changes on 1p, 13 and 18 had the strongest correlation
with survival. This finding was replicated on a comparable

Comparison with Fourier Power SpectrumFigure 6
Comparison with Fourier Power Spectrum. Power spectrum of the raw pattern extracted by SVD for Chr1p (see Fig. 
5B) (dotted) and that of the de-noised spectrum (see Fig. 5D) (line). Note that the de-noising procedure effectively removes 
the noise at high frequencies but preserves the large structure in the signal (< 10 Hz). The dip in the de-noised spectrum at > 
103 Hz is due to the zeroing of the highest frequency content in the WT corresponding to the single probes expression.

Frequency content of Chr1p
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Sensitivity/Specificity AnalysisFigure 7
Sensitivity/Specificity Analysis. Results of the simulations obtained by adding an artificial pattern on Chr1 real noise. A) 
Detection is shown for varying intensities of the pattern for 4 different patterns (2 telomeric 1p patterns of differing length, 
than a whole 1p and a whole chromosome pattern). Specificity is measured as detection at intensity 0. B) The four detection 
lines correspond to 4 simulation studies where the pattern was added to 2, 4, 8 and 13 out of the 27 arrays in the data-set.
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set of microarray data previously published by another
laboratory [23].

Notably, while the main pattern of chromosomal varia-
tion extracted by the SVD correlated with survival, the
main pattern of RNA variation extracted by the SVD from
the raw data (no spatial transform applied) did not. This
suggests a major role of chromosomal RNA modulation
in tumour behaviour as opposed to the variation of the
bulk of gene expression.

FISH studies suggested that, in our dataset, low expression
on chromosomes 1p and 19q were most often the conse-
quence of large allelic loss in these regions, an alteration
commonly seen in oligodendrogliomas. However, FISH
counts could not explain the diffusely reduced expression
on 4, 9q, 13 and 18 raising several hypotheses: genetic
loss occurring in regions flanking the FISH probe targets,
genetic changes that do not result in gene loss detectable
by FISH such as translocation and uniparental disomy, or
epigenetic alterations such as methylation-based gene
silencing. Clearly, extensive ancillary studies are needed to
determine the various mechanisms underlying the
CHROMOWAVE gene expression patterns.

Comparative genomic hybridisation (CGH), allelic poly-
morphism analysis and methylation studies are currently
in progress in our laboratory. Whatever the causative
mechanisms, the finding that large gene expression
changes in chromosomes 4, 9q, 13 and 18 occur fre-
quently in grade II and III diffuse gliomas and that they
bear prognostic information is novel.

Conclusion
In conclusion, we propose a new mathematical model
that has proved powerful in our dataset for detecting and
mapping to chromosomes biologically meaningful gene
expression changes. The possibility of visualising changes
of spatially related genes and their position on chromo-
somes make CHROMOWAVE a valuable screening
method to explore microarray datasets. The mechanisms
contributing to these expression patterns are probably
multiple and complex. Additional studies combining
FISH, CGH/aCGH, allelic polymorphism and methyla-
tion analysis are clearly needed and should target those
chromosomal areas identified by CHROMOWAVE as sup-
porting clinically relevant gene expression changes.

Methods
We studied a dataset generated with Affymetrix
U133_Plus_2 arrays (Affymetrix, Santa Clara, CA) in 27
low grade and anaplastic diffuse gliomas (clinicopatho-
logic features are summarised in Table 1) and 11 samples
of normal brain obtained in course of surgery for intracta-
ble epilepsy. Tissues were collected under the approved

guidelines of the Ethics Committee of the Faculty of Med-
icine, University of Liège, Belgium and all patients gave
informed consent for their participation in this study.

RNA extraction, target preparation and microarray 
hybridisation
Total RNA was extracted from cryostatic sections using the
Qiagen RNeasy kit (Qiagen, Chatsworth, CA). The integ-
rity of the RNA was confirmed with the Agilent Bioana-
lyser using the RNA 6000 Nano kit (Agilent). We used the
GeneChip® Expression 3' Amplification One-Cycle Target
Labeling kit (Affymetrix, Santa Clara, CA) to label the
RNA following the manufacturer protocol. The cRNA was
hybridized to Affymetrix Human U133_Plus_2 arrays
according to the manufacturer protocol. Briefly, double-
stranded cDNA was synthesized routinely from five
micrograms of total RNA primed with a poly-(dT) -T7 oli-
gonucleotide. The cDNA was used in an in vitro transcrip-
tion reaction (IVT) in the presence of T7 RNA polymerase
and biotin-labelled modified nucleotides during 16 hours
at 37°C. Biotinylated cRNA was purified and then frag-
mented (35–200 nucleotides), together with hybridiza-
tion controls and hybridized to the microarrays for 16 h at
45°C. Using the Fluidics Station (Affymetrix), the biotin-
labeled cRNA was revealed by successive reactions with
streptavidin R-phycoerythrin conjugate, biotinylated
antistreptavidine antibody and streptavidin R-phyco-
erythrin conjugate. The arrays were finally scanned in an
Affymetrix/Hewlett-Packard GeneChip Scanner 3000

Preliminary data analysis
Preliminary data analysis was conducted using the soft-
ware of the Affymetrix microarray suite (MAS, version 5.0)
following the statistical procedures described in the
Affymetrix: Statistical Algorithms Detection Document
[42]). MAS produced an expression value plus an index
parameter indicating positive or negative detection
(present call index) for each of the 54,675 probe sets on
the chip (settings used were standard for the U133_Plus_2
array: alpha1 = 0.05, alpha2 = 0.065, Tau = 0.015, TGT =
100). Statistical analysis and post-processing were per-
formed using an in-house software (CHROMOWAVE)
written in MATLAB 6.5 (The Mathworks Inc., Natick MA,
USA). Individual arrays were normalized to the back-
ground by dividing intensities by the median value of
those genes presented with positive detection. Expression
values where then log2 transformed.

Mapping Target Sequence Values to Chromosomal 
Location
Expression values were mapped to their corresponding
chromosomal location and then sorted within each vector
using genome alignment information. Information on
the physical location of each gene and the respective
genome alignment information for each target sequence
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on the HG-U133_Plus_2 chip were obtained from the
Affymetrix website [43].

Haar Wavelet Analysis of Chromosomal Expression
Gene expression values were analysed through CHRO-
MOWAVE that uses the positional information of genes
and statistical analysis to extract chromosomal pattern of
gene expression. CHROMOWAVE applies the wavelet
transform (WT) to the spatial distribution of the array
probes and converts the original expression values in
wavelet coefficients that are functions of the expression of
adjacent genes. Wavelet coefficients are then filtered so
that only those with high signal-to-noise ratio and/or rep-
resenting probes with close genomic distance are retained.
The application of the inverse WT produces a noise-free
pattern of chromosomal gene expression. When multiple
arrays are used, wavelet coefficients can be used in statis-
tical analysis in the same fashion as gene expression val-
ues either with supervised methods of analysis (t-tests,
ANOVA, discriminant analysis, etc.) or unsupervised
(clustering techniques, independent component analysis
etc.). The WT algorithm has been described elsewhere (see
for example [44]) and will be only summarized here. The
traditional WT scheme is limited by the decimation step
that may "miss" relevant signal elements, particularly
when noise levels are high as in this application. For this
reason, CHROMOWAVE adopts the "cycle spinning" WT
that has greater complexity but enjoys the translation-
invariant property [45]. Chromosomal patterns of gene
expression are not expected to be smooth but to have well
defined boundaries. Therefore the WT transform adopts
the simplest wavelet, the classic Haar wavelet [46], that
allows a constant piece-wise approximation of the RNA
profile. As a result, the WT can be described as follows.
Firstly, gene expression values obtained from microarray
measurements were sorted according to their chromo-
somal location as previously described. Then the coeffi-
cients of the first level of the WT were calculated as the
difference of expression between two adjacent probes. The
wavelet coefficients of the second level were obtained as
the difference between the mean of pairs of adjacent
probes. The coefficients of the next levels were then calcu-
lated as the differences between the means of P adjacent
probes where P increases as a power of 2 (P = 1, 2, 4, 8, ...).
The WT is an orthogonal operator and therefore the noise
level is identical on the original raw data and at all WT lev-
els. In contrast, clusters of genes with similar level of
expression produce a WT coefficient that increases with
the resolution level. In other words, genes whose individ-
ual expression is undetectable because they are below the
noise level are detected through the WT when clustered
together because their combined energy condenses into a
greater wavelet coefficient.

Note that standard WT is usually applied to equally
spaced data, which is not the case here because genes are
not equally spaced on chromosomes. Sardy et al. [47]
have showed that a wavelet estimator based on the Haar
wavelet transform provides an estimate that is at least as
good as that recovered by any other Haar wavelet imple-
mentation adapted to the unequally spaced case.

Unsupervised Analysis
Unsupervised analysis was performed using the Singular
Value Decomposition algorithm [48] (SVD). SVD was
applied to the set of Haar wavelet coefficients [49]. This
produced a number of patterns of chromosomal expres-
sion equal to the number of the arrays. The contribution
of each case to each pattern was calculated as a single
number, the "case loading." Case loadings quantify the
amount of the pattern expressed by each array. Case load-
ings were then used for further statistical analysis. Follow-
ing sections describe the method in detail.:

Notation and Haar Wavelet Transform
Let C(h,k) be the matrix for the k = 1, 2, .., M arrays form-
ing the experiment containing on the positions h = 1, 2,
..., 2n the ordered probes. Note that, for algorithmic rea-
sons, the number of probes must be a power of 2 and, if
this is not the case, the matrix must be zero-padded.
Application of the Haar WT to each column generates n
levels of 2n wavelet coefficients that are serially stored in
the matrix CW(i,k) where i = 1, 2, ..., n2n.

Individual vs. Global Chromosomal Analysis
Matrix CW so far contains the Haar wavelet decomposition
for M arrays and one chromosome only. This allows the
analysis of each chromosome independently. This option
was used in this work for the comparison between indi-
vidual chromosomal expression and structural changes
detected by FISH. However, the core of the work was the
analysis of the entire genome simultaneously to detect the
combination of chromosomal patterns characteristic of
this data-set and, possibly, of gliomas at large. The analy-
sis can be extended to the whole genome by serially add-
ing to the rows of CW the Haar wavelet coefficients of all
the other chromosomes. The following section is valid for
both types of analysis and notation will simply refer to CW
irrespective of whether it contains the WT of a single chro-
mosome or of all chromosomes.

SVD in Wavelet Space

Calculation of SVD for CW cannot be solved directly

because of the large size of the covariance matrix

[CW* ] that has size n2n × n2n. This problem can be

circumvented by using instead the covariance Cov(CW) =

 * CW as follows [48].

CW
T

CW
T
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Matrix CW is firstly normalized by removing the row
means and then the SVD is applied to produce the decom-
position:

Cov(CW) =  * CW = VWSW   (1)

VW is an MxM matrix. Each column [VW]i, or "singular vec-
tor", contains one of the M directions of maximal change
for the arrays. These directions are orthogonal to each
other and each is made of M coefficients representing the
contribution of each array to that particular direction. We
label these coefficients as "case loadings."

Case loadings can be used in any type of statistical analy-
sis. For example, they can be entered in a bivariate corre-
lation to test the association of the corresponding
chromosomal pattern with clinical parameters by associ-
ating the load of each array with the correspondent exter-
nal measure (say, survival of that particular patient).

SW is an MxM diagonal matrix with diagonal elements Sii
= Si. The M diagonal elements Si are the singular values of
CW and, without loss of generality, it can be assumed that
they are ordered in decreasing order so that S1 ≥ S2 ≥ ... ≥
SM. The fraction of total variability in the expression data-
set explained by any individual column [VW]i can be cal-
culated as

f[VW]i = Si/Σ (Si)  (2)

This means that the first singular vector explains the great-
est amount of data variability; the second singular vector
contains the direction of change with the second greatest
variance and so forth. It is expected that the first singular
vectors contain variability due to "real" (biological) sig-
nal, while noise contributions will be contained in the last
ones [48].

The Haar wavelet patterns corresponding to the singular
vectors can be recovered by projecting the matrix CW on
the rotated axis VW.

UW = CW * V  (3)

Similarly as before, the first columns [UW]i, corresponding
to the first singular vectors, should mostly contain true
signal. However a further reduction in the noise can be
achieved by removing from matrix UW all coefficients
smaller than a suitable threshold.

In CHROMOWAVE the filtering procedure incorporates
both the noise reduction and the introduction in the
model of inter-probe genomic distances according to the
procedure described in the next section.

Inter-Probes Distance and Noise Penalization
Previous wavelet models of chromosomal gene distribu-
tion [20,21] were based on the simplifying assumption
that the relation between adjacent probes, if present, does
not depend on the absolute physical distance (as meas-
ured in base-pairs) but only on contiguity. This assump-
tion may introduce inaccuracies, particularly for local
processes involving a very small number of genes because
wavelet coefficients (level 2 and above) pool together the
expression of probes or groups of probes that may have
quite varying distances among them.

In CHROMOWAVE, the likelihood of a Haar wavelet is
made proportional to the distance between probes or
probe-groups that the wavelet coefficient represents. Inter-
probe likelihood was modeled in CROMOWAVE by add-
ing a penalty function to the de-noising procedure.

In wavelet analysis, de-noising is achieved by suppression
of all wavelet coefficients that are below an appropriate
threshold dependent on the noise levels in the data. This
operation requires an estimate of the noise variance of the
data. The variances of gene expression measured with
microarrays are usually heterogeneous, e.g, vary from
gene to gene. However CHROMOWAVE aims to detect
gene clusters only; therefore individual gene expressions
which correspond to the first level of the WT are of no
interest and are suppressed. The other levels of the WT are
all generated by pooling together 2,4 8, ..., gene expres-
sion values and their variances are, therefore, more homo-
geneous. Besides, since the WT is an orthogonal operator,
all Haar wavelet levels have approximately the same vari-
ance that can then be calculated from the robust estima-
tor:

 = MAD(UW)/0.6745  (4)

MAD denotes median absolute deviation from 0 and the
factor 0.6745 is chosen for calibration with the normal
distribution [50].

Spatial modeling and de-noising is therefore achieved by
suppressing all coefficients in the matrix UW that are under
the threshold:

P(w) is a penalty of the form:

P(w) = 1-G(ln(d),µ,ν)  (6)

In (6), d is the genomic distance between genes or gene
groups represented by the Haar wavelet coefficient w and
G is the Gaussian cumulative distribution with mean µ
and standard deviation ν. This form of the penalty is jus-

CW
T VW

T

σ̂

τ σU nP w= ( )( ) log( ).2 2 5
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tified by the fact that inter-wavelet genomic distribution,
that we pre-calculated using the available information on
the location of the probes, was Gaussian-like for all wave-
let levels. Parameters µ and ν were directly obtained by the
genomic-alignment information for the HG-
U133_Plus_2 chip.

Confoundings Due to Aneuploidy and Errors in Normalisation
When applied to the whole chromosome set, the combi-
nation of SVD analysis and wavelets has the additional
practical utility of identifying errors in the normalisation
of data (if linear). With CHROMOWAVE, the application
of an inefficient normalization procedure results in a
genome-wide constant chromosomal pattern of expres-
sion that the SVD identifies and removes from the data.
Besides, note that global RNA changes due to aneuploidy
also result in the same genome-wide diffuse pattern that
can be seemingly removed from the overall data-variabil-
ity.

Chromosomal Pattern Reconstruction
Threshold (5) suppresses all those coefficients that are
unlikely to be signal because of their relative height com-
pared to noise and/or because they contain probes/probes
clusters that are far apart. All those coefficients surviving
the threshold (5) instead are likely contributions to the
true signal and are passed through the inverse WT to pro-
duce the M filtered patterns of chromosomal variations
CF(h,k) where h = 1, 2, ..., 2n and k = 1, 2, ..., M.

Single Profile Generation (Turkheimer et al., 2004 
revisited)
CHROMOWAVE allows also the extraction of the differ-
ential profile of expression between a single case and a
control group (supervised analysis). This application was
described previously [20] and is just summarized here.
For each chromosome, the differential profile is defined
as:

dC(i) = C(i) - (i)  (7)

C(i) contains on the positions i = 1, 2, ..., 2n the expres-
sions of the ordered probes for the single case of interest.
As before, the number of probes must be a power of 2 and,
if this is not the case, the matrix must be zero-padded.

(i) is the average expression of the probes for a control
database. Application of the WT to dC(i) generates n levels
of 2n wavelet coefficients that are serially stored in the
matrix dCW(i,j). Differently from before i = 1, 2, ..., 2n

indexes now 2n locations and j = 1, 2, ..., n indexes the n
wavelet resolutions. The differential profile is de-noised
by suppression of the coefficients below the threshold

defined in equation (5) where the penalty P(w) is the

same as in equation (6) and the variance  is calculate as

 = MAD(dCW(i,1))/0.6745  (8)

dCW(i,1) is the finest resolution level of the wavelet trans-
form.

Upon application of the inverse wavelet transform to the
filtered matrix dCW(i,j) one obtains a de-noised approxi-
mation of the individual pattern dC(i).

We used CHROMOWAVE to extract patterns of chromo-
somal expression for individual tumour cases by contrast-
ing its microarray measurement with the average
expression of a normal database of 11 normal brain sam-
ples. RNA extracted from these cases was hybridized to
Affymetrix U133_Plus_2 arrays and data processed as
described previously.

Fluorescence in situ hybridization (FISH)
The 27 tumours were all also studied with FISH. Dual-col-
our assays were performed on 8-µm-thick cryostatic sec-
tions from the same tissue blocks as those used for
microarray experiments. We tested the six chromosomes
that revealed the major changes with CHROMOWAVE.
Loss or gain on chromosomes 1 and 19 were detected with
LSI®1p36/LSI 1q25 and LSI 19q13/LSI 19p13 dual-color
probe sets (Vysis, Inc., Downers Grove, IL, USA). Chro-
mosome 9q was studied with the ABL (9q34) probe of the
LSI ABL/BCR ES probe system (Vysis). For chromosomes
4, 13, 15 and 18, we used Vysis probes CEP4, LSI13 (440
kb including the RB gene in 13q14), CEP15 and CEP18.
Samples were processed according to the manufacturer's
protocol. Results were evaluated with an Olympus BX51
fluorescence microscope (Olympus, Melville, NY, USA)
equipped with the appropriate fluorescence filters. At least
100 cells were examined for all signals and the mean sig-
nal numbers were recorded. Frozen sections of normal
brain were analysed to establish a reference FISH copy
number. Upper and Lower normality thresholds were cal-
culated as mean +/- 2 standard deviations (SD). Tumour
samples with mean signal below the lower threshold were
reported as showing monosomy. Correlation between
FISH mean copy numbers and CHROMOWAVE loadings
were calculated using Pearson product moment correla-
tion coefficient.

Availability and Requirements
The microarray data used in this work are deposited in the
GEO database (GEO Submission GSE2817). Software
available on request, free for academic users.
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Additional File 1
Data for Figure 1. This table details the pattern illustrated in Figure 1. 
The file contains data sequentially for the chromosomes and consists of 5 
columns The first one contains the Affymetrix probe ID, the second one is 
the expression (log2 scale), the third one contains the chromosomal locus, 
the 4th one is the exact genome distance for that chromosome (Zero is the 
p telomere in Affymetrix convention). Column 5 contains the ontology. 
Additional information is provided in form of colours as follows: - In yel-
low clusters with log2 expression > abs(0.8) with Citation in PubMed 
under keyword "GLIOMA" - In orange genes with citation in OMIM 
under keyword "TUMOUR" (chr4, chr13, chr15, chr18, chrY only) - In 
red genes with citation in OMIM under keyword "Glioma" (all chromo-
somes) but not necessarily with high or low expression in this data set.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-526-S1.xls]
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