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Abstract

Background: The process of transcription is controlled by systems of transcription factors, which
bind to specific patterns of binding sites in the transcriptional control regions of genes, called cis-
regulatory modules (CRMs). We present an expressive and easily comprehensible CRM
representation which is capable of capturing several aspects of a CRM's structure and distinguishing
between DNA sequences which do or do not contain it. We also present a learning algorithm
tailored for this domain, and a novel method to avoid overfitting by controlling the expressivity of
the model.

Results: We are able to find statistically significant CRMs more often then a current state-of-the-
art approach on the same data sets. We also show experimentally that each aspect of our
expressive CRM model space makes a positive contribution to the learned models on yeast and fly
data.

Conclusion: Structural aspects are an important part of CRMs, both in terms of interpreting them
biologically and learning them accurately. Source code for our algorithm is available at: http://
www.cs.wisc.edu/~noto/crm

Background

Eukaryotic transcription is controlled by multiple factors,
which may need to bind to DNA in a specific arrangement
in a gene's transcriptional control region. This type of reg-
ulation system is called a cis-regulatory module (CRM). The
DNA motifs (specific patterns of nucleotides) to which
these factors bind are often unknown, and may appear
anywhere in a large region in the neighborhood of a gene.
This region typically extends several thousand base pairs
upstream of the transcription start site, and may also
include DNA between the transcription start site and the
start codon, and within introns of the transcribed gene. It
is often the case that a set of genes are transcribed or

expressed together under certain conditions, but the
mechanisms underlying this co-expression are unknown.
We would like a method that can aid in verifying that
these genes are indeed transcribed by a common mecha-
nism, and, more importantly, to explain this fact by find-
ing the CRM which promotes transcription. The task we
consider here is to learn such a CRM model from data.
Specifically, given a set of sequences which are thought to
contain a common cis-regulatory module and a set of
sequences which are assumed not to, we wish to produce
a description in terms of DNA binding sites which is true
of the former set but not of the latter.
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Several previous methods have characterized CRMs as a
probabilistic over-representation of certain motifs within
a window of predetermined size [1-4]. However, the mod-
els used are unable to represent very much about the phys-
ical arrangement among relevant binding sites. Given that
a module consists of binding sites corresponding to mul-
tiple interacting transcription factors, we hypothesize that
the relative locations of binding sites in real CRMs are an
important consideration that the aforementioned models
are unable to adequately represent. Consider the example
in Figure 1. Suppose that a DNA sequence will be tran-
scribed if, and only if, it contains transcription factor
binding site motif 1 followed closely by either motif 2 or
motif 3 near the start of transcription on the sense (tem-
plate) strand. A CRM model that represents this situation
must distinguish between DNA sequences that have it (a,
b, and c¢) and those that do not because the motifs are out
of order (sequence d), too far apart (sequence e), too far
upstream of the start of transcription (sequence f), or bind
to the wrong DNA strand (sequence g).

A few of these relationships can be represented by other
previous methods. Sinha, et al. [3] point out that specific
motifs may have strand preference, and their models do
include a preference for a motif to directly follow another,
but they do not describe arbitrary ordering constraints
(e.g- a CRM includes all of motifs A, B, and C, and motif A
must be most upstream), nor do they include strand pref-
erence into the CRM model itself. The models of Keles et
motif 3
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Example CRM Learning Task. An example of a CRM
learning task: There are three types of transcription factor
binding sites on these DNA sequences. Transcription will
occur in a given condition if motif | is followed closely by
either motif 2 or motif 3 near the transcription start site
(right side) on the sense DNA strand. This is true for
sequences a, b, ¢, but not sequences d (incorrect order), e
(too far apart), f (too far upstream), and g (motif | on the
incorrect DNA strand).
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al. [5] are able to represent logical relationships (as in the
example in Figure 1, motif 1 must be followed by motif 2
or motif 3), but they do not represent the ordering or prox-
imity of the motifs. The models of Segal, et al., Aerts, et al.,
and Zhou, et al. model proximity between two motifs by
whether or not they occur within a fixed-size window, but
the motifs are otherwise independent and can occur any-
where in a transcription control region. The approach of
Beer and Tavazoie [6] does capture motif orientation, and
the relative order and distance between pairs of motifs.
However, we argue that our models are more comprehen-
sible than the probabilistic models of Beer and Tavazoie
and that the increase in feature space that goes along with
such a variety of relationships between possible binding
sites requires that a learner take special steps to avoid
overfitting.

We present a model representation which is able to
describe logical relationships between binding sites,
explicit upper-bounds on the distance between binding
sites and between the CRM and the start of transcription
(which may be known or estimated), the relative order
(upstream or downstream) between any pair of binding
sites, the DNA strand on which a binding site must
appear, and a set of motifs which must not appear (e.g. the
binding sites of repressors) in the CRM.

In order to make learning possible in such an expressive
model space, we have developed a specialized learner
which has two important distinctions: First, the search
process is specifically tailored for the context of cis-regula-
tory modules. Second, although the expressivity capable
of capturing all these physical aspects of a CRM is a major
strength of our approach, only a few of these aspects may
actually be needed to describe a given CRM. Therefore,
there is a risk of overfitting due to this high-variance
model space. For this reason, we have developed an
expressivity selection method in which each aspect of the
model space must be statistically justified by the data.

Results and Discussion

Representation

Figure 2 illustrates an example of our CRM representation.
We divide the expressivity of this representation into six
distinct parts, which we will refer to as structural aspects:

1. Multiple binding sites (Fig. 2a). This is the basic structure
of our representation.

2. A multiplicity of motifs per binding site (Fig. 2b). For each
binding site, there is a set of motifs sufficient to represent
it (i.e. connected with the logical or operator). We allow a
binding site to be associated with multiple motifs because
it may be the case that multiple transcription factors (with
different binding motifs) may play the same role in a
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Example CRM Model. An example CRM model (motifs are represented here by sequence logos [14]). This particular model
has three necessary binding sites (a), one of which can be satisfied by matching either of two motifs (b). One binding site must
be within 80 bp of another (c), and the CRM must be within |10 bp of the start of transcription (d). One binding site must
appear upstream of another (e), which must appear on the antisense DNA strand (f, denoted by tcx). Additionally, a certain

motif must not appear upstream of the CRM (g).

CRM, or a single transcription factor may have multiple or
varying binding motifs.

3. Distance constraints (Fig. 2c¢,d). These specify a maxi-
mum distance (in base pairs) between the motifs that sat-
isfy any two binding sites, or between the CRM and the
transcription start site.

4. Order constraints (Fig. 2e). These specify that the motif
that satisfies a particular binding site must be upstream of
another binding site.

5. Strand constraints (Fig. 2f). These specify that a particu-
lar binding site must be on a specific DNA strand (In Fig.
2, tcx denotes the antisense-transcribed-strand).

6. Repressor sites (Fig. 2g). These specify that a particular
motif (or any member of a disjunction of motifs) must
not appear in the CRM, and its effective location can be
constrained to be between a particular pair of binding
sites, upstream of the CRM, or between the CRM and the

transcription start site (in the case in Fig. 2, a single motif
that must not appear upstream of the CRM).

Learning a Model

Our learning algorithm learns a CRM model from positive
and negative example sequences, a set of potential bind-
ing site motifs, and an evaluation function.

Positive examples are those believed to contain a shared
CRM (i.e. a set of particular binding sites and structural
aspects). These may be, for instance, the set of promoter
sequences from a set of genes which are co-expressed
under certain conditions and suspected to be co-regu-
lated.

Negative examples are those believed not to contain the
target CRM, although they certainly may contain other
arrangements of motifs. The purpose of these sequences is
to make the learned CRM model discriminative-so that it
captures something specific to the given set of positive
examples instead of something that is trivially or generally
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true of promoter sequences. The regulation of these nega-
tive examples may be related to the positive set in some
interesting way (e.g. they are co-expressed under some
other conditions), or they may simply be promoter
sequences believed not to be regulated along with the pos-
itive examples.

The set of potential binding sites is specified by indicating
the location of each occurrence in the positive and nega-
tive example sequences. These potential binding sites may
come from a set of known or postulated transcription fac-
tor binding sites (e.g. from a database) or they may come
from a standard motif-finding algorithm, such as MEME

[7].

Pseudocode illustrating our learning algorithm is given in
Table 1.

Given sets of positive and negative DNA sequences, a set
of potential binding site motifs, and an evaluation func-
tion, our algorithm searches through the space of possible
models in an attempt to optimize the score given by the
evaluation function. The ideal model would be satisfied
by all the positive examples and none of the negative
examples, so the evaluation function should be some
measure of how well a given CRM model distinguishes
between the positive and negative examples.

The search process is a best-first beam search [8] that starts
with the null solution (an unconstrained model with zero

Table I: Train Function

TRAIN(trainset, aspects, phases, metric, K)

| queue < {NULL_SOLUTION}

2 CRM <~ NULL_SOLUTION

3 for phase € phases

4  while queue is not empty

5 current «<— POP(queue)

6 for each applicable CRM change in aspects allowed in phase
7 alt < APPLY (change, current)

8 if there is a sufficiently low )2 test probability that the trainset
9 predictions of current, alt are from the same distribution
10 then insert alt into queue

Il sort queue by metric

12 limit queue to K solutions.

13 if current has a better score than CRM given trainset, metric
14 then CRM « current

I5  repopulate queue with the best K solutions from phase

16 return CRM

The Train function takes: trainset, a set of labeled DNA sequences;
aspects, a list of CRM aspects which can be included (i.e. the maximum
number of binding sites, whether or not distance constraints are
allowed, etc.); phases, a list of phases, specifying the set of model
changes allowed in each; metric,a CRM model scoring metric; and K, a
maximum queue size (beam width). For each phase, Train searches
from the current list of solutions by making the changes allowed in
that phase. It returns the best CRM model it finds.

http://www.biomedcentral.com/1471-2105/7/528

binding sites) and searches in phases, modifying the best
available solution and keeping only a queue of the best K
models. Once the queue becomes empty, the best K solu-
tions found are carried over to the initial queue for the
next phase. In each phase, we apply a subset of the follow-
ing operators:

¢ A new binding site is added.
¢ For a given binding site, a new motif is added.

¢ The distance from the CRM to the transcription start site
is constrained (to the best distance smaller than the cur-
rent distance, according to the data and the scoring met-
ric).

e For a given pair of binding sites, the distance between
them is constrained.

e For a given pair of binding sites, their relative order is
constrained.

¢ For a given binding site, a strand constraint is imposed.

¢ A repressor motif is added between the CRM and the
transcription start site

¢ A repressor motif is added upstream of the CRM

¢ A repressor motif is added between a pair of binding
sites.

There are user-defined limits on the maximum number of
binding sites, motifs that can represent a binding site, and
repressor motifs in a set.

Many of these slight changes to a solution will not affect
its score (e.g. if a motif that does not appear in any
sequence were added to the list of motifs for a particular
binding site, the model would match exactly the same
sequences). For this reason, we insist on some statistical
difference between the set of sequences predicted by any
of these changes. We use a 2 test to decide whether we can
reject the null hypothesis that two sets of sequence predic-
tions by two different models come from the same distri-
bution. It is not necessary to insist on near certainty when
selecting the test's level of confidence; we mean only to
avoid filling up our queue with multiple copies of essen-
tially the same solution. If the test indicates that they
come from different distributions, we add the new solu-
tion to the queue. Otherwise, we discard it.

In our experiments, we use two phases for the TRAIN pro-
cedure, making most of the above changes during the first
phase, but adding repressor motifs in the second phase
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(because we argue these repressors can only be correctly
added within the context of a CRM structure which has
already been developed).

Controlling the Expressivity of a Model

Since the model space is expressive enough to represent
many aspects of a CRM, we must address the potential for
overfitting. We first identify the CRM model space appro-
priate for the data, and then search through this space for
the correct CRM. To do this, we hold aside a tuning set of
training sequences and select our expressivity by compar-
ing the results of training a model first including, then
leaving out an entire aspect of our CRM model design. We
keep the more expressive model space if and only if the
results with the aspect in question show both an improve-
ment and a statistically significant difference. That is, we use
an aspect of CRM expressivity if and only if doing so is sta-
tistically justified by the data. This way, we select only the
expressiveness required by a specific CRM, and we can
then retrain the model by searching through the appropri-
ate model space. Pseudocode illustrating this procedure is
shown in Table 2. Note that Select-Train is the main pro-
cedure which calls the entire Train procedure as a subrou-
tine.

Since the inclusion of one model aspect may depend on
another (e.g. distance constraints are only effective once
the affected binding sites are identified), we do backward
selection instead of forward. That is, we start with the full
set of CRM structural aspects, and then remove some as is
appropriate as opposed to starting with an empty set and
adding to it. The list of model space restrictions is:

¢ Reduce the maximum number of binding sites by one.

¢ Reduce the maximum number of motifs (disjuncts) per
binding site by one.

Table 2: Select-Train Function

http://www.biomedcentral.com/1471-2105/7/528

e Disallow distance constraints.
e Disallow order constraints.
e Disallow strand constraints.

e Reduce the maximum number of motifs in a set of
repressor motifs by one.

Unless leaving the aspect in the model space produces a
statistically significant improvement as determined by a
¥ 2 test, we remove it. If more than one restriction in the list
above is being considered, we make the restriction that
gives us the best tuning set score. That is, we only make
one model space restriction at a time. This process is
repeated on the more restricted model space until no
more restrictions should be considered (all structural
aspects are statistically justified). This approach is similar
to backward feature selection [9,10]. However, we are not
deciding on whether or not to include specific features
(e.g. what is the distance between motif A and motif B in
each DNA sequence), but rather we are deciding on
whether or not to include entire aspects.

Experimental Results

We test our approach on several data sets, summarized in
Table 3. Three of these data sets have been used in previ-
ous studies of computational CRM finding. the Gasch et
al. data set, however, is novel. In each case, we obtain
upstream/promoter sequences from the University of Cal-
ifornia Santa Cruz Genome Browser [11] and perform
cross-validation to evaluate our algorithms. We obtain a
set of candidate motifs from running MEME [7] on the
positive examples (not including any test sequences held-
aside for evaluation) and from running MEME on on
upstream/promoter regions randomly sampled from the
appropriate organism. For the fly data set, we also evalu-

SELECT-TRAIN(trainset, tuneset, aspects, phases, metric, K)
I CRM « TRAIN(trainset, aspects, phases, metric, K)
2 repeat
3 unjustified_ aspects < { }
for aspect € aspects
alt_CRM <« TRAIN(trainset, aspects — aspect, phases, metric, K)

are from the same distribution or CRM scores better on tuneset than alt_ CRM

4
5
6 if there is not a sufficiently low 2 test probability that the tuneset predictions of CRM, alt_CRM
7
8

then unjustified_aspects < unjustified_aspects U aspect

9  aspects < highest scoring set resulting from removing one of unjustified_ aspects based on tuneset

10 CRM « alt_CRM associated with these aspects

I'l until unjustified_aspects is empty

12 final_CRM < TRAIN(trainset + tuneset, aspects, phases, metric, K)
13 return final_CRM

The Select-Train algorithm takes: trainset, a set of labeled DNA sequences; tuneset, held-aside evaluation data; aspects, a list of CRM aspects to
consider; as well as phases; metric, and K, which are arguments to the Train algorithm. It removes aspects from the original list which are statistically
shown (using the tuning set) not to contribute. Finally, it returns a CRM trained with all the data, using the CRM aspects chosen.
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ate our approach when it is provided with a set of known
motifs [3,12].

These motifs are described by position weight matrices
(PWMSs). We compare the likelihood of each PWM gener-
ating a subsequence in our data sets to the likelihood of
the sequence being generated by a 5th-order Markov
chain which is trained on the promoter regions of an
entire genome. We consider a motif to be present if the
ratio exceeds a threshold.

For our algorithm's scoring metric, we wish to measure
how well the model predicts all, and only, the sequences
which contain the target CRM. Precision is the frequency
with which positive predictions are true positives, not
false positives: P = . Recall is the frequency with
TP + FP
which the correct sequences are predicted as positive and
P
TP + FN
scoring metric, which is the harmonic average of precision
2XPxXR
P+R

are not false negatives: R = . We use F1 as our

and recall: F1=

We set the maximum number of binding sites to three, the
maximum number of motifs per binding site to three and
the maximum number of repressor motifs in a set to one.
We evaluate our model by using cross-fold-validation: We
hold aside some data, train on the remainder, and then
evaluate our trained models' predictions on the held-aside
data. We predict that the held-aside sequence is a positive
example if and only if it contains our hypothesized CRM.
This process is repeated with different examples held aside
for evaluation, and the results from each fold are summed
together.

For each data set, we calculate an F1 score, ¥ (the same
statistic as our algorithm's scoring metric), and use

Table 3: Data Sets

http://www.biomedcentral.com/1471-2105/7/528

Fisher's exact test [13] to calculate a p-value. If our positive
predictions (true positives plus false positives) were made
simply by randomly sampling without replacement from
the data set, this p-value would be the probability of an F1
score of F or higher. If this p-value is sufficiently low
(less than 0.01, following Segal and Sharan [2]), we con-
sider our CRM for this data set to be significant.

Our results are shown in Table 4. We find a significant
CRM in 17 of the 25 Lee et al. data sets (Table 3). In their
similar experiments, Segal et al. found significant CRMs in
only 12 of the 25 data sets (Note that the p-value calcula-
tions of Segal et al. are not identical to ours; as their CRM
model makes probabilistic predictions, they are able to
calculate a p-value using a classification margin [2]). Many
of the motifs included in our CRM models correspond to
known binding site motifs for the proteins thought to
bind to the promoter regions in these data sets. However,
we do not focus on recovered motifs, because our
approach does not define these (they are found by
MEME), it only selects them from a set of candidates. We
find significant CRMs in the three Gasch et al. data sets,
which suggests that our method can be used to find novel
CRMs corresponding to genes clustered by expression
analysis.

We find a significant CRM in the Sinha et al. fly data set as
well. For this data set, using motifs suggested by MEME,
we find three true positives and three false positives.
Although this result is statistically significant, we hypoth-
esize that the reason we are unable to recover more of the
positive examples is because the training set size is too
small for MEME to find good candidate motifs. To test
this, we use the PWMs from Rajewsky, et al. and Sinha, et
al. [3,12] and locate positions where these motifs are most
likely to occur. In this case, we recover seven of eight pos-
itive examples. Note that we do not compare our results to
those of Sinha et al. because we use this data set to evalu-

Data Set Organism Description

Lee et al. S. cerevisiae 25 sets of genes with strong evidence (p-value < 0.01) from the genome-wide location analysis of Lee et al.
[15] that a specific pair of regulators bind to their upstream regions. This is a recreation of the data sets used
by Segal et al. [2]. For each data set, we use 100 yeast promoters chosen at random as negative examples.

Gasch et al. S. cerevisiae Three sets of genes associated with environmental stress response (ESR) in Yeast, described in [16]. We use
promoter sequences from non-ESR yeast genes as negative examples.

Sinha et al.-Yeast S. cerevisiae A set of six yeast sequences where MCMI and MAT a2 are known to bind, described in Sinha et al. [3]. For

negative examples, we used nine promoter sequences which contain binding sites for either MCM| or MAT0.2,

but not both.

Sinha et al.-Fly D. melanogaster

A set of eight fly genes associated with the gap gene system, described in Sinha et al. [3]. We use 10 kb

promoter sequences, and 100 promoter sequences selected randomly from the fly genome to use as negative

examples.

Summary of the data sets on which we test our algorithms
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Table 4: Results
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Data set True Positives False Positives True Negatives False Negatives Precision Recall Fl Score p-value

Lee et al. GAT3, RGMI 5 22 78 10 0.185 0333 0.238 0.253
GAL4, YAPS 7 16 84 9 0.304  0.438 0.359 0.0169

GAT3, PDRI 10 9 91 7 0.526  0.588 0.556 1.138e-05

CINS5, NRGI 10 18 82 8 0.357  0.556 0.435 1.53e-03

RGMI, YAPS 7 13 87 I 035 0389 0.368 0.0137

NDDI, SWi4 15 23 77 7 0395  0.682 0.5 8.51e-05

SKN7, SWi4 12 38 62 10 024  0.545 0.333 0.118

PDRI, YAP5 13 36 64 10 0265  0.565 0.361 0.0585

FKH2, SWi4 1 20 80 13 0.355 0.458 0.4 0.0113

PHDI, YAP6 14 18 82 10 0438  0.583 0.5 1.52-e04

FHLI, YAP5 15 19 8l 10 0.441 0.6 0.508 1.07-e04

FKH2, MCMI 20 33 67 5 0.377 0.8 0513 2.45-e05

MBPI, NDDI 13 24 76 12 0.351 0.52 0419 7.52-e03

ACE2, SWI5 17 29 71 9 037  0.654 0.472 7.97-e04

FKH2, MBPI 19 31 69 8 038  0.704 0.494 2.60-e04

MCMI, NDDI 24 36 64 4 04 0857 0.545 2.37-e06

RAPI, YAPS I5 7 93 14 0.682 0517 0.588 3.68-e07

NRGI, YAP6é 15 22 78 15 0.405 0.5 0.448 3.72-03

GAT3, YAPS 25 I 89 14 0.694  0.641 0.667 8.75-el0

CINS, YAP6 26 41 59 14 0.388 0.65 0.486 8.47-03

MBPI, SWI4 27 33 67 13 045  0.675 0.54 2.00-e04

SWI4, SWi6 20 45 55 23 0.308  0.465 037 0.506

MBPI, SWIlé 39 38 62 5 0.506  0.886 0.645 6.34-e09

FKH2, NDDI 35 83 17 I5 0.297 0.7 0417 0.978

FHLI, RAPI 89 36 64 25 0712 0781 0.745 3.33-el0

Gasch et al. iESR 89 453 4497 181 0.164 0.33 0.219 ~0
rESR_PACcluster 173 260 4690 255 04 0404 0.402 ~0

rESR_RPcluster 50 84 4866 71 0.373 0.413 0.392 ~0

Sinha et al. Yeast 6 2 7 0 0.75 | 0.857 5.59-e03
Sinha et al. Fly 3 3 97 5 0.5 0.375 0.429 4.92-e03
Sinha et al. Fly, known PWMs 7 10 90 | 0.412 0.875 0.560 5.10e-06

Results of running our algorithm on the data in Table 3. Significant CRMs (p-value < 0.01) are indicated with bold text.

ate predictive accuracy on held-aside data, whereas they
do not.

We wish to determine whether or not the inclusion of
structural aspects increases the accuracy of our models.
We do this by comparing the results of our approach to
those obtained when we limit the set of aspects given to the
Train function. We do this in two ways: First, we measure
this accuracy by the F1 score of our predictions on held-
aside data, and compare these scores to those obtained by
a restricted version of our algorithm, for which the only
aspect given to the Train function is multiple binding sites.
This experiment is designed to compare against the model
space of several previous methods in which a CRM model
is characterized simply by the presence of a set of motifs
anywhere in an input sequence. We refer to this as the
"bag-of-motifs" approach. Second, we compare the F1
scores of our approach to those of running our algorithm
with a single structural aspect left out of the set given to
the Train function, for each aspect/dataset pair. This is
designed to determine whether each structural aspect by

itself makes a positive contribution to the learned models.
We refer to these experiments as "lesion tests."

These comparisons are illustrated in Fig. 3. Note that
sometimes the inclusion of a structural aspect can lead to
overfitting (a point slightly above the diagonal line), but
often it is essential (a point well below the line). Indeed,
considering all data sets, the F1 score is more often higher
with all aspects included than it is when any single struc-
tural aspect is removed. On the 25 yeast data sets from Lee
et al. (Table 3a), the bag-of-motifs approach is often about
as accurate as our approach. One exception is shown in
Fig. 4. Here, our algorithm discovers that the order of
binding sites is important. Compare the test set F1 score
of our approach (0.500) to that of the bag-of-motifs
approach (0.205). On the other data sets, our approach
scores much higher than the bag-of-motifs approach. For
instance, Figure 5 shows the hypothesis CRM model for
the data set, rESR_RPcluster, which involves distance and
strand constraints. The bag-of-motifs hypothesis (not
shown) also includes two copies of the same motif, but
without structural constraints, the model accepts eight
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Comparison to Models with Limited Expressivity. a. The Fl score of our approach (x-axis) compared to the Fl score of
the bag-of-motifs approach (y-axis). b. The F| score of our approach (x-axis) compared to the F| score of a lesion-test (y-axis)
wherein a model was trained with one structural aspect left out of the set given to the Train function (this experiment is run
for each aspect and for each data set).
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additional true positives, and 265 additional false posi-
tives. Using our approach on the Sinha et al.-Fly data set,
we find three true positives and three false positives (com-
pared to two true positives and 34 false positives using the
bag-of-motifs approach). Using PWMs from the literature,
we recover seven of eight positive examples, with 10 false
negatives (compared to six true positives and 16 false neg-
atives using the bag-of-motifs approach).

Conclusion

One of the primary steps in gene regulation is transcrip-
tion, and the ability to learn CRMs directly from data will
be a crucial part of understanding how transcription is
controlled. Our experiments, as well as those of Beer and
Tavazoie [6] indicate that transcription is controlled not
only by the presence of binding sites, but also by relation-
ships between their locations. Our models represent a step
forward in this area because these aspects are represented
in a model which is easy to inspect and understand, and
our results show that each of them contributes to the iden-
tification of significant CRMs in real biological data. With
this increase in expressiveness, there is inevitably a risk of
overfitting. We use data to identify the appropriate CRM
aspects during the process of training our models. We
believe that our novel approach of model space selection
is an important and necessary step to facilitate the move
toward more expressive models.

Availability and Requirements
The source code for our algorithm is available at: http://

www.cs.wisc.edu/~noto/crm.

Authors' contributions

KN wrote the software and carried out the computational
experiments. MC and KN designed the algorithm and
experiments. All authors read and approved the final
manuscript.

Acknowledgements

This research was supported in part by NIH/NLM training grant
5T15LM005359, NSF grant 11S-0093016, and NIH/NLM grant RO1-
LM07050-01.

The authors would like to thank Louis Oliphant and Joseph Bockhorst for
helpful comments on earlier drafts of this paper.

References

I. Aerts S, Loo PV, Thijs G, Moreau Y, Moor BD: Computational
Detection of cis-regulatory modules. Bioinformatics 2003,
19(2):5-14.

2. Segal E, Sharan R: A Discriminative Model for Identifying Spa-
tial cis-Regulatory Modules. In Proceedings of the Eighth Annual
International Conference on Computational Molecular Biology (RECOMB)
San Diego, California, USA: ACM Press; 2004:141-149.

3.  Sinha S, van Nimegen E, Siggia ED: A Probabilistic Method to
Detect Regulatory Modules. Bioinformatics 2003, 19:292-301.

4. Zhou Q, Wong WH: CisModule: De novo discovery of cis-regu-
latory modules by hierarchical mixture modeling. Proceedings
of the National Academy of Sciences 2004, 101(33):12114-12119.

http://www.biomedcentral.com/1471-2105/7/528

5. Keles S, van der Lann MJ, Vulpe C: Regulatory motif finding by
logic regression. Bioinformatics 2004, 20(16):2799-281 |.

6. Beer MA, Tavazoie S: Predicting Gene Expression from
Sequence. Cell 2004, 117:185-198.

7. Bailey TL, Elkan C: Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. In Proceed-
ings of the Second International Conference on Intelligent Systems for
Molecular Biology AAAI Press; 1994:28-36.

8. Mitchell TM: Machine Learning New York: McGraw-Hill; 1997.

9.  Devijver PA, Kittler J: Pattern Recognition: A Statistical Approach Pren-
tice-Hall International; 1982.

10.  Miller AJ: Subset Selection in Regression Chapman and Hall; 1990.

I'l1.  Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler
D, Kent WJ: The UCSC Table Browser data retrieval tool.
Nucleic Acids Research 2004, 32:D493-D496.

12.  Rajewsky N, Vergassola M, Gaul U, Siggia E: Computational detec-
tion of genomic cis regulatory modules. BMC Bioinformatics
2002 [http:/citeseer.ist.psu.edu/rajewsky02computational.html].

13. Agresti A: A Survey of Exact Inference for Contingency
Tables. Statistical Science 1992, 7:131-177.

14. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: A
sequence logo generator. Genome Research 2004, 14:1188-1190.

15.  Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK,
Hannett NM, Harbison CT, Thompson CM, Simon |, Zeitlinger J, Jen-
nings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne J, Volkert
TL, Fraenkel E, Gifford DK, Young RA: Transcriptional Regula-
tory Networks in Saccharomyces cerevisiae. Science 2002,
298:799-804.

16.  Gasch AP, Spellman P, Kao CM, Carmel-Harel O, Eisen MB, Storz G,
Botstein D, Brown PO: Genomic expression programs in the
response of yeast cells to environmental changes. Mol Biol Cell
2000, 11(12):4241-57.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 10 of 10

(page number not for citation purposes)



http://www.cs.wisc.edu/~noto/crm
http://www.cs.wisc.edu/~noto/crm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15166027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15166027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12398796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12398796
http://citeseer.ist.psu.edu/rajewsky02computational.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11102521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11102521
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Representation
	Learning a Model
	Controlling the Expressivity of a Model
	Experimental Results

	Conclusion
	Availability and Requirements
	Authors' contributions
	Acknowledgements
	References

