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Abstract
Background: The structure of proteins may change as a result of the inherent flexibility of some
protein regions. We develop and explore probabilistic machine learning methods for predicting a
continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue.
We train our methods using data derived from high-quality NMR models.

Results: Several probabilistic models not only successfully estimate the continuum secondary
structure, but also provide a categorical output on par with models directly trained on categorical
data. Importantly, models trained on the continuum secondary structure are also better than their
categorical counterparts at identifying the conformational state for structurally ambivalent
residues.

Conclusion: Cascaded probabilistic neural networks trained on the continuum secondary
structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an
overall classification accuracy on par with standard, categorical prediction methods.

Background
Protein structures can be characterized by regular folding
patterns. Descriptions at the level of local folding pattern
(e.g., alpha helix or beta sheet) are known as the protein's
secondary structure, as opposed to its full tertiary (3-dimen-
sional) structure. It is common practise to describe each
residue as belonging to either one of eight secondary
structure environment classes:

C8 = {G, H, I, E, B, T, S, C},

or to one of three classes:

C3 = {H, E, C}.

The set C8 consists of the eight DSSP [1] classes: 310-helix
(G), alpha helix (H), pi helix (I), helix-turn (T), extended
beta sheet (E), beta bridge (B), bend (S) and other/loop
(C). In set C3, class H contains the 310-helix and alpha
helix classes, class E contains the extended beta sheet and
beta bridge classes and class C contains the remaining
four DSSP classes.

In addition to the dominating covalent polypeptide back-
bone, the stability of a protein structure is determined by
the collective strength of many covalent and ionic bonds,
as well as van der Waals attractions. However, it is well
established that protein structures are not entirely rigid. As
the tertiary structure of a protein changes due to thermal
motion or outside in influences, a residue may also
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change secondary structure states. In stark contrast to the
typical definition of secondary structures in which a resi-
due can only have a single state, continuum secondary
structures allow a residue to be in all states, indicated by a
probability distribution over the possible secondary struc-
ture states. It has been contended that specifying protein
structure this way allows regions of transition in second-
ary structure (e.g., caps) to be characterised more accu-
rately [2]. Moreover, a probabilistic representation of
secondary structures sheds light on the conformational
flexibility of proteins [2,3].

Solved by X-ray crystallography, a protein has conforma-
tional variation mainly due to different experimental con-
ditions. On the other hand, NMR solution of a protein
structure always provides a number of models with struc-
tural variation due, at least in part, to intrinsic motions of
the protein [2]. Andersen and colleagues developed a
scheme-DSSPCONT-where the secondary state probabil-
ity distribution for each residue in a protein is estimated
from the variation amongst an ensemble of NMR models
of the protein. The DSSPCONT assignment thus directly
distinguishes between less flexible regions and more flex-
ible ones [2].

In this work, we use the same NMR dataset as Anderson et
al. [2] to develop probabilistic models that are able to pre-
dict the continuum secondary structure from the amino
acid sequence. We test these models using a dataset of
continuum secondary structures developed by us and hav-
ing very low sequence similarity with the Anderson et al.
dataset. Given a target protein sequence, for each residue,
our models are trained to predict the probability distribution
over all possible secondary structure environments for
that residue. Importantly, the probabilistic models are
thus directly provided with prediction targets that reflect
the variability of conformation.

There are a large number of prediction methods that take
as input a protein sequence and predict the secondary
structure of each of its residues. Current best methods
(including PSIPRED, SSPro, PROFsec and others) achieve
a 3-class accuracy (Q3) of 75–80% [4-11]. These and other
previous secondary structure prediction methods implic-
itly assume that each residue in the protein belongs to a
definite secondary structure. The target secondary struc-
ture used by most models are categorically determined by
DSSP [1] or STRIDE [12].

Most previous prediction methods provide continuous
(rather than categorical) outputs, and it is tempting to
interpret these as probabilities. What distinguishes our
approach is that we train our models with probabilistic
data, so it is entirely natural to interpret their predictions
as probabilities. Previous approaches train models using

categorical data, so non-categorical outputs often do not
represent probabilities at all. In most cases (e.g., with neu-
ral nets trained on categorical data), non-categorical out-
puts represent the distance from an internal decision
boundary, which may be correlated with the certainty of
the prediction, but is not a probability in the strict sense
of the word. It is also unclear whether such outputs bear
direct physical or biological meanings (like thermal
motion or conformational switching), or if they merely
reflect the confidence that the model has in the predic-
tion. Moreover, it is estimated that 5–15% of the current
prediction errors can be attributed to the current rigid def-
inition of secondary structure and how it is derived from
experimental models [13].

In this work, we study three models of increasing com-
plexity: Naive Bayes' Density Predictors (NBDP), Probabi-
listic Neural Networks (PNN), and Cascaded Probabilistic
Neural Networks (CPNN). The first of these methods
(NBDP) is the simplest to implement, but makes the most
assumptions about the data. In particular, NBDP assumes
that the identities of adjacent residues in the protein are
independent given the secondary structure. This is obvi-
ously not true in general, but we include results using
NBDP because it is often a surprisingly effective method
for learning probability distributions [14]. The neural net-
work models are known to be effective for categorical sec-
ondary structure prediction [4,6,15] and are thus explored
here, too.

To quantify the accuracy of our models, we measure the
divergence between the probabilities derived from high-
quality NMR models and the predicted probabilities. In
combination with each of the three model types, we also
examine the effect of describing the amino acids in the
input sequence in two different ways. We refer to the two
residue description methods as the amino acid identity and
PSI-BLAST profile methods, where the latter is employed in
the top performing categorical secondary structure predic-
tors.

Our main concern is to establish how well the continuity
of structure can be captured by machine learning models
from limited datasets. We are specifically interested to see
if secondary structure prediction can be improved by
training the model with the fine-grained structural data
from NMR.

To compare our work with previous studies, we also con-
vert the continuum predictions made by our models into
categorical predictions by selecting the class with the high-
est predicted probability. We compare these results to
those of a categorical prediction method trained on the
data obtained by a similar conversion of the continuum
secondary structure data to categorical. The categorical
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method we compare to is a Cascaded Categorical Neural
Network (CCNN), as employed by the top-performing
PSIPRED [4] algorithm.

Results
The probabilistic models studied here are more accurate at
predicting continuum secondary structure (residue class
density) than models trained on categorical data. The dif-
ference in accuracy is most pronounced for residues with
structural ambivalence. Furthermore, these probabilistic
models can be used to predict categorical secondary (resi-
due class) with accuracy comparable to a successful cate-
gorical method. These results hold when accuracy is
measured by cross-validation on the training data as well
as when validated with an test dataset containing only
proteins with low sequence similarity to proteins in train-

ing set, and for both the 3- and 8-class prediction prob-
lems.

Probabilistic models
The PNN and CPNN are the most successful models at
predicting continuum secondary structure in our study.
Accuracy is highest when the residues in the sequence are
described using the PSI-BLAST profile method. The accu-
racy of the PNN and CPNN methods is also sensitive to
the number of hidden nodes in the model and to the
width of the sequence window presented to the model.
The accuracy of the Naive Bayes model is substantially
inferior to the that of the PNN and CPNN models.

We use the Kullback-Leibler (KL) divergence to measure
the accuracy of our models at predicting continuum sec-
ondary structure (see Methods section). Accuracy
increases with decreasing KL divergence. The predictive
accuracy of the PNN and CPNN models generally
improves as the number of hidden nodes increases (Table
1), although improvement is slight beyond 25 hidden
nodes. The optimal window size is 15 residues for both
the 3- and 8-class prediction problems. The KL divergence
of the best PNNs is 0.49 and 0.88 for the 3- and 8-class
problems, respectively. The CPNN improves this accuracy
to 0.47 and 0.84, respectively.

For the 3-class problem, the best Naive Bayes' model
(with an 11-residue window) achieves a KL divergence of
0.74. For the 8-class problem, KL divergence is 1.19 for a
model with a 7- and 9-residue window. The NBDP model
is far inferior to the other models when residues are
described using the amino acid identity method (Table 2),
and fails almost totally with the PSI-BLAST profile

Table 1: Cross-validated density prediction accuracy of PNN and CPNN models. Average KL divergence for probabilistic and cascaded 
probabilistic neural network models predicting continuum 3- and 8-class secondary structure from PSI-BlAST encoded sequence data. 
Window size and number of hidden nodes are varied. All predictions are for 10-fold cross-validation on the training set (set-174). 
When standard errors are given in parentheses, the predicted value is the mean of five randomized repeats of cross-validation. in 
parenthesis.

number of 
classes

window size PNN hidden nodes CPNN 
hidden nodes

0 5 10 15 20 25 30 30

3 11 0.59 0.57 0.53 0.52 0.52 0.52 0.51
13 0.58 0.57 0.53 0.52 0.51 0.51 0.51
15 0.58 0.56 0.53 0.52 0.51 0.50 0.49 

(0.002)
0.47 (0.002)

17 0.58 0.56 0.54 0.52 0.51 0.51 0.51
19 0.59 0.56 0.54 0.52 0.51 0.52 0.51

8 11 0.97 0.97 0.94 0.91 0.92 0.89 0.90
13 0.97 0.96 0.92 0.90 0.90 0.89 0.89
15 0.97 0.95 0.92 0.90 0.90 0.89 0.88

(0.001)
0.84 (0.002)

17 0.98 0.96 0.93 0.91 0.90 0.89 0.89
19 0.98 0.97 0.94 0.91 0.92 0.89 0.90

Table 2: Cross-validated density prediction accuracy of NBDP 
models. Average KL divergence for the Naive Bayes' Density 
Predictor is shown for the 3- and 8-class prediction tasks with 
varying sequence window sizes. The residues in the window were 
described using the amino acid identity method. All predictions 
are for 10-fold cross-validation on the training set (set-174). Best 
results are shown in bold.

window size 3-class accuracy 8-class accuracy

5 0.77 1.20
7 0.75 1.19
9 0.75 1.19
11 0.74 1.20
13 0.75 1.22
15 0.76 1.25
17 0.78 1.28
19 0.79 1.31
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description method (data not shown). The optimal win-
dow size for NBDP, of approximately 10 residues, is
smaller than for the PNN model.

To give the reader a better qualitative feeling for the mean-
ing of various KL divergences, we show the output of the
most accurate 3-class NBDP and CPNN models on the
Ras-binding domain of C-Raf-1 (PDB:1RFA) in Figure 1.
The average KL divergence of the NBDP prediction on this
sequence is 0.67, and is slightly worse than the average 3-
class prediction accuracy for the PNN model (see Table 1),
and about average for the NBDP model (see Table 2). The
average divergence of the CPNN prediction for this
sequence 0.27, slightly more accurate than the overall
average achieved by the CPNN model on all test
sequences (see Table 1). The data in the figure is for NBDP
using the amino acid identity residue description method,
and for CPNN using the PSI-BLAST profile method.

Comparing with categorical models
Even though our probabilistic models are not explicitly
trained to produce categorical output, they perform com-
petitively with a state-of-the-art classification method. We
train Cascaded Categorical Neural Networks (CCNNs)
(similar to PSIPRED) to predict the categorical targets
using a configuration identical to the best CPNN in this
study (30 hidden nodes, 15-residue window). These
CCNNs are trained using categorical data derived from the
continuum data, as described in the Methods section.

The classification accuracy of the probabilistic model
(CPNN) is comparable to that of the categorical model
(CCNN) in the 3-class problem using several popular
accuracy metrics including Q3 and SOV (Table 3). We
observe that, with a Q3 of 77.3, the CPNN is on par with
the CCNN (Q3 = 77.2). (Q3 measures classificaton accu-
racy on a scale of 0 (worst) to 100 (best).) Similarly, the
two models have segment overlap-based SOV measures

Example 3-class continuum secondary structure predictionsFigure 1
Example 3-class continuum secondary structure predictions. The 3-class predictions of the best NBDP and CPNN 
models for positions 1–50 of protein PDB:1RFA are plotted. The target (known) probabilities are plotted as a dotted black line. 
The dashed red line is the NBDP predictions and the solid blue line is the CPNN predictions.

5 10 15 20 25 30 35 40 45 50
0

0.5

1

H

1RFA

5 10 15 20 25 30 35 40 45 50
0

0.5

1

E

5 10 15 20 25 30 35 40 45 50
0

0.5

1

C

Sequence position
Page 4 of 12
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:68 http://www.biomedcentral.com/1471-2105/7/68
[16] of 73.8 (CPNN) and 72.8 (CCNN). (SOV measures a
segment-based precision of prediction ranging from 0
(worst) to 100 (best).) Compared with the cascaded prob-
abilisitic model (CPNN), the PNN model has similar Q3
accuracy but notably inferior SOV. The best Naive Bayes'
Density Predictors with Boolean input features manage a
Q3 of 61.2 and an SOV of 52.9, significantly worse than
the other probabilistic models.

As an independent test, we also test the models on the all
sequences in the small CAFASP3 data used to benchmark
a range of public predictors [17]. None of the sequences
in CAFASP3 are included in our training set (set-174). We
find that both CPNN and CCNN achieve a Q3 of 76.2,
only slightly worse than their accuracies measured by
cross-validation on the training set (Table 3). For compar-
ison, Q3 accuracies reported for other categorical models
in the Eyrich study [17] ranged from 67.5 to 78.9 (78.6 for
PSIPRED). Similarly, the CPNN and CCNN models have
SOV measures of 73.5 and 73.9, respectively, which are
slightly better than their cross-validated accuracies. The
classification accuracy of the CPNN is slightly lower than
the best results reported in the literature, but this is to be
expected because our training set is considerably smaller
than those used in many previous studies [7]. It also bears

noting that the probabilistic model (CPNN) is not specif-
ically trained to produce categorical targets.

Conversely, many models trained on categorical data also
offer continuous predictions. For the CCNN fitted with
the softmax output function, we can evaluate its ability to
directly produce an output close to the continuum sec-
ondary structure. On the 3-class problem, the CCNN
achieves KL divergence (averaged over all residues) that is
nearly identical to that of the CPNN (Table 4, columns
labeled "entropy ≥ 0.0"). The cross-validated KL diver-
gence on all residues is 0.48 (SE = 0.002) for the CPNN,
which is close to that of CCNN (0.47). Likewise, the
CCNN and CPNN have very similar KL divergence on the
test dataset (test-286): 0.51 and 0.50, respectively. On the
8-class problem, the CCNN and CPNN have very similar
overall KL divergence on the test dataset (0.99 vs 0.98),
but CCNN appears slightly inferior when cross-validated
on the training set: 0.87 (SE = 0.003) and 0.84, respec-
tively. We note that the categorical model (CCNN) is not
specifically trained to produce continuous targets.

To investigate the qualitative difference between models
that are trained on probabilistic targets and categorical tar-
gets, we focus on residues in "fuzzy" regions. In particular,
we identified "fuzzy" residues as those with an observed

Table 3: Cross-validated classification accuracy of all models. Average accuracy of categorical prediction in the 3- and 8-class problems 
is given as measured by the accuracy metric Qk, the Matthews correlation, r(), and SOV. All predictions are for 10-fold cross-validation 
on the training set (set-174). When standard errors are given in parentheses, the predicted value is the mean of five randomized 
repeats of cross-validation. The best results are shown in bold.

model 3-class problem 8-class problem

Q3 r(H) r(E) r(C) SOV Q8

NBDP 61.2 0.40 0.34 0.41 52.9 46.1
PNN 76.4 (0.09) 0.68 0.62 0.57 67.4 61.4 (0.09)
CPNN 77.3 (0.07) 0.69 0.63 0.58 73.8 62.8 (0.05)
CCNN 77.2 (0.08) 0.69 0.63 0.59 72.8 62.5 (0.15)

Table 4: Density prediction accuracy (KL divergence) for structurally ambivalent residues. Average KL divergence of prediction of 
continuum secondary structure for residues that have a structural ambivalence equal to or exceeding an entropy of 0.0 (all residues), 
0.3 and 0.5. "CV": average (standard error) of five randomized repeats of 10-fold cross-validation on the training set (set-174). "test": 
average error on the test dataset (set-286).

problem model entropy ≥ 0.0 entropy ≥ 0.3 entropy ≥ 0.5

CV test CV test CV test

3-class PNN 0.49 (0.002) 0.52 0.53 (0.002) 0.59 0.52 (0.003) 0.54
CPNN 0.47 (0.002) 0.50 0.53 (0.003) 0.57 0.53 (0.003) 0.53
CCNN 0.48 (0.002) 0.51 0.58 (0.002) 0.62 0.59 (0.004) 0.58

8-class PNN 0.88 (0.001) 1.01 1.07 (0.003) 1.26 1.07 (0.004) 1.13
CPNN 0.84 (0.002) 0.98 1.03 (0.004) 1.22 0.98 (0.008) 1.15
CCNN 0.87 (0.003) 0.99 1.12 (0.004) 1.31 1.10 (0.010) 1.24
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secondary structure state entropy of 0.3 or above (15% of
all residues), and "very fuzzy" residues as those with target
entropy of 0.5 or above (8% of all residues). We investi-
gate the accuracy of the models created by cross-validation
on the full training set on each of these low entropy resi-
due subsets (Tables 4 and 5).

Both probabilistic models (PNN and CPNN) have signif-
icantly lower KL divergence on residues with structural
entropy greater than 0.3 when compared with the categor-
ical model (CCNN). This conclusion holds when KL
divergence is measured using cross-validation on the
training set as well as when measured on the test dataset
(Table 4, last four columns). The probabilistic models
have significantly superior (lower) KL divergence than the
categorical model for both the 3- and 8-class problems.
For example, the cross-validated 3-class KL divergence for
residues with entropy at least 0.5 is 0.59 for the CCNN,
but only 0.53 for the CCNN. Similarly, the average 3-class
KL divergence on the test dataset residues with entropy at
least 0.5 is, 0.58 and 0.53, respectively for the CCNN and
CPNN models. The best probabilistic model (CPNN) is
superior to the best categorical model (CPNN) for predict-
ing continuum secondary structure for test dataset resi-
dues with entropy greater than 0.1 (Figure 2). This result
holds for both the 3- and 8-class problems.

For the 3-class problem, KL divergence on the test dataset
is only slightly higher than the cross-validated value
(Table 4). This shows that overfitting is not a serious prob-
lem with the 3-class models. On the other hand, the 8-
class models show significantly worse KL divergence on
the test dataset than during cross-validation. This may be
caused by overfitting given the small size of the training
dataset (approximately 17000 residues) compared to the
number of parameters in the models (approximately
9000). However, since overfitting does not occur with the
(equally complex) 3-class models, it is likely that the more
complex output space in the 8-class problem is the true
culprit.

For classifying structurally ambivalent residues (Table 5,
last four columns), the probabilistic networks (PNN and

CPNN) are on par with the categorical neural network
(CCNN).

Three-class classification accuracy (Q3) on residues with
entropy at least 0.3 is 55.7% (SE = 0.22) and 55.4% (SE =
0.17) for the CPNN and CCNN models, respectively It is
worth noting that the probabilistic networks achieve good
classification despite not being specifically trained for this
task.

Discussion
Our results support the existence of higher-order depend-
encies between the residues within the input window as
the Naive Bayes' models and single-layer Probabilistic
Neural Networks perform relatively poorly.

In agreement with previous work on both neural networks
and support vector machines [4], we note that the PSI-
BLAST profile description of the sequence data works
much better than the amino acid identity method for all
types of Probabilistic Neural Networks. However, the
opposite holds for the Naive Bayes' Density Predictor.
With the PSI-BLAST profile description method, the per-
formance of NBDP drops considerably. On closer inspec-
tion, the class conditioned distributions of input values
are strongly overlapping and consequently result in poor
discrimination.

To investigate whether the input values follow a non-
Gaussian distribution we also tried dividing each numeric
input value into 5 and 10 bins. The performance of the
Naive Bayes' Density Predictor then drops even further.
The naive assumption of independence among the very
large number of random variables (resulting from the pro-
file description method) is clearly violated. Each residue
profile column reflects a single piece of information
involving all of the twenty amino acids, and the random
variables making up the column are highly dependent.
This fact is most likely responsible for the failure of NBDP
with the PSI-BLAST profile residue description method.

Even though the average KL divergence between the prob-
abilistic target and predicted values are almost the same

Table 5: Classification accuracy (Q3) for structurally ambivalent residues. Average accuracy as measured by Q3 of 3-class categorical 
prediction of residues that have a structural ambivalence equal to or exceeding an entropy of 0.0 (all residues), 0.3 and 0.5. "CV": 
average (standard error) of five randomized repeats of 10-fold cross-validation on the training set (set-174). "test": average error on 
the test dataset (set-286).

problem model entropy ≥ 0.0 entropy ≥ 0.3 entropy ≥ 0.5

CV test CV test CV test

3-class PNN 76.4 (0.09) 77.0 55.5 (0.18) 50.3 50.2 (0.18) 49.0
CPNN 77.3 (0.07) 77.8 55.7 (0.22) 50.6 50.4 (0.24) 49.0
CCNN 77.2 (0.08) 77.8 55.4 (0.17) 51.5 50.2 (0.31) 50.0
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for both the CCNN and CPNN, they seem to handle struc-
turally ambivalent residues differently. The discrepancy as
measured on these challenge subsets indicates that train-
ing with continuum data results in more accurate predic-
tion for residues with high structural ambivalence.

Our simulations indicate that it is not sufficient to train
on the categorical targets if structurally ambivalent states
need to be characterised precisely. This precision may be
particularly important for identifying conformational
flexibility, e.g. Young et al. [18] rely on a reliability index
of a categorical prediction to identify conformational
switches.

Conclusion
The models we present are adapted to predict a contin-
uum secondary structure, i.e. to predict the probability of
a residue belonging to any of the three or eight secondary
structure classes. The probabilities derive from NMR mod-
els that capture some aspects of protein flexibility-in con-
trast to most categorical predictors which are trained on
categorical data usually derived from X-ray crystal struc-
tures.

Cascaded Probabilistic Neural Networks using a 15-resi-
due input window (involving primary sequence data
only) are able to produce 3-class predictions that, on aver-

KL divergence as a function of test dataset residue entropyFigure 2
KL divergence as a function of test dataset residue entropy. The dashed red and solid blue lines show the KL diver-
gence of predictions on the test dataset (set-286) made by the CCNN and CPNN models, respectively. Residues are binned by 
secondary structure entropy, and the mean KL divergence of residues in a bin is plotted at the midpoint of the bin. Error bars 
show plus and minus one standard error around each mean. The numbers of residues in the bins for the 3-class problem are 
(in order of increasing entropy) 26357, 948, 839, 525, 14, 1036, 489, 4 and 2. For the 8-class problem bin occupancies are 
25657, 1878, 777, 1728, 127, 43, 4 and 0.
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age, measure 0.47 using the Kullback-Leibler divergence
from target distributions. A similar model produces 8-
class secondary structure predictions measuring an aver-
age KL divergence of 0.84 from the observed targets.

To illustrate the performance and utility of probabilistic
models, we also convert the probabilistic predictions to
categorical classifications and note that the probabilistic
models are on par with models that are directly trained on
categorical data. In particular, structurally ambivalent res-
idues (e.g. caps of regular folds) are predicted more accu-
rately by the best probabilistic models than by their
categorical counterparts. So far, the scarcity of NMR data
renders the continuum secondary structure prediction less
accurate for classification than categorical models directly
trained on much larger sets of crystallographic data.

Methods
Overview
A typical machine learning approach might view the sec-
ondary structure environment of a protein residue as a
multinomial random variable, C, having k possible values.
Our view is that the secondary structure environment of a
residue does not have a single, fixed value, but may be in
any one of k classes. The occupation of the structural
classes follows a multinomial distribution, and is meas-
ured by the variation among NMR models. We start from
a training set, S, of examples each of the form E =<X, T >.
The goal is to use the training set to learn a function Y =
f(X) that approximates the posterior probabilities, T =<T1,
T2, ..., Tk >, where

Tj = Pr(C = j|X), 1 ≤ j ≤ k.

In common with many earlier secondary structure predic-
tion methods, we use a sliding window approach. That is, the
prediction for a particular residue will be based on a
description (see below) of that residue and some number
of residues on either side of it in the protein sequence. The
sequence window,

X =<X1, X2, ..., Xw-1, Xw >,

is used to describe the residue at the center of a w-residue
window. The entry Xi in this vector is a description of the
residue at the ith position (along the sequence) in the
window.

Our approach outputs a probability vector,

Y =<Y1, ..., Yk >

in the k-class problem, where Yj is the probability that the
central residue in sequence window X is in the jth envi-
ronment of C3 (3-class problem) or C8 (8-class problem).

(For convenience, we use integers to refer to the environ-
ment classes, substituting the integer j for the jth entry in
either the 3- or 8-class sets.) Since Y is a probability vector,
we have the constraints:

0 ≤ Yj ≤ 1, 1 ≤ j ≤ k,

and

Describing residues
As noted above, Xi is a description of the residue at the ith
position the current sequence window. We study two
ways to describe residues.

The amino acid identity method sets Xi to the name of the
amino acid at position i in the sequence window. Thus,
this method of description treats each Xi as a variable with
nominal values. For convenience, we let the names of the
20 amino acids plus the end-of-sequence marker be repre-
sented by the set A = {1, ..., 21}.

The PSI-BLAST profile method (first successfully applied
by Jones [4]) requires that the target protein first be (mul-
tiply-) aligned with orthologous sequences. Xi is set to the
log-odds score vector (over the 20 possible amino acids
character) derived from the multiple alignment column
corresponding to position i in the window. This method
of description treats each Xi as a 21-dimensional vector of
real values, the extra dimension being used to indicate if
Xi is off the end of the actual protein sequence (0 for
within sequence, 0.5 for outside). The log-odds alignment
scores are obtained by running PSI-BLAST against Gen-
bank's standard non-redundant protein sequence data-
base for three iterations. The elements in PSI-BLAST
position-specific scoring matrices are divided by 10 so
that most values appear between -1.0 and 1.0. The varia-
tion we use was successfully applied in the prediction of
protein B-factor profiles [19].

Models and algorithms
We mainly explore using two well-known machine learn-
ing methods: naive Bayes and probabilistic neural net-
works. We also develop and evaluate a cascaded variant of
the probabilistic neural network (cf. the layered architec-
ture in [15]). Finally, we construct a cascaded categorical
neural network as a representative categorical model.

The Naive Bayes' Density Predictor
The classical Naive Bayes' algorithm assumes (naively)
that the input features (Xi, 1 ≤ i ≤ w) are independent ran-
dom variables given the class of the residue. Despite this
simplifying assumption, NB classifiers often perform sur-

Yj
j

k
=

=
∑ 1

1

.
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prisingly well on empirical data [14]. The key step in the
NB algorithm is to estimate the class-conditional probability
of each feature given each class,

pij(x) = Pr(Xi = x|C = j), for 1 ≤ i ≤ w and 1 ≤ j ≤ k.

That is, pij(x) is the probability that Xi = x given that the
class is j. The joint class-conditional probability is com-
puted from these, using the assumption of independence,
as

The probabilities we are after-the posterior probabilities
of the classes given the data- are gotten using Bayes' rule:

NB classifiers are usually trained using examples of X
labelled with a single class. We use an extension of the
algorithm that allows training using examples labelled
with probability vectors, T, describing the posterior prob-
abilities. We call this model a Naive Bayes' Density Predictor
(NBDP). As mentioned above, we use two methods for
describing the input sequences. We will now describe how
we estimate the class-conditional probabilities for these
two different input feature encoding methods.

With the amino acid identity method, the Xi are nominal
random variables that take 21 possible values, x ∈ {1, 2,
..., 21}. Let Xi(E) and Tj(E) be the values of variables Xi and
Tj for training example E =<X, T >. The class-conditional
probability for each combination of i, j, and x is estimated
using the weighted maximum likelihood estimate,

With PSI-BLAST profile method for encoding sequences,
the Xi are themselves vectors of continuous random varia-
bles. In particular, each feature vector, Xi, is a vector of 21
real-valued sub-features. That is, Xi =<v1, v2, ..., v21 >. We
make a further (naive) assumption of independence: all of
the 21·w sub-feature random variables are independent
given the class. This allows us to simply expand the prod-
uct in Equation 1 to be over all of the components of all the
vectors in X. We then make an assumption that is com-
monly used with naive Bayes' classifiers when the input
features are continuous: that each sub-feature, X, is a
Gaussian random variable when conditioned on the class
[20]. That is,

Pr(X = x|C = j) = g(x, µ, σ), 0 ≤ j ≤ k,

where g() is the Gaussian density function. We estimate
the mean, µ and standard deviation, σ, from the training
set data using the weighted maximum likelihood esti-
mates

and

where X(E) is defined analogously to Xi(E), above.

Probabilistic neural networks
We also explore the use of Probabilistic Neural Networks
for which weight parameters, W, are adapted to produce
probability distributions in accordance with the observed
data [21]. We use a network with at most one hidden
layer. We ask, what is the most likely explanation (in
terms of our representation W) of our training set data S?
That is, we maximise

(maximum a posteriori). More specifically, since Pr(W) is
the same for all configurations (all weights are initialised
using a zero-mean Gaussian) and since Pr(S) does not
depend on W, we maximise only the likelihood Pr(S|W).
The optimisation is standardly implemented by gradient
descent on the relative cross entropy [21].

The softmax output function is used, ensuring that all out-
puts sum up to 1. Neural networks require a lengthy train-
ing period and the setting of a learning rate. In
preliminary trials we noted that the presentation of 20
000 sequences was sufficient to ensure convergence to a
low training error. To achieve a stable descent on the error
surface the learning rate was set to 0.001 (when the rate
was 0.01 fluctuations occurred).

With the amino acid identity description method, feature
Xi = k is encoded as a 21-dimensional vector, V =<v1, v2, ...,
v21 >, with vk = 1, and vj = 0 for j ≠ k. For the PSI-BLAST pro-
file description method, feature Xi =<v1, v2, ..., v21 > is
already encoded as a 21-dimensional real-valued vector.
For each training example, X, the w encoded feature vec-
tors are concatenated to create a single input vector of
length 21·w.
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Cascaded probabilistic neural networks
Similar to many successful categorical secondary structure
predictors [15,4] we here investigate a layered architecture
consisting of two coupled probabilistic neural networks
(see Figure 3). The first is a sequence-to-structure network
(a PNN as described above), the second is a structure-to-
structure network, using consecutive predictions from the
first-level network to predict the structure of the middle
residue. We use the best PNN as our first-level network.
New second-level networks are trained after the first-level
networks and using the same learning method and
parameters.

Categorical models: Cascaded categorical neural network
To put our work in a broader context, we explore the Cas-
caded Categorical Neural Network, a model representing
the state-of-the-art of secondary structure classification
[4]. The CCNN is essentially the same neural network
model as employed in PSIPRED [4]. Moreover, with the
exception of transformation of training targets and model
outputs as explained below, the CCNN is identical to the
CPNN.

The probabilistic target data is converted to categorical tar-
gets by choosing the majority class (the class with the
highest probability),

The categorical target data is used to train CCNNs.

In order to compare our probalistic models with categori-
cal prediction methods, we convert their outputs to cate-
gorical predictions. The probabilities predicted by the
probabilistic models and the CCNN (fitted with the soft-
max output function) are converted by assigning the class
corresponding to the output with the highest activity,

Training and testing the models
For training our models, we created a non-redundant
dataset of continuum secondary structure data for 174
protein chains (set-174). This dataset was derived from a
dataset used by Anderson et al. [2] for studying protein
continuum secondary structures. All model design and
testing of different model parameters described in this
manuscript was done using only this dataset.

During model development, we used cross-validation on
the training set to measure their predictive accuracy. After
all model development was complete, we used two addi-
tional datasets for independent validation of the various
models. We used sequences in CAFASP3 [17] to evaluate
categorical prediction accuracy. Although none of the
sequences in the CAFASP3 set are included in our training
set, because it is already relatively small, we chose not to
attempt to remove any sequences that might be homolo-
gous with our training set. Instead, we developed an inde-
pendent set of continuum secondary structures for 286
sequences (set-286) for evaluation of the accuracy of the
models in both the probabilistic and categorical predic-
tion tasks.

Our training dataset (set-174) was derived from Anderson
and colleagues [2] dataset containing 210 structurally
non-homologous protein chains representing different
families defined by FSSP [22]. The continuum secondary
structure data in this dataset came from a selection of
higher quality NMR protein chains, and at was based on
at least 10 NMR models for each chain. We applied
Hobohm and Sanders' redundancy reduction method
[23] to select the largest set of representative chains with
sequence identities less than 25% according to CLUS-
TALW [24]. This resulted in a dataset containing contin-
uum secondary structure data for 174 protein chains

class T
j

j( ) argmax .T =  

class Y
j

j( ) argmax .Y =  

The architecture of the Cascaded Probabilistic Neural Net-workFigure 3
The architecture of the Cascaded Probabilistic Neural Net-
work.
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containing approximately 17 thousand residues. This
dataset was further divided into ten random groups with
equal number of protein chains for cross-validation tests.

We created a test dataset (set-286) designed to have very
low homology with our training set and very low redun-
dancy within itself. We based the test dataset on all the
NMR protein structures in the Protein Data Bank [25]
published since 2003, after the publication date of the
Anderson and colleagues dataset. To insure low homology
with the training set, we removed all sequences from the
test dataset with greater than 25% sequence identity with
any sequence in the training set. To reduce the within-set
redundancy, we then used Hobohm and Sanders method
to select the largest subset of sequences with pairwise
identity no more than 25%. We also removed all
sequences shorter than 50 amino acids. These steps
yielded a test dataset comprising 286 chains containing a
total of 30214 residues. Their continuum secondary struc-
tures were obtained from the DSSPcont website [26].

All models (including both probabilistic and categorical
models) are evaluated in two ways. Firstly, we perform 10-
fold cross-validation on the training set (set-174). Sec-
ondly, we measure the accuracy on the sequences in the
test dataset (set-286).

We use the Kullback-Leibler (KL) divergence [27,28] to
measure the accuracy of our continuum secondary struc-
ture predictions. The KL divergence is the standard means
of measuring the distance between two probability distri-
butions, and is defined as

where k is the number of classes to which an input can
belong, T is the target probability vector, and Y is the pre-
dicted probability vector. A KL divergence value of 0 indi-
cates perfect agreement between the two distributions,
larger values indicate more divergence between them.

To evaluate the performance of the categorical versions of
each of our models, we use several distinct accuracy met-
rics: Qk, correlation coefficient and SOV. Each of these
metrics is based on counting the numbers of times a sam-
ple of a known class is assigned to the correct or incorrect
class. We use the quantities true positives, tp(C), which is
the number of test samples in class C predicted to be in
class C, true negatives, tn(C), which is the number of test
samples not in class C predicted not to be in class C, false
negatives, fn(C), which is the number of test samples in
class C predicted not to be in class C, and false positives,
fp(C), which is the number of test samples not in class C

predicted to be in class C. The Qk metric defines the accu-
racy of a k-class model as

The Matthews correlation coefficient is defined as

Finally, we also illustrate SOV [16], a segment-based,
standard measure of secondary structure prediction accu-
racy that is designed to capture the "usefulness" of the pre-
dictions. We used software provided by the authors to
compute SOV, and refer the reader to the paper for details
of its definition.

For cross-validation, the training dataset is divided ran-
domly into ten roughly equal-sized subsets, each subset
appearing as test subset in exactly once of ten separate
training sessions (ensuring that each sample appears as a
test case exactly once). For each run of cross-validation, we
compute the mean KL divergence (averaged over each res-
idue in the sequences in the test subsets) and a single
value for each categorical accuracy metric. In order to
measure the standard error of the categorical metrics, we
average their values over five independent cross-valida-
tion runs. Standard error is the sample standard deviation
divided by the square root of the number of samples (five
in this case).

Predictive accuracy on the test dataset (set-286) is meas-
ured using the models created and trained using the train-
ing dataset during the cross-validation runs. Each
categorical accuracy measure is computed independently
for each model and then averaged. We report the mean KL
divergence, averaged over all residues in the test dataset.
The KL divergence for a single residue is computed by first
averaging the predictions of all models (of a given type)
for the residue, and computing the KL divergence of the
average prediction and the target density.

We define the target entropy as

Similarly, the predicted entropy is based on the model's
output

High entropy (max is 1) means high variability.
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