
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Hubs of knowledge: using the functional link structure in Biozon to 
mine for biologically significant entities
Paul Shafer, Timothy Isganitis and Golan Yona*

Address: Department of Computer Science, Cornell University, Ithaca, NY, USA

Email: Paul Shafer - pes25@cornell.edu; Timothy Isganitis - ti26@cornell.edu; Golan Yona* - golan@cs.cornell.edu

* Corresponding author    

Abstract
Background: Existing biological databases support a variety of queries such as keyword or
definition search. However, they do not provide any measure of relevance for the instances
reported, and result sets are usually sorted arbitrarily.

Results: We describe a system that builds upon the complex infrastructure of the Biozon database
and applies methods similar to those of Google to rank documents that match queries. We explore
different prominence models and study the spectral properties of the corresponding data graphs.
We evaluate the information content of principal and non-principal eigenspaces, and test various
scoring functions which combine contributions from multiple eigenspaces. We also test the effect
of similarity data and other variations which are unique to the biological knowledge domain on the
quality of the results. Query result sets are assessed using a probabilistic approach that measures
the significance of coherence between directly connected nodes in the data graph. This model
allows us, for the first time, to compare different prominence models quantitatively and effectively
and to observe unique trends.

Conclusion: Our tests show that the ranked query results outperform unsorted results with
respect to our significance measure and the top ranked entities are typically linked to many other
biological entities. Our study resulted in a working ranking system of biological entities that was
integrated into Biozon at http://biozon.org.

Background
There is vast amount of heterogeneous biological data
today that is warehoused in multiple databases. Among
these are databases of protein sequences [1,2], protein
structures [3], DNA sequences [4], protein-protein inter-
actions [5,6], cellular pathways [7,8], and many others.
These databases are typically highly focused and are usu-
ally limited to one data type. However, biological entities
are strongly related and mutually dependent on each
other, and to properly analyze the function of an entity

one needs to know its extended biological context and its
relation to other entities. For example, to define most
accurately the functional role of a specific gene it is neces-
sary to consider also the interactions it is involved in and
the set of biochemical pathways it participates in. This
mutual dependency is especially important when, for
example, querying this wealth of data for disease related
genes or for interactions that mediate signal transduction
in a specific biological system. The integration of informa-
tion from multiple resources can either corroborate a cer-
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tain aspect of a biological entity, validate a hypothesis, or
sometimes give initial clues to the function of a com-
pletely uncharacterized object.

Existing methods for querying biological data available
on the web are mostly limited to the one data type ware-
housed in the database being queried. There are a few
servers that allow one to query multiple databases at once,
such as the NCBI entrez server [9] and the EMBL server
[10]. These servers also maintain links among different
entities stored within. Other servers such as Moby [11]
and Biomediator [12] provide interface to query multiple
resources. However, all these servers do not integrate the
results or analyze the relations between the objects at
query time. Moreover, the query results are ordered arbi-
trarily or by features irrelevant to the query (e.g. in alpha-
betical order). This is clearly not ideal as one might need
to scan through hundreds or thousands of matches before
encountering the instance that is the most relevant, the
most studied, or the most interconnected. Furthermore,
there are many instances in biological databases that are
partially annotated or completely uncharacterized. Even if
biologically relevant to the search term, these objects will
be overlooked by traditional search methods. However,
the relations between these objects and other, better
annotated objects may help identify their functions. This
may in turn imply that these objects are indeed relevant to
the search term.

There has been a substantial amount of work directed
towards developing methods and prominence models
for effectively querying and ranking documents on the
World Wide Web. The underlying idea behind many
prominence models is that the link structure of the Inter-
net can be used to identify the web pages most relevant to
the user's query. A well-known example is Google's
PageRank [13]. Another model, proposed in [14], identi-
fies "hubs" and "authorities," where authorities are web
pages that are linked to by prominent hubs and hubs are
pages that link to prominent authorities. Both models
assign prominence values to documents using the eigen-
vectors of the data graph's adjacency matrix (or a close var-
iant). Many studies have tested variants of these models;
for a review the reader is referred to [15,16]. A recent study
has generalized link-based ranking techniques developed
for the Web to arbitrary relational databases [17] by ana-
lyzing relations induced by a set of queries. This work
ranks data instances through a spectral analysis of what
they call a database graph, defined in terms of a database
and a (finite) set of queries (query language). In this graph
a vertex corresponds to a tuple of data and two tuples are
related by an edge if there is a query in the query language
that outputs one when using the other to specify the
query's parameters. However, as the authors indicate, the

rankings produced by this model are sensitive to the
choice of query language.

Today's most advanced systems belong to companies such
as Google, Yahoo and Microsoft. Unfortunately, these
companies do not disclose the algorithmic details of their
search and ranking engines which augment the link anal-
ysis with information retrieval (IR) techniques. But
despite the significant progress in ranking web docu-
ments, no equivalent systems were developed in the bio-
logical knowledge domain. The only exception is PubMed
[18] that uses IR techniques to identify documents that are
related to a given document, based on their similarity of
word frequency.

This paper addresses the problem of how to query hetero-
geneous biological data effectively. We sort query results
based on their biological significance by exploiting the
relationships between biological entities. Unlike a web
query, when querying heterogeneous biological data, a
user might be interested in all entities (of one or more
data types) that match the query and in the relationships
among these entities. We refer to these sets of intercon-
nected instances that share a common theme as hubs of
knowledge. Detecting these hubs is the main focus of this
paper.

We propose a model which resembles methods that are
used to search and rank web documents. Our method
builds on the extensive schema of the Biozon database,
the heterogeneous data stored in this database, and its
link structure that connects different biological entities.
This link structure is used both to propagate information
between documents and to rank matches based on their
broader biological context. We explore several different
approaches and prominence models, study the properties
of these systems, and develop means to evaluate their
effectiveness and compare their performance using an
objective probabilistic model. We study the effect of non-
principal eigenspaces on the ranking and test several dif-
ferent functions for combining their contributions. We
also test variants that consider the special properties of the
biological data network. Specifically, in the Biozon set-
ting, each link carries a specific meaning with it, and cer-
tain relations are deemed more significant than others.
Therefore, the models that are used to rank web docu-
ments have to be modified to query biological data effec-
tively. We test variants that account for similarity
relationships between entities and for their statistical sig-
nificance, and we test other variants that consider also the
semantic significance of other relations.

This paper is organized as follows. We start with a brief
description of the Biozon database, the prominence mod-
els we tested and the different search strategies. Next we
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present several example queries and their results followed
by qualitative conclusions ('Results'). We proceed to a rig-
orous performance evaluation of the proposed promi-
nence models and of the use of non-principal eigenspaces
('Discussion'). A few variants are described next and are
followed by conclusions.

Results
The Biozon database and data graph
Biozon is a system that consolidates multiple biological
databases consisting of a variety of heterogeneous data
types (such as DNA sequences, proteins, interactions and
cellular pathways) into a single extensive schema that is
logically represented as a large data graph Σ. Each node
represents some datum, and an edge between two nodes
represents a relationship between them. Formally, Σ = (D,
R) where D = {d1...dn} is the set of all nodes (documents)
in the graph and R = {r1...rm} ⊂ D × D is the set of all edges
(relations) in the graph. Much of the data in Biozon is
gleaned from publicly available databases such as Swiss-
Prot, PDB, GenBank, BIND, KEGG, and more. In addi-
tion, Biozon stores novel computed data, such as
similarity relationships and functional predictions. The
data is warehoused locally so the fundamental biological
objects represented are non-redundant even though data
within and between their originating sources overlap. The
Biozon resource is available online at http://biozon.org.

In this study we consider the following subset of the Bio-
zon data types: nucleic acid sequences, protein sequences,
protein structures, enzyme families, interactions, and
pathways. We also consider all relations among these
types, including the relations 'member of', 'manifests as',
'encodes', 'similar', and 'contains' (for more information
on the Biozon data and relation types, see subsection 'The
Biozon database and data graph' of the 'Methods' sec-
tion). This subgraph, at the instance level, is the subject of
our analysis of prominence models.

Prominence models
All the prominence models we consider are based on the
idea that a node is prominent if it is connected to other
prominent nodes. Given a query, our analysis starts by
defining the graph (or subgraph) of relevant documents
and its adjacency matrix A. From the adjacency matrix we
derive a connectivity matrix B, using some function. The
spectral properties of the connectivity matrix are then ana-
lyzed by computing its eigenvectors. Each eigenvector is
considered to be a possible assignment of prominence
values to documents, where node u is assigned a promi-
nence value equal to the uth component of the eigenvector.
The highest scoring nodes in the principal vector(s) are
returned as potential significant documents that match
the query.

The spectral methods we consider in this paper are based
on those used to rank documents on the World Wide
Web. There are, however, several important differences
between the structure of the Internet and that of the Bio-
zon database. First, the hyperlink structure of the Internet
defines a clearly directed graph using a single type of rela-
tion (the "links to" relation). In contrast, we generally
view the Biozon data graph as undirected, unless we
impart a specific, biologically motivated direction associ-
ated with the various types of relations (see subsection
'Forced directed graphs' in the 'Methods' section). Second,
the nodes of the Internet are generally viewed as a homo-
geneous set, while Biozon's objects represent heterogene-
ous biological entities.

We test four main methods for assigning prominence val-
ues to nodes: Eigenvector Centrality, Hubs & Authorities,
PageRank and Katz's Status. The methods differ in the way
they characterize the connectivity among the elements of
the subgraph. First we make the distinction between sparse
and dense models. Eigenvector Centrality, Hubs & Author-
ities and Katz's Status are sparse models in the sense that
they analyze connectivity matrices that are derived directly
from the adjacency matrices of sparse graphs and hence
are of the same order of sparsity. PageRank on the other
hand augments the adjacency matrix with a complete
matrix of prior probabilities, and hence practically ana-
lyzes a new, completely connected graph. Among sparse
models, the differences are subtle, but for undirected
graphs they are essentially reduced to the paths that are
considered by the model. For example, Eigenvector Cen-
trality takes the connectivity matrix to be simply the adja-
cency matrix, while Hubs & Authorities defines the
connectivity matrix based only on paths of length two
between objects. Katz's Status combines information from
all paths of length one, two and three. The four models are
described in more detail in the 'Methods' section.

In the 'Discussion' section we explore several variations of
these methods that test the effect of non-principal
eigenspaces on the ranking, different weighting functions,
and inclusion of similarity data in the adjacency matrix.

Computing prominence vectors
In the prominence models we considered, prominence
values are associated with the eigenvectors of the corre-
sponding connectivity matrices. As such, any method for
finding eigenvectors will suffice. A special case is multidi-
mensional eigenspaces. We take the prominence of an
object i in an eigenspace with cardinality k > 1 to be the
projection of that object on the eigenspace:

ˆ( ) ( )e ei ij
j

k
=

=
∑ 2

1
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where {e1, e2, ..., ek} is an orthonormal basis of the
eigenspace. For a more detailed discussion of computing
prominence vectors see 'Methods'.

Search strategies: global graph vs. focused subgraphs
Our ultimate goal is to provide a sensible ranking of
results from queries to the Biozon database. We consider
three general strategies for generating and then ordering
these result sets: The focused subgraph method (referred
to also as the 'local method') first creates a subgraph of
Biozon consisting of nodes that satisfy the query and their
immediate neighbors as described in Fig. 1. Prominence
values are then assigned to the nodes of the subgraph
using one of the above models, and nodes are ranked by
descending prominence. The global method, on the
other hand, first uses one of the models to assign promi-
nence values to every node in the Biozon graph. Then, for
a given search, nodes satisfying the query are extracted and
ordered by descending prominence. The main advantage

of the global method is its speed since the prominence
values can be pre-computed. However, it is less sensitive
than the local method which can report entities that do
not match the query term but may still be relevant to the
query (based on their relations with entities that do match
the query). The extended global method is a variation of
the global method which utilizes information in neigh-
boring entities to bring forward uncharacterized entities,
thus combining the advantages of both methods. For a
detailed description of these procedures see section
'Search strategies' in 'Methods'.

The spectral properties of the connectivity matrices
Examples
To demonstrate the effect of the different prominence
models on the ranking of biological documents we ran
several test queries. For each query we generated an undi-
rected focused subgraph of the Biozon database as
described in Fig. 1. From that subgraph we constructed

Generating the focused subgraphFigure 1
Generating the focused subgraph. Suppose we are searching protein definitions for ubiquitin in the above Biozon sub-
graph. Each of the two circled nodes corresponds to an entity in which "ubiquitin" appears in its definition field. The set S rep-
resents all nodes that will be included in the focused subgraph. These nodes are numbered according to the steps in which they 
are added to the focused subgraph (see 'Methods'). S1 is the set of all proteins that match the query term and their neighbors, 
while S2 is the set of all non-proteins that match the query term and their protein neighbors. Nodes are included in the subgraph 
if one of these two criteria is met: (a) A protein whose definition does not contain the search term is included only if it has a 
neighbor whose definition does contain the search term. (b) A non-protein whose definition does not contain the search term 
is included only if it has a protein neighbor whose definition does contain the search term.
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four different connectivity matrices, one for each promi-
nence model, and computed the eigenvectors correspond-
ing to the twenty largest-magnitude eigenvalues for each
matrix. After translating each multidimensional
eigenspace to a single prominence vector (as described in
section 'Computing prominence vectors'), we examined
the 50 highest scoring documents in each of these promi-
nence vectors.

In general, we observe that sparse models (Eigenvector
Centrality, Hubs & Authorities, and hybrid Katz's Status)
perform similarly in the sense that they commonly
emphasize the same biological entities in each of their
respective eigenspaces. If Eigenvector Centrality ranks
some object in a particular eigenspace highly, then Hubs
& Authorities and hybrid Katz's Status also rank that
object highly in the corresponding or in a nearby
eigenspace. (Corresponding Eigenvector Centrality
eigenspaces and Hubs & Authorities eigenspaces empha-
size the same biological entities. Hybrid Katz's Status
eigenspaces may be off by one or so.) PageRank, on the
other hand, tends to consolidate the most significant
information from across the other methods' eigenspaces
into its principal eigenspace.

For example, we searched for proteins with the definition
ubiquitin. These proteins are involved in protein degrada-
tion and are attached to other proteins by an enzyme,
thereby marking them for degradation. Sparse models
rank the protein family ubiquitin-protein ligase, ubiqui-
tin-activating enzyme as the most prominent entity in the
principal eigenspace (This family is associated with Biozon
docid 5977355. To view an entry with docid x, follow the
URL http://www.biozon.org/Biozon/Profile/x). The fam-
ily is followed by its members, such as Ubiquitin-like pro-
tein SUMO-l conjugating enzyme (docid: 365280),
Ubiquitin-protein ligase RSP5 (docid: 1026628), and
Ubiquitin-activating enzyme (docid: 1054300). The most
prominent entity in the second eigenspace is the protein
family ubiquitin thioiesterase (docid: 5975715). It is fol-
lowed by its members Ubiquitin carboxyl terminal hydro-
lase 15 (docid: 1066565), Ubiquitin carboxyl terminal
hydrolase 6 (docid: 911606), and Ubiquitin carboxyl ter-
minal hydrolase 14 (docid: 1025595). We observe that
the most prominent proteins in these two eigenspaces are
generally encoded by several DNA sequences and are
involved in several interactions. Although these DNA
sequences and interactions are not among the most prom-
inent elements of these eigenspaces, they do contribute to
the high ranking of the proteins. The third eigenspace
emphasizes the protein Skplp (docid: 446186) and its
interactions. This protein is involved in ubiquitin-medi-
ated proteolysis and is part of a larger complex that under-
lies many of the interactions associated with it. The fourth
eigenspace emphasizes protein orf yol133w (docid:

259185) and its interactions. Note that the main defini-
tion of this protein does not contain the query term.

However, interaction data suggests ubiquitin-related
activity. The fifth through seventh eigenspaces behave
similarly to the third and fourth eigenspaces. Each focuses
on a protein and its interactions. The fifth eigenspace
emphasizes UV excision repair protein RAD23 (docid:
808559) and 26S protease regulatory subunit 7 homolog
(docid: 882149). Interestingly, the sixth eigenspace
emphasizes these same two proteins, however, while the
fifth eigenspace favors the first, the sixth eigenspace favors
the latter.

The most prominent entities in PageRank's principal
eigenspace are the two protein families mentioned above
and their member proteins, as well as the proteins empha-
sized in the non-principal eigenspaces of the other meth-
ods. In general, PageRank tends to favor entities with a
high degree. For example, proteins Ubiquitin carboxyl ter-
minal hydrolase 15 (docid: 1066565) and Ubiquitin-acti-
vating enzyme (docid: 1054300) are among the 50 most
highly ranked entities by PageRank and are members of
the two families mentioned above. Both of these proteins
have many neighbors (including multiple protein-protein
interactions). These proteins are thus highly ranked on
their own merit, and not just because they are members of
a highly ranked protein family.

We also observe this phenomenon when using the query
term cancer. For cancer, the most prominent entities in
the principal eigenspaces of the sparse models are the
tumor suppressor protein P53 (docid: 802537) and its
interactions. The second eigenspace emphasizes protein
breast cancer type 1 susceptibility protein (docid:
1079763) and its interactions. The third eigenspace
emphasizes DNA repair protein RAD51 (docid: 811200)
and its interactions. The fourth eigenspace emphasizes
protein CRK-associated substrate (docid: 1036799),
which is a breast cancer anti-estrogen resistance protein,
and its encoding DNA sequences and interactions. PageR-
ank's principal eigenspace emphasizes all four of these
proteins. Similarly, for the query term autoimmune, we
observe the following. The principal eigenspace of the
sparse models emphasizes protein Autoimmune regulator
(docid: 947655), protein Autoimmune regulator (docid:
943600) and Ribonuclease P protein subunit RPP1
(docid: 640274) along with the nucleic acid sequences
that encode these proteins. The second eigenspace
emphasizes Tumor necrosis factor ligand (docid: 621283)
Tumor necrosis factor precursor (docid: 533673) and the
DNA sequences that encode either of them. PageRank's
principal eigenspace emphasizes all of the above proteins
(besides 533673) along with several DNA sequences
which encode for these and similar proteins.
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We compare these results with those generated by similar
queries to the NCBI or SwissProt servers. For example,
given the query ubiquitin, both servers only return records
that contain the query term. The SwissProt set is ordered
alphabetically based on the protein ID, while the NCBI
server orders the records based on the date the record was
created. Both orderings are quite arbitrary and uninforma-
tive. On the other hand, the examples described above
demonstrate that the prominence models we tested are
indeed effective in identifying interesting instances that
are highly connected to other biological entities, thereby
providing a broader biological context for functional anal-
ysis of these instances. Our observations of independent
queries suggest that sparse models most readily identify
Hubs of Knowledge as different eigenspaces tend to empha-
size nearly disjoint sets of intrarelated biological entities.
Consequently, no single eigenspace completely character-
izes the set of most important entities in the focused sub-
graph. On the other hand, PageRank's principal
eigenspace does appear to summarize this set by singling
out the highest scoring entities in each of the other meth-
ods' top eigenspaces. Thus PageRank most readily pro-
vides a ranking for query results. PageRank's non-principal
eigenspaces appear less coherent than its principal
eigenspace and are usually associated with significantly
smaller eigenvalues. Our qualitative conclusions are sup-
ported by more extensive tests and quantitative results
that are reported in the 'Discussion' section.

Distributions of eigenvalues and prominence values
We study the distributions of the eigenvalues of the differ-
ent prominence models' connectivity matrices. This anal-
ysis can help determine how many different eigenvectors
should be used when ranking instance sets (see 'Discus-
sion'). In general, we observe that the eigenvalues pro-
duced by sparse models all display similar decay patterns
across different queries. PageRank, on the other hand,
usually produces one relatively large eigenvalue while the
rest of the eigenvalues all have very similar smaller values.
We observe these patterns for queries in local and global
mode. Our results are reported in the 'Methods' section.
We also studied the distribution of prominence values in
the principal eigenvectors produced by the various promi-
nence models. We observe that for a given prominence
model, the properties of the distribution of prominence
values within an eigenvector are fairly consistent both
across different query terms and across the different eigen-
vectors of a particular matrix. In general, only a small frac-
tion of prominence values are actually relevant in each
eigenspace. However, a priori it is unclear which promi-
nence values should be considered significant, since every
eigenvector spans the whole query graph and all docu-
ments are assigned prominence values in each eigenspace.
To address this problem, we model the distribution of

low-scoring documents and use that distribution to esti-
mate the significance of outliers. For details see 'Methods'.

Eigenspaces and connected components
We examine the correlation between eigenspaces and con-
nected components of the data graph. Previous studies
[14,15] observed that the same documents might appear
in multiple eigenspaces. Our experiments are in agree-
ment with these observations. For example, the 1977
nodes in the focused subgraph for the search term cancer
form 656 connected components (CC), the largest of
which contains 264 nodes. The rest of the components are
much smaller and the majority of the nodes (1374) are in
CC of size 5 or less. The set of top scoring nodes in the
first, second, fifth, eight and tenth eigenspaces (computed
with the Eigenvector Centrality model) are drawn com-
pletely from the largest CC. Some of these objects appear
in more than one eigenspace. On the other hand, most of
the other connected components in this graph are
mapped to specific eigenspaces. For example, the second
CC corresponds exactly to the group of top scoring nodes
in the third eigenspace. Similarly, the third CC constitutes
the the top scoring nodes in the fourth eigenspace. Inter-
estingly, even when overlap is observed (as is the case for
the top CC), most of the top scoring nodes in each
eigenspace are unique.

We observe similar behavior with the query term ubiqui-
tin. The graph contains 6219 nodes, of which 1811 are in
the largest CC. The second largest CC contains only 41
nodes, and 2364 nodes are connected only to one other
object. However, in this case the top CC is so large that it
completely dominates all top ten eigenspaces. We also
observe overlap between these eigenspaces. For example,
as was pointed out in section 'Examples', the fifth and
sixth eigenspaces rank the same two proteins (UV excision
repair protein RAD23 and 26S protease regulatory subunit
7 homolog) at the top, but in reverse order. Interestingly,
these two proteins are related by an interaction (docid:
60875934) which is ranked 3rd in the fifth eigenspace but
ranked 48th in the sixth eigenspace. Each of these proteins
is associated with many interactions, and the immediate
structures of the graphs centered at each of these two pro-
teins are somewhat similar with respect to interactions.
However, the graph structures are different with respect to
nucleic acid sequences as UV excision repair protein
RAD23 is linked to a DNA sequence that encodes several
other proteins, forming a slightly different community
from 26S protease regulatory subunit 7 homolog, whose
related DNA sequences do not encode other proteins.

Both examples demonstrate that eigenspaces can overlap.
However, each eigenspace is centered on a different subset
of objects and the high scoring documents in each one
form a different subgraph with a different structure. We
Page 6 of 26
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postulate that the top-scoring documents in overlapping
eigenspaces are indicative of highly non-planar graphs.
The prominence models we considered are based on
eigenvector analysis and are essentially linear projection
methods. These methods fail to faithfully embed complex
non-planar subgraphs within a single hyperplane, and
therefore we observe multiple non-isomorphic projec-
tions of these graphs (for a discussion on embedding algo-
rithms see [19]). We conjecture that such graphs are split
between eigenspaces roughly along minimal cuts (i.e. par-
titions with minimal number of cross edges).

Discussion
Evaluating the quality of the results
While each of the prominence models is designed to gen-
erate result sets that are sorted based on relevance, it is
hard to quantitatively evaluate the quality of these results
on a large scale. Clearly, one can provide a few examples
demonstrating the properties of a specific system; how-
ever, it is difficult to infer general conclusions from a few
carefully chosen examples.

An independent measure of quality is especially impor-
tant when comparing different weighting schemes and
evaluating the impact of non-principal eigenspaces (as
described in section 'Weighting functions'). Ideally, such
a measure would reflect the utility of the results returned
by the query. However, utility is a largely subjective mat-
ter, especially when considering that Biozon is intended
for a wide variety of users with many different interests.
Thus, our attempt to define an absolute quality measure
on the search results can only be viewed as an attempt to
approximate a "consensus" point of view based on the
objects themselves. To that end we chose to use the textual
information associated with the biological entities, and
we validate and assess the performance of a given method
by measuring the coherence among the descriptions of
instances in the result set and their linked objects. Our
intuition is that "good" results are those that not only con-
tain the query term but are also connected to many other
objects that contain the query term. Specifically, for each
instance v in the result set we examine its set of direct
neighbors (denoted as the subgraph Gv) and count how
many of them match the query term (referred to as con-
sistent neighbors). Denote by nv the number of direct
neighbors of v that have definitions (This last condition is
required since there are many objects that do not have
explicit definitions) and by mv the number of consistent
neighbors of v. Given the result sets, one can compute the
average number of consistent neighbors per query (as a
typical performance measure), or the total number of con-
sistent neighbors among all queries tested (as an overall
performance measure). However, a few instances that are
connected to many consistent neighbors can dominate
and bias these performance measures. Normalized meas-

ures, such as the relative measure mv/nv, are not optimal
either. Many of the instances are connected to only one
other, consistent object. With a relative measure of 1 for
these instances, the overall or typical performance will be
biased as well by diminishing the contributions of
strongly connected instances in the result set. Instead, we
propose a probabilistic measure, and for each instance we
estimate the significance of observing mv consistent neigh-
bors out of nv neighbors. Formally, given a query term Q
we estimate the probability that a random object will
match the term by p = NQ/N where NQ is the total number
of objects that match the query term, and N is the total
number of objects in the Biozon database. (It is possible
to obtain better estimates of the parameter p. However,
the differences are marginal and due to its computational
simplicity we chose the latter.) The binomial distribution
with parameter p can then be used to estimate the proba-
bility to observe exactly m consistent neighbors out of n
neighbors, employing the simplifying assumption of
independence

The significance (pvalue) of the subgraph Gv is estimated
by the total probability to observe by chance graphs that
are at least as consistent as the observed graph

This measure accounts for both the consistency and the
subgraph size. Given the complete result set R, the total
pvalue is approximated by

or with the monotonic log-transformation

This measure, however, is useful only when comparing
different sets of results because it does not account for the
ordering within the set of results. Our second perform-
ance measure evaluates different ranking methods by
accounting also for the ordering of objects within the
result set. Our method is a variation over the popular ROC
measure [20]. However, unlike the typical setting for this
measure (which requires labeled data) we have quantita-
tive data with a significance value assigned to each sam-
ple. We assume that better models will report the more
significant instances first. Therefore, the cumulative area
under the curve corresponding to the sorted list of
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instances (from most significant to least significant) can
serve as an overall performance measure. Formally, we are
given a set of N instances, sorted by ranking function f.
Denote by R(i) the set of i highest ranked documents. The
quality of f is estimated by the functional UROC (unsu-
pervised ROC) which we define as

This functional obtains its maximal value when the
instances are sorted in increasing order of significance val-
ues and obtains its minimal value when instances are
sorted in decreasing order of significance.

Therefore, a ranking function that correlates well with
ordering by significance values will get a high UROC
score. Here we limit N to be 50, and compute UROC50,
assuming that it is not very likely that a user will scan
more than the top 50 results. We use this measure to com-
pare different models and variations of prominence mod-
els as described next.

Note that the UROC functional induces a certain ordering
on instances that we perceive as important, and the best
ranking procedure would be a one that is perfectly corre-
lated with this functional. One might argue that instead of
using the prominence models, entities should be ranked
directly based on these probability-based measures. How-
ever, computing these values in real time for an arbitrary
query is time consuming and therefore we resort to
precomputed indices.

Assessing the contribution of non-principal eigenspaces
All the models we tested return multiple potential promi-
nence vectors in the form of eigenvectors or vector projec-
tions of multidimensional eigenspaces. Each such
prominence vector represents a different way of distribut-
ing prominence values among the graph nodes. Hence, a
given connectivity matrix can produce several potential
values for each object.

As the examples in section 'Examples' demonstrated, it is
hard to assign a universal meaning to the different
eigenspaces. Moreover, not all eigenspaces are equally
informative, and entities highly relevant to the query can
be distributed across multiple vectors. Furthermore, a doc-
ument might be included in different groups of inter-
related documents and therefore might appear in multiple
eigenspaces. Previous studies [14,15] observed that non-
principal components may or may not contain useful
information. However, no methodological solutions were
proposed to handle non-principal eigenspaces.

Here we attempt to quantitatively assess the importance
of non-principal eigenspaces and to propose methods for
integrating information from multiple prominence vec-
tors. Each method is assessed in terms of its effectiveness
in ranking documents in focused subgraphs, using the
measures proposed in the previous section. Our goal is to
determine if the information stored in the first eigenspace
is enough to rank the instances effectively.

Weighting functions
We explore several methods for weighting and combining
prominence vectors in order to consolidate all informa-
tion available in the different prominence vectors into a
single meaningful ranking system. Given a set of eigenval-
ues e1, ..., en and associated prominence vectors e1, ..., en
(where the ith component of each vector corresponds to
the ith document), we define the following weighting
functions:

• Principal Eigenspace – A document's final score is its
component in the prominence vector corresponding to
the principal eigenspace. That is, the ith document's final
score is equal to the ith component of e1. (this is the
approach taken by previous studies on prominence mod-
els when ranking web documents).

• Max – A document's final score is the maximum promi-
nence value it receives in any of the eigenspaces. Max(i) =
maxk = 1...n(ek(i))

• Weighted Max – A document's final score is its maxi-
mum prominence value weighted by the corresponding
eigenvalue. WeightedMax(i) = maxk = 1...n(ek·ek(i))

• Weighted Sum – A document's final score is the sum of
the prominence values in each vector weighted by the cor-
responding eigenvalues. WeightedSum(i) =

Comparison of weighting functions
We tested a total of 44 queries with each function. The
queries consist of a combination of different target data
types, prominence models and query terms. Query terms
were chosen purely based on biological interest prior to
performance evaluation. Because of the small size of the
focused subgraphs (Table 5), we could reliably generate a
large number of eigenvectors. The documents in each
result set were filtered for the proper data type (i.e. the
query data type) and ranked using the four weighting
functions over the prominence vectors derived from the
top 20 eigenvalues/eigenspaces (for all queries we consid-
ered, the information contained in eigenspaces other than
the top twenty seem to be marginal). The ordered set of
documents was then evaluated using the UROC measure
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described above, and the results are summarized in Table
1a. While all four functions do well, it appears that the
Principal Eigenspace measure produces the best results on
average, both in terms of average rank and average ratio.

Analyzing the results by prominence methods reveals an
interesting trend that supports our qualitative results
reported in section 'Examples'. Table 1b shows the results
for the four different weighting functions when consider-
ing only the PageRank method. Here, ranking documents
by the Principal Eigenspace dominates performance in all
aspects. This indicates that in general the non-principal
eigenvectors produced using the PageRank method are
much less informative than the principal eigenvector. On
the other hand, when considering only the Hubs &
Authorities model (Table 1c) the Principal Eigenspace
method does significantly worse than the others, which
indicates that useful information can be found in Hubs &
Authorities's non-principal eigenvectors. The differences
are even more significant for Eigenvector Centrality
(results not shown).

Comparison of prominence models
Practical considerations motivated us to look further into
global methods (see section 'Search strategies' in
'Results'), since computing the focused subgraphs is a rel-
atively slow process. Global methods provide us with
precomputed scores that can be used to rank documents
returned by arbitrary queries on the fly. However, global
methods are bounded by other computational issues, and
generating more than just the principal eigenspace can be

very expensive. Encouraged by the relative success of the
PageRank method with its principal eigenspace, we ran a
second set of experiments to re-evaluate which promi-
nence method is the most effective in global mode when
only the principal eigenspace is used. Detailed results are
given in Table 2, and example UROC graphs are shown in
Fig. 2. The results are consistent and suggest that PageR-
ank is the most successful method under this setup.

The effect of normalization
We conjecture that the observed differences in perform-
ance between the prominence models is an artifact of
matrix normalization. The PageRank model uses a con-
nectivity matrix in which every row is normalized to sum
to 1. This means a node splits its rank evenly among its
neighbors. The other three models do not normalize their
connectivity matrices. In these models, a node confers its
whole rank upon each of its neighbors. For example, con-
sider a graph containing (among other things) a large pro-
tein family with n related proteins. Suppose each protein
is only connected to the family. With a normalized matrix,
each of the proteins confers its whole rank to the family,
but the family only confers 1/n of its rank back to the pro-
teins. Consequently, although many proteins contribute
to the family to give it a high rank, the family splits this
rank among its proteins and so the individual proteins'
ranks remain low. Thus PageRank emphasizes the family
without emphasizing its members. On the other hand,
with an unnormalized matrix, the protein family confers
its whole authority upon each of its members. Thus if the
protein family is highly ranked, its members will also be

Table 1: Part (a) Comparing weighting functions for combining the contributions of multiple eigenspaces.

Weighting Function Max Rank Min Rank Average Rank Max Ratio Min Ratio Average Ratio

Part (a) Principal Eigenspace 1 4 2.14 1 0.20 0.90
Weighted Sum 1 4 2.64 1 0.30 0.86
Weighted Max 2 4 2.84 1 0.34 0.85
Max 1 4 2.37 1 0.32 0.84

Part (b) Principal Eigenspace 1 4 1.37 1 0.96 0.99
Weighted Sum 1 4 2.12 1 0.69 0.88
Weighted Max 3 4 3.37 0.99 0.56 0.84
Max 2 4 3.12 0.99 0.53 0.85

Part (c) Principal Eigenspace 1 4 2.8 1 0.20 0.81
Weighted Sum 2 4 2.9 1 0.37 0.83
Weighted Max 2 3 2.3 1 0.37 0.84
Max 1 4 2 1 0.49 0.83

To evaluate each weighting function f we ran a total of 44 queries. Each query is a distinct combination of (search term, search type, ranking 
method), for example (ubiquitin, protein, PageRank). For each query we analyzed the focused subgraph and computed the top 20 eigenvectors. The 
contributions of their derived prominence vectors were weighted using the function f by assigning a total score f(d) to each document d. The 
documents were sorted based on their total score, and the quality of top fifty documents was assessed in terms of the UROC measure (see text). 
The different weighting functions were then ranked based on their performance on each query. The minimum, maximum and average rankings for 
each weighting function over these queries are listed. Furthermore, the ratio of the given function's quality to the maximum quality achieved in that 
query is also computed and the minimum, maximum and average of this value are computed over the 44 queries. Part (b) Comparison of weighting 
functions with the PageRank model. Results are reported based on 8 distinct queries in focused subgraph mode. With this model, the Principal 
Eigenspace clearly dominates performance. Part (c) Comparison of weighting functions with the Hubs & Authorities model. Results are reported 
based on 10 distinct queries in focused subgraph mode. Unlike PageRank, this model performs better when information from non-principal 
eigenspaces is included. The best weighting function is Max (see Section).
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highly ranked. Hence an unnormalized matrix method
will tend to co-emphasize protein families and their
members.

We tested the effect of normalization on the performance
of the prominence models. The results are summarized in
Table 3. As the table shows, normalization can have a
drastic impact on the results, and performance almost
always improves with normalized connectivity matrices.
However, note that PageRank still performs better.

Local vs. global methods
We compare the performance of the PageRank model
using focused subgraph, global and extended global
modes (section 'Search strategies'). We observe that the
global mode sometimes outperforms focused subgraph
mode with respect to the UROC50 measure (see Table 4).
This is possibly due to "edges effects": objects that are
excluded from the focused graph are considered in global
mode and can increase the prominence values of their
neighbors which, in turn, increase the prominence values
of the objects relevant to the query term. However the glo-
bal mode is outperformed when it produces less than 50
results. The extended global mode improves over the glo-
bal mode and seems to produce results that are compara-
ble to the best mode for each query. These results suggest

that the extended global mode is a good compromise
between sensitivity and speed. Interestingly, the top result
returned for the stromelysin query in extended global
mode is, in fact, a protein whose definition does not con-
tain the search term. This protein, interstitial collagenase
precursor (docid 884427), is similar to several other
stromelysin proteins and is encoded by a stromelysin
DNA gene. For comparison, we also provide the baseline
performance. This was evaluated by picking 50 random
documents from the subgraph and computing UROC
based on the random sampling order (the procedure was
repeated 50 times and the results were averaged).

Variations
We tested several other variations of prominence models
that exploit the structure of the Biozon graph and the dif-
ferent data and relation types. Our first experiment used
directed graphs where edges are directed towards a specific
data type (forced directed graph). The main advantage of
this method is that it produces a clear and sensible distinc-
tion between hubs and authorities, unlike undirected
graphs. We also attempted to incorporate the similarity
relation into our graphs to help characterize new and
unannotated objects. We found that in some cases simi-
larity data caused an immediate and significant improve-
ment in result set quality. Unfortunately, these

Table 2: Comparison of prominence models on the global Biozon graph.

Query Term Query Type Prominence Model Average No.
Neighbors

Average Consistent
Neighbors

Average Ratio Q(R) UROC(R)

Hubs & Authorities 4.38 0.6 0.13 167 4879
ubiquitin protein Eigenvector Centrality 4.38 0.6 0.13 167 4879

Katz's Status 3.82 0.48 0.12 135 3436
PageRank 12.18 3.56 0.27 977 26021
Hubs & Authorities 1.19 0.79 0.48 357 10086

stromelysin protein Eigenvector Centrality 1.19 0.79 0.48 357 9912
Katz's Status 1.19 0.79 0.48 357 10061
PageRank 1.19 0.79 0.48 357 11593
Hubs & Authorities 5.22 1.08 0.25 317 6137

cancer protein Eigenvector Centrality 5.20 0.9 0.21 245 5346
Katz's Status 4.84 0.64 0.19 170 4915
PageRank 6.68 1.8 0.30 535 16082
Hubs & Authorities 1.26 0.5 0.46 166 4628

cancer nucleic Eigenvector Centrality 1.26 0.46 0.45 151 4635
Katz's Status 1.08 0.44 0.44 146 4529
PageRank 1.60 0.52 0.39 167 4633
Hubs & Authorities 1.1 0.67 0.58 223 4520

autoimmune protein Eigenvector Centrality 1.1 0.67 0.58 223 4520
Katz's Status 1.1 0.67 0.58 223 4520
PageRank 1.1 0.67 0.58 223 4582
Hubs & Authorities 0.98 0.4 0.4 226 4559

autoimmune nucleic Eigenvector Centrality 0.98 0.4 0.4 226 5430
Katz's Status 0.98 0.4 0.4 226 4401
PageRank 0.98 0.4 0.4 226 7659

Only the principal eigenspace is used. For each query consisting of (query term, query type, prominence model) we report the following results 
over the set R of the top 50 documents returned by that query: The average number of neighbors per document in that set, the average number of 
consistent neighbors, the average ratio of these numbers, the quality of results set Q(R), and the most informative measure UROC(R).
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improvements were not observed consistently across mul-
tiple queries, indicating that the problems of redundancy
and localization (as discussed in subsection 'Variations on
prominence models' of the 'Methods' section) need to be
considered. Finally, to account for possible discrepancies
in significance among biological relations, we weighted
the entries of the adjacency matrices based on the type of
the relation. While in some cases edge weighting clearly
improves the results, in others it does not, and further
study is necessary to converge to a stable and consistent
weighting scheme. Our experiments are reported in more
detail in the 'Methods' section.

Conclusion
In this paper we present a system that ranks biological
entities returned as results from querying heterogeneous
biological data. We view important or interesting
instances in the result sets as those that are linked to many
other important entities. Since these instances are associ-
ated with myriad of biological knowledge (through their
relations to other biological entities) they can serve as a
useful entry point to researchers who would like to study
similar systems. To identify these instances we analyze the
intricate link structure of Biozon by applying spectral
methods. We test several popular prominence models,
variations of these models, different query modes, and
different scoring functions. To evaluate the quality and
effectiveness of these models we propose an objective
probabilistic measure, UROC, that accounts for both the
structure of the Biozon graph and the textual information
contained therein. This measure quantifies the thematic

unity within instance subgraphs, directed at detecting
what we call "hubs of knowledge".

We examine several issues with prominence models that
have not been quantitatively addressed so far. We evaluate
the utility of information contained in non-principal
eigenspaces as well as different ways to incorporate this
information into our prominence models. Our tests indi-
cated that with a certain family of prominence models
(including Eigenvector Centrality, Hubs & Authorities and
Katz's Status) the information is distributed across multi-
ple eigenspaces and that the Max weighting function is the
most effective approach for ranking documents with these
models. On the other hand, non-principal eigenspaces
seem to contain little information when using the PageR-
ank model. For PageRank, the most effective ranking is
produced by relying solely on prominence values in the
principal eigenspace. The differences between the PageR-
ank model and the other three models are attributed to
two factors. First, PageRank includes a prior matrix that
essentially connects all documents. Therefore, PageRank
analyzes a completely connected graph while all other
models analyze sparse graphs. Second, the rows of PageR-
ank's connectivity matrix are normalized. Indeed, the per-
formance of the other models improved when their
connectivity matrices were normalized in a similar man-
ner. Furthermore, we observe that the sparse models are
most effective for producing hubs of knowledge while
PageRank is the most effective model for ranking query
results.

We also compare different search strategies. While the
local method can bring forward documents that do not
match the query term (the function of these documents is
inferred from their broader graph context, through rela-
tions to other, better characterized objects), it is computa-
tionally prohibitive in real-time. In comparison, global
methods rely on pre-computed prominence values and no
additional preprocessing is required during query time
execution. We also introduced the extended global
method that combines the benefits of both the focused
subgraph method and the global method, thus allowing
fast propagation of information to uncharacterized or
unstudied objects.

Practical considerations promoted the use of global meth-
ods for a real-time ranking system. However, due to the
size of the global connectivity matrix, this choice pre-
cludes us from computing many eigenspaces. Since
PageRank's principal eigenspace tends to incorporate
information from the other methods' non-principal
eigenspaces, we conclude that the PageRank model with
the principal eigenspace scoring function is the most fea-
sible system for ranking Biozon query results. Indeed, our
experiments have shown that PageRank produces the best

UROC curves for PageRankand Hubs & AuthoritiesFigure 2
UROC curves for PageRankand Hubs & Authorities. 
The result sets were produced from querying proteins using 
the search term ubiquitin, in global mode. The UROC score is 
the area under the curve.
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results given these restrictions. Moreover, PageRank's per-
formance under these conditions is comparable to the
best performance observed from any combination of
model and scoring function used in local or global mode.
The PageRank model has other interesting aspects. For
example, the inclusion of the matrix E allows one to
explore various types of prior knowledge.

One advantage that Biozon has over the World Wide Web
is that for the most part Biozon data is highly reliable.
While web search engines such as Google have to deal
with dynamic data of questionable quality, almost all
relations in the Biozon database are well established rela-
tions that are derived from high quality observations and
measurements. Therefore, our models do not have to

address directly issues such as noise and "dead links".
There are some exceptions. For example, high-throughput
interaction data that is generated using the yeast two-
hybrid system tends to contain many false positives. How-
ever, these relations constitute a small fraction of the Bio-
zon data graph, and our tests indicate that their presence
does not change the ranking significantly.

The heterogeneous data sets reveal other interesting prop-
erties and challenges. For example, upon testing the effect
of similarity data on performance we observed that simi-
larity relations can be useful, but they can also lead to
mediocre performance because of problems of redun-
dancy and localization. Thus, similarity data should be
considered with the proper normalization. It should be

A subgraph of objects and descriptorsFigure 3
A subgraph of objects and descriptors. Objects, descriptors, and the relations between them form a typical subset of the 
Biozon data graph. Search results return sets of objects, from which the graph can be navigated to see the object's context.
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noted that much of the similarity information already
exists in another form. For instance, proteins are often
classified to families based on similarity data and thus
forms paths (of length two) between similar proteins in
the Biozon data graph. Like our tests with similarity data,
our tests with edge weighting open another direction that
requires further analysis. Here, future work includes

exploring more robust weighting and normalization
schemes. Another type of information that is currently
ignored is the context (such as the species).

Variations that will focus on organism-specific subnet-
works will be another topic of future research, as well as
the integration of information retrieval techniques and

Table 4: Performance evaluation: focused subgraph vs. global vs. extended global.

Query Term Query Type Graph Number of Results Average No.
Neighbors

Average Consistent
Neighbors

Average Ratio Q(R) UROC (R)

ubiquitin protein Baseline 50 1.92 1.0 0.64 329 8278
Focused 50 11.72 2.9 0.20 771 18516

Global 50 12.18 3.56 0.27 977 26021
Global-ext 50 12.18 3.56 0.27 977 25967

stromelysin protein Baseline 46 1.30 0.80 0.49 387 9038
Focused 46 1.30 0.80 0.49 387 13180

Global 43 1.19 0.79 0.48 357 11593
Global-ext 46 1.30 0.80 0.49 387 13045

cancer protein Baseline 50 2.01 1.03 0.73 323 8202
Focused 50 6.72 1.74 0.28 516 14901

Global 50 6.68 1.8 0.30 535 16082
Global-ext 50 6.72 1.8 0.30 534 16010

autoimmune protein Baseline 50 1.92 0.84 0.60 455 11512
Focused 50 2.33 1.02 0.73 530 14330

Global 30 1.1 0.67 0.58 223 4582
Global-ext 50 2.24 0.98 0.70 530 14054

All results were generated with the PageRank prominence model, using the Principal Eigenspace scoring function. In the cases of autoimmune and 
stromelysin, the global method returns less than 50 documents. The extended global mode reports more than 50 documents, which explains the 
larger overall quality.

Table 3: The effect of normalization on the ranking. 

Query Term Query Type Prominence Model Average No.
Neighbors

Average Consistent
Neighbors

Average Ratio Q(R) UROC (R)

Hubs & Authorities 4.38 0.6 0.13 167 4879
Hubs & Authorities(N) 7.64 2.58 0.52 705 23809

ubiquitin protein Eigenvector Centrality 4.38 0.6 0.13 167 4879
Eigenvector Centrality(N) 1.04 0.9 0.88 307 7871
PageRank 12.18 3.56 0.27 977 26021
Hubs & Authorities 1.19 0.79 0.48 357 10086
Hubs & Authorities(N) 1.19 0.79 0.48 357 10112

stromelysin protein Eigenvector Centrality 1.19 0.79 0.48 357 9912
Eigenvector Centrality(N) 1.19 0.79 0.48 357 9057
PageRank 1.19 0.79 0.48 357 11593
Hubs & Authorities 5.22 1.08 0.25 317 6137
Hubs & Authorities(N) 3.62 1.2 0.67 372 11947

cancer protein Eigenvector Centrality 5.2 0.9 0.21 245 5346
Eigenvector Centrality(N) 1.24 0.98 0.86 321 8137
PageRank 6.68 1.8 0.30 535 16082
Hubs & Authorities 1.1 0.67 0.58 223 4520
Hubs & Authorities(H) 1.1 0.67 0.58 223 4345

autoimmune protein Eigenvector Centrality 1.1 0.67 0.58 223 4520
Eigenvector Centrality(H) 1.1 0.67 0.58 223 4830
PageRank 1.1 0.67 0.58 223 4582

For each model we repeated the computations with the unnormalized and the normalized (N) matrices. See Table 2 for details.
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other variations of prominence models. Of special interest
are non-linear projection methods that can handle large,
non-planar graphs.

The application of all prominence models we tested
involves non-trivial issues, and further improvements to a
real-time database query system require additional study
of the underlying data graph. In particular, it is desirable
to precompute as much data as possible to minimize the
amount of processing required for each individual query.
Among the issues that one has to consider is the overlap
between different eigenspaces and the meaning of differ-
ent eigenspaces. One possibility is to utilize the causal
structure and the connectivity within the graph as analysis
can be carried out separately on each connected compo-
nent. To this end, we have isolated the connected compo-
nents of the Biozon data graph and are studying their
properties.

Finally, we should note that although the examples we
used in the paper are single term queries, Biozon has the
capability of ranking any query the user may execute. This
includes multiple term queries and queries involving rela-
tions among multiple data types. The current ranking sys-
tem, based on the PageRank prominence model, was
integrated into the Biozon database and is available
online at http://biozon.org.

Methods
The Biozon database and data graph
Biozon is a system that consolidates multiple biological
databases consisting of a variety of heterogeneous data
types (such as DNA sequences, proteins, interactions and
cellular pathways) into a single extensive schema that is
logically represented as a large data graph Σ. Each node
represents some datum, and an edge between two nodes
represents a relationship between them. Formally, Σ = (D,
R) where D = {d1... dn} is the set of all nodes (documents)
in the graph and R = {r1...rm} ⊂ D × D is the set of all edges

(relations) in the graph. The data is warehoused locally so
the fundamental biological objects represented are non-
redundant even though data within and between their
originating sources overlap. The Biozon resource is avail-
able online at http://biozon.org.

Much of the data in Biozon is gleaned from publicly avail-
able databases such as SwissProt, PDB, GenBank, BIND,
KEGG, and more (referred to as source data). These
sources provide the fundamental biological objects in
Biozon, many of the relationships that exist between
objects, and the annotation that makes it possible for
humans to understand this data. Biozon augments the
source data with derived data. Derived data encompasses
any data produced as the result of a computation or oper-
ation over some set of existing data in Biozon, and is una-
vailable elsewhere. Currently, derived data available in
Biozon consists of similarity relations between protein
sequences and protein structures, domain structure of
proteins, and more. Derived data is a substantial part of
the Biozon database.

One main advantage of Biozon is that it allows users to
form complex queries. For example, one can search for all
proteins which have solved structures and are members of
enzyme families integral to a particular pathway (note this
query spans four different data types: protein sequences,
protein structures, protein families, and pathways). Simi-
larly, one can search for all structures of proteins that are
involved in known interactions and so on. In addition to
addressing the problem of data integration and unifica-
tion from multiple resources, complex queries enable
sophisticated data manipulation. For more information
see [21].

Documents
Each biological entity (be it source data or derived data) is
represented as a set of documents. In general, documents
are divided into a hierarchy of categories. At the top of the

Table 5: Makeup of the focused subgraphs for selected queries.

Query Term Query Type Proteins Nucleic Acid Sequences Protein Families Structures Interactions Pathways Total Connected

autoimmune protein 58 324 1 0 4 0 387 111
nucleic 58 369 0 0 0 0 427 150

cancer protein 830 37023 7 5 109 0 37974 1977
nucleic 829 37300 0 1 1 0 38131 1920

stromelysin protein 46 566 3 2 0 0 617 76
ubiquitin protein 2372 28820 9 25 720 1 31947 6219

For each query we list the number of instances of each Biozon data type included in the corresponding focused subgraph. The query types we 
experimented with are protein sequence and nucleic sequence. One might be surprised by the fact that a structure is included in the focused 
subgraph for the stromelysin-nucleic search since protein structures are not directly related to nucleic acid sequences. Such nodes are included by 
definition since they have the search term; however, they are ignored (along with all other nodes that do not have neighbors) in the subsequent 
eigencalculations and are assigned prominence values of 0. The 'Total' column indicates the number of nodes included in the focused subgraph, 
while the last column ('Connected') lists the number of nodes of the focused subgraph with at least one neighbor in the subgraph. Only nodes which 
have neighbors are included in our computations.
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hierarchy we distinguish between objects and descrip-
tors. Objects are basic biological entities. An object is
either a physical entity (i.e. protein sequence, protein
structure), or a group of physical entities (i.e. interaction,
protein family, pathway) A Descriptor, as the name
implies, is any piece of knowledge associated with a phys-
ical entity, be it a narrative description, a feature, or a
measurement (such as expression data). Each document is
represented as a node in the Biozon data graph.

For example, a SwissProt record will be mapped to a pair
of documents: an object document that corresponds to the
physical amino acid sequence and a SwissProt descriptor
document that contains all the expert knowledge stored in
SwissProt associated with that protein. A relation is also
defined between the two documents to indicate that the
descriptor describes the object. If the same protein exists in
PIR [2], then the PIR entry will be mapped to the same
object document. A new descriptor, containing the knowl-
edge stored in PIR, will be introduced, and a relation
between this new descriptor and the object will be created.

Relations
Relations are the edges that connect the documents of the
data graph. Relations consist of pointers to a referring doc-
ument and a referred document. The types of relations
classified in the Biozon database include 'member of,'
'manifests as,' 'describes,' 'encodes,' 'similar,' 'contains,'
'expresses' and 'comprised of.' Each relation implies a par-
ticular directional meaning, in particular specifying the
types of documents related. For example, the 'describes'
relation represents the relation between a referring
descriptor and a referred object. Likewise, the 'encodes'
relation represents the relation between a referring nucleic
acid sequence and the referred amino acid sequence that
it encodes. By definition, the reverse edges also exist (e.g.
'described by' or 'encoded by'), however only one of the
edges is physically stored in the database. The default
direction is chosen to be the active voice name of the rela-
tion.

Directed vs. undirected graph
The edges of the Biozon data graph correspond to the rela-
tions between the different entities in the graph. We con-
sider two variations over this graph: the directed and the
undirected. In the directed one, there is an directed edge
from object a to object b in the graph if and only if object
a refers to object b in the appropriate relationship in Bio-
zon, as defined by the active voice name of the relation.
The undirected graph is simply the directed subgraph after
adding in the reverse edges as well.

Although in some cases the direction of the relationship
might imply causality (e.g. DNA sequence encodes for a
protein), most relationships are such that both directions

are biologically valid and no particular direction is more
significant than the other. Moreover, for most practical
purposes it is easier to work with undirected matrices,
since they are symmetric. Therefore our default setup
throughout this paper is of undirected graphs. We investi-
gate the relationship between the properties of directed
and undirected graphs in section 'Forced directed graphs'.

Data types
In this study we consider the following data types: nucleic
acid sequences, protein sequences, protein structures,
enzyme families, interactions, and pathways as well as the
relationships among these types (including similarity
relations). The global data graph and a partial overview of
the Biozon schema are displayed in Fig. 4. This graph, at
the instance level, is the subject of our analysis of promi-
nence models. While the descriptor documents describe
the biological entities that are relevant to a particular
query, they are not considered when analyzing the Biozon
link structure and assigning prominence to nodes. This is
because the information that is stored in biological data-
bases is often redundant, and many biological entities are
reported in multiple databases with almost identical
descriptors. In this work, the prominence of an object is
defined based on the set of other biological entities that are
connected to it.

Prominence models
All the prominence models we consider are based on the
idea that a node is prominent if it is connected to other
prominent nodes. We study four main methods for
assigning prominence values to nodes, as described next.
Given a query, the analysis starts by defining the graph (or
subgraph) of relevant documents and their adjacency
matrix A. Each method differently characterizes the con-
nectivity within the data graph to derive a connectivity
matrix B from the adjacency matrix. The spectral proper-
ties of the connectivity matrix are then analyzed by com-
puting its eigenvectors. Each eigenvector is considered to
be a possible assignment of prominence values to docu-
ments, where node u is assigned a prominence value equal
to the uth component of the eigenvector. The highest scor-
ing nodes in the principal vector(s) are returned as poten-
tial significant matches.

Eigenvector centrality
The Eigenvector Centrality model focuses on direct edges
between nodes (see Fig. 5) and defines the prominence of
a node to be proportional to the sum of the prominence
values of all nodes connected to it. Let p be a vector of
prominences and denote the prominence of node v by
p(v), then

p v p u
u v

( ) ( )
( , )

∼
∈

∑
R
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Let A be the graph's adjacency matrix and A' be the trans-
pose of A. Then p should satisfy p ~ A'p and the solutions
of this equation are the eigenvectors of A'. Thus we define
the connectivity matrix B to be A'. For undirected graphs
A' = A, and the connectivity matrix B is equal to to the
adjacency matrix.

Hubs and authorities
Hubs & Authorities [14] extends Eigenvector Centrality by
differentiating nodes that have useful information (author-
ities) from nodes that link to nodes with useful information
(hubs). A node's authority score is proportional to the
sum of the hub scores of nodes that link to it, and a node's
hub score is proportional to the sum of the authority
scores of the nodes it links to.

Let a be a vector of authority scores and h be the corre-
sponding vector of hub scores. Then a ~ A'h and h ~ Aa.
Hence, a ~ A'Aa and h ~ AA'h. Thus, in the Hubs &
Authorities model, two connectivity matrices are defined
and analyzed: B1 = A'A and B2 = AA' where the eigenvec-
tors of B1 correspond to authority scores and the eigenvec-
tors of B2 correspond to hub scores. Since A'A and AA' are
always symmetric and positive semi-definite, hubs and
authorities vectors are always well-defined in the sense
that the power iteration method (see section 'Computing
prominence vectors' below) always converges. Note that
for an undirected graph A is symmetric and therefore A'A
= AA' = A2. Thus in the undirected case, hub scores and
authority scores collapse into a single score. Note also that
A2(i, j) is the number of paths of length two linking nodes
i and j. Therefore undirected Hubs & Authorities is equiv-

A sample data graph and the corresponding connectivity matrix B with the Eigenvector Centrality modelFigure 5
A sample data graph and the corresponding connectivity matrix B with the Eigenvector Centrality model. The connectivity 
matrix is derived directly from the adjacency matrix of the graph.
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sequence domain

unigene cluster

PDB

TrEMBL

GO term

Genbank

interpro

signature

KEGG

BIND

Genpept

interaction

pathway

protein family

structure

sequence
amino acid

nucleic acid
sequence

domain family
Page 16 of 26
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:71 http://www.biomedcentral.com/1471-2105/7/71
alent to Eigenvector Centrality applied to a new graph in
which i and j are considered adjacent if they are connected
by a path of length two in the original graph, and the (i, j)
edge in the new graph is weighted by the number of
length two paths connecting i and j in the original graph
(see Fig. 6). In the directed case, the weight of edge (i, j) in
AA' (the "coupling" matrix in bibliographies) is the
number of nodes that are "co-cited" by both i and j. The
weight of edge (i, j) in A'A (the "co-citation" matrix in bib-
liographies) is the number of nodes that "co-cite" both i
and j. However, in both cases (of directed and undirected
graphs) length one paths in the original graph are not
explicitly used, thus possibly eliminating useful informa-
tion. In this view, we suggest a new model that explicitly
utilizes information provided by length one, two, and
three paths (see 'Hybrid Katz's Status' below).

PageRank
PageRank [13] uses a probabilistic model to assign prom-
inence values to nodes. With probability α, the promi-
nence of node v is transferred to a node u that v points to,
where u is chosen uniformly at random from the nodes
that v points to. With probability 1 - α the prominence of
node v is transferred to a node u in the graph, chosen ran-
domly with probability E(u) where E is a prior probability
distribution over the nodes of the graph. The prior can be
interpreted as a random walk through the graph (by a ran-
dom "graph surfer"), where the probability of a random
restart is 1 – α, and prominence values reflect the proba-
bility that a given node will be visited on such a walk.
Thus, PageRank corresponds to Eigenvector Centrality

applied to the connectivity matrix B = α·A' + (1 - α)·E·1'
where A is the graph's adjacency matrix with rows normal-
ized to sum to 1, and 1 is a vector of 1's. Note that due to
the introduction of the prior matrix, B is always dense (in
the sense that every node contributes to the prominence
value of every other node) and PageRank practically ana-
lyzes a completely connected graph (see Fig. 7). In con-
trast, all other models analyze sparse graphs where only
adjacent or nearly adjacent nodes directly contribute to
the prominence value of a given object.

Hybrid katz's status
A simple measure of prominence that was suggested in
[22] is to assign a node's prominence value in proportion
to the node's in-degree. However, this measure has some
disadvantages compared to those already discussed.
Kleinberg [14] discusses the shortcomings of in-degree
based ranking; specifically, such rankings tend to empha-
size universally popular entities which lack thematic
unity. Our Katz's Status model is based on the early work
by Katz [23], modeling status in social networks. We gen-
eralize the prominence by in-degree idea by assigning a
node's prominence in proportion to the number of paths
of arbitrary length ending at the node, where long paths
are penalized by a decay factor. Note that for adjacency
matrix A (directed or undirected), Ak(i, j) is the number of
i → j paths of length k. For undirected A, we have
described spectral methods corresponding to k = 1 (Eigen-
vector Centrality) and k = 2 (Hubs & Authorities). More
generally, we can define the prominence of node v, p(v) as
follows:

Given the data graph from Fig. 5, Hubs & Authorities analyzes the connectivity matrix B where the (i, j) entry corresponds to the number of length 2 paths between nodes i and j, as depicted in the graph on the leftFigure 6
Given the data graph from Fig. 5, Hubs & Authorities analyzes the connectivity matrix B where the (i, j) entry corresponds to 
the number of length 2 paths between nodes i and j, as depicted in the graph on the left. Note that with undirected graphs the 
diagonal elements (i,i) of B correspond to the number of edges occurring at node i in the original data graph.
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where nk(u, v) is the number of paths of length k between
u and v and wk is the weight of a path of length k. Thus,
Katz's Status essentially builds a connectivity matrix B
where B(i, j) is a score based on all paths from i to j. Fixing
the maximal path length k and letting

we can represent this scheme as matrix multiplication p ~
Bp which corresponds to Eigenvector Centrality applied
to B. Here we set k = 3, since in the Biozon data graph (see
Fig. 4b) most data types can reach any other data type by
a path of length 3 at most, and define w1 = 1, w2 = 1/16,
and w3 = 1/64. To avoid situations in which cycles unde-
sirably increase the prominence of a node we focus just on
simple paths. A simple i → j path is a path that does not
visit the same vertex twice. Computing the number of sim-

ple paths of length > 3 is intractable in general, but is rel-
atively easy for paths of length ≤ 3.

Computing prominence vectors
In the prominence models we considered, prominence
values are associated with the eigenvectors of the corre-
sponding connectivity matrices. As such, any method for
finding eigenvectors will suffice. In the particular case of
Hubs & Authorities, we use singular value decomposition
[24] to simultaneously generate the eigenvalues and
eigenvectors of both A'A and AA. This technique produces
an orthonormal basis of each eigenspace without explic-
itly computing AA' or A'A.

One can also use the fast power iteration method [25] to
compute the principal eigenvalue/eigenvector pair of the
connectivity matrix B by repeatedly multiplying B to some
starting vector until convergence (see Fig. 8). Due to com-
putational constraints, the power iteration is the only fea-
sible method to compute eigenvectors of large, dense
matrices. However, the power iteration most readily com-

p v w n u v p u w n u v p u w n u v p u
u u u

( ) ( , ) ( ) ( , ) ( ) ( , ) ( )∼ …1 1 2 2 3 3∑ ∑ ∑+ + +

B A=
=
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1

PageRank normalizes the adjacency matrix and adds a prior matrix (top), to produces the connectivity matrix (bottom)Figure 7
PageRank normalizes the adjacency matrix and adds a prior matrix (top), to produces the connectivity matrix (bottom). 
Dashed edges (top graph) correspond to a random walk through the document space. Although the original data graph (Fig. 5) 
is undirected, the edge weights in the PageRank connectivity matrix can differ, depending on the direction, due to normaliza-
tion.
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putes a matrix's principal eigenvector and a more elabo-
rate manipulation is required to compute non-principal
eigenvectors. The computation of prominence vectors is
complicated by multidimensional eigenspaces. For eigen-
values with multiplicity greater than 1, the eigenvectors
returned by standard linear algebra packages may be arbi-
trary and ambiguous. The power iteration will also gener-
ate suboptimal results in this setting: if all eigenvalues are
positive, it will converge to an arbitrary vector dependent
on the starting vector, and if the eigenvalues are of oppo-
site signs (± λ), it will bounce back and forth between two
vectors. Note that by definition, any vector in a multidi-
mensional eigenspace is a prominence vector. Therefore,
the selection of any single vector of prominence values
from the space will be completely arbitrary. Moreover,
much of the information about a multidimensional
eigenspace is lost when only one vector is selected. There-

fore, we take the prominence of an object i in an
eigenspace with cardinality k > 1 to be the projection of
that object on the eigenspace:

where {e1, e2, ..., ek} is an orthonormal basis for the
eigenspace. I.e. this is the total prominence value assigned
by that eigenspace. Note ê(i) is equal to the maximal pro-
jection over all vectors within the eigenspace. We there-
fore effectively assign each node's prominence to be equal
to the maximum prominence assigned to that node in any
vector in the eigenspace.

ˆ( ) ( )e ei ij
j

k
=

=
∑ 2

1

Computing prominence vectors with the power iteration methodFigure 8
Computing prominence vectors with the power iteration method. Starting from a uniform set of values, the promi-
nence vector is iteratively redefined by multiplying it by the adjacency matrix.
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It should also be noted that all existing methods for rank-
ing nodes in large data graphs (such as the web) focus on
just the principal eigenspace when assigning prominence
values. However, the connection between prominence
assignments and the spectra of appropriate matrices sug-
gests that non-principal eigenvectors may also convey use-
ful notions of prominence. For example, Kleinberg [14]
notices that different eigenvectors emphasize webpages
with different interpretations of the query term. We
explore methods for combining the information from
multiple eigenspaces and evaluate their usefulness in
ranking documents in the 'Discussion' section.

Search strategies: global graph vs. focused subgraphs
We investigate the performance of the prominence mod-
els described above. Our ultimate goal is to provide a sen-
sible ranking of results from queries to the Biozon
database. We consider two general strategies for generat-
ing and then ordering these result sets: The focused sub-
graph method (referred to also as the 'local method') first
creates a subgraph of Biozon consisting of nodes that sat-
isfy the query and their immediate neighbors (the exact
procedure is described next). Prominence values are then
assigned to the nodes of the subgraph using one of the
above models, and nodes are ranked by descending prom-
inence. The global method, on the other hand, first uses
one of the models to assign prominence values to every
node in the Biozon graph. Then, for a given search, nodes
satisfying the query are extracted and then ordered by
descending prominence.

Generating instance sets – the query subgraph
The local method starts by generating a specific set of rel-
evant instances, and then ranks the instances by exploring
the spectral properties of the corresponding connectivity
matrix. Given a query term Q (such as ubiquitin) over a
data type T (e.g. protein sequences) we run the following
procedure to generate the query instance set

1. Initialize the instance set S1 to be all instances of type T
containing the text Q in their definition field (in this study
we focused on the definition field, but the search can be
extended to other fields).

2. Add to S1 any object (of any data type T') that is directly
related to an object in S1 (note that in the case of proteins,
the similarity relation can bring in other proteins directly
related to those already in S1).

3. Initialize S2 to include any object of data type T' ≠ T that
contains the text Q in its definition field.

4. Add to S2 all objects of type T which are not in S1 but
are directly related to objects (of any data type) in the set
S2.

5. Merge S1 and S2 to form the complete instance set S.

This procedure resembles the procedure introduced in
[14]. However it has been modified to account for hetero-
geneous data types. Specifically, step 4 serves to extend the
instance set to other possibly relevant instances of the
query data type. On the other hand, extensions with
regard to other data types are more restricted to avoid shift
of biological context (steps 2,3). In some cases we intro-
duce additional constraints. For example, when querying
for proteins we only consider sequences that are at least 20
amino acids long. This is to exclude very short peptides
that are linked to many DNA sequences but have limited
biological significance.

The resulting subgraph of the Biozon data graph is called
the query subgraph. The nodes of the query subgraph are
the objects in the query instance set. The edges of the
query subgraph are obtained by projecting the complete
Biozon data graph onto the instance set S. An example of
a focused subgraph is given in Fig. 1. The composition of
the focused subgraph for selected queries is given in Table
5.

The extended global method
The naive implementation of the global method appears
to be too restrictive when compared to the local method.
The local method is not limited to entities defined by the
query term; it may return an entity related to another
entity which is defined by the query term. This allows the
local method to propagate information to uncharacter-
ized objects and potentially increase the number of valu-
able results. However, the global method has a better
response times since it relies on precomputed prominence
values. To compensate for the loss of information inher-
ent in the global method without reducing responsive-
ness, we introduce a third strategy for generating results.
The extended global method is a variation of the global
method which utilizes information in neighboring enti-
ties to bring forward uncharacterized entities as follows:

As with the global method, a prominence model is
applied to the Biozon data graph once and for all to assign
prominence values to all documents. Given a query term
Q over data type T

1. Search for all documents that match the query term Q.
Denote that set by S0.

2. Collect the top-scoring documents of S0 until encoun-
tering at least N objects of data type T or until exhausting
S0 (in our experiments, N is set to 50). The resulting set,
S1, contains documents of all types.
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3. Separate S1 into S2 (documents of type T) and S3 (doc-
uments of type ≠ T).

4. Initialize S to S2.

5. Add to S all objects of type T related to any object in S3.

6. The set S contains only objects of type T, some of which
match the query term. Reorder the elements of S based on
their global prominence value.

The distributions of eigenvalues and prominence values
We study the distributions of the eigenvalues of the differ-
ent prominence models' connectivity matrices. This anal-
ysis can help determine how many different eigenvectors
should be used when ranking instance sets (see 'Discus-
sion'). In general, we observe that the eigenvalues pro-
duced by sparse models all display similar decay patterns
across different queries (Fig. 9a and Fig. 9b). PageRank, on
the other hand, usually produces one relatively large
eigenvalue while the rest of the eigenvalues all have very
similar smaller values (Fig. 9c).

We examined the prominence vectors produced by the
different prominence models on focused subgraphs, and
studied the distribution of values within these vectors. We
observe that for a given prominence model, the properties
of the distribution of prominence values within an eigen-
vector are fairly consistent both across different query
terms and across the different eigenvectors of a particular
matrix. However, these distributions do differ between
different models. We found that the distributions of
prominence values of sparse models are all nearly identi-
cal. Often, there is one document that gets a very high
prominence value, while the vast majority of nodes
receive very small values. Between these two extremes we
generally observe a significant number of nodes which are
often clustered around intermediate values but are some-
times evenly distributed in a small range (see Fig. 10a).

With the PageRank method, the distributions of the
prominence values display similar characteristics. Most
notably, the vast majority of documents receive relatively
small prominence values. However, PageRank seems to
collect into its principal eigenspace all the top scoring doc-
uments which the other models report in separate
eigenspaces. Consequently, the distribution of higher val-
ued documents is much smoother, and the number of
documents at a given value appears to be inversely pro-
portional to that value (Fig. 10b). These observations
mesh with our previous observations in section 'Exam-
ples'.

We also studied the distribution of prominence values in
the principal eigenvectors produced by the various promi-
nence models when considering the global graph. As one
would expect, since only the relative size of the graph has
changed, the general shape of these distributions is basi-
cally the same as those for the smaller focused subgraphs.
However, for Hubs & Authorities there is not a single
high-valued node in the principal component. There is,
though, a cluster of about 9000 items assigned values of
about 0.004. These mostly correspond to the members of
the largest protein family in Biozon (Cytochrome C oxi-
dase), which has about that many members.

It should be noted that only a small fraction of promi-
nence values are actually relevant in each eigenspace.
However, a priori it is unclear which prominence values
should be considered significant, since every eigenvector
spans the whole query graph and all documents are
assigned prominence values in each eigenspace. The
majority of the documents are assigned very small promi-
nence values (close to zero), but in some eigenspaces val-
ues of 0.05 can be considered significant while in others
they are not.

To address this problem we model the distribution of low-
scoring documents (see Fig. 11) and use that distribution

Top 10 eigenvalues of different connectivity matricesFigure 9
Top 10 eigenvalues of different connectivity matrices. (a) Hybrid Katz's Status (b) Hubs & Authorities (c) PageRank. 
The eigenvalues were computed for matrices that were generated from focused subgraphs with the protein query ubiquitin. 
Similar results were observed for other queries.
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to estimate the significance of outliers. For all practical
purposes this distribution can be approximated by a nor-
mal distribution. To estimate the parameters of the nor-
mal distribution automatically we apply a simple iterative
procedure. In the first iteration all data points are used to
estimate parameters. The initial estimate is used to assign
probabilities to all documents and documents that are
more than 3 standard deviations apart from the mean are
eliminated. The procedure is repeated until convergence
(no documents are eliminated) or until a maximal
number of 10 iterations is reached.

Variations on prominence models
This section focuses on prominence models that are tai-
lored specifically to the biological knowledge domain. We
propose and test several variations that use the structure of
the Biozon graph and the different data and relation types
to improve the ranking.

Forced directed graphs
In the Biozon data graph certain relations have a clear
causal interpretation. For example, a DNA sequence
encodes for a protein sequence and a protein sequence

Significance of prominence valuesFigure 11
Significance of prominence values. Prominence values were assigned by the Eigenvector Centrality model applied to the 
focused subgraph with the protein query cancer. Distributions are shown for the first, second and third eigenspaces. The dis-
tributions of low-scoring nodes are modeled by normal distributions. Of the 1977 nodes in the focused subgraph, exactly 264 
are more than 5 standard deviations apart from the mean of the normal distribution, in the first and second eigenspaces, and 
44 in the third eigenspace. Note that these numbers correspond to the size of the connected components that are mapped to 
these eigenspaces (see section 'Eigenspaces and connected components'). The top scoring nodes in both the first and second 
eigenspaces are drawn from the largest CC, but different groups of documents are assigned the most significant values in each 
eigenspace.
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(c) Distribution of prominence values (third eigenspace)

normal distribution

Distribution of prominence values in eigenvectorsFigure 10
Distribution of prominence values in eigenvectors. (a) Hubs & Authorities (b) PageRank. The prominence values were 
derived from the principal eigenvector of the connectivity matrix that was generated from focused subgraph with the protein 
query ubiquitin. Sparse models assign high value to the protein family ubiquitin-protein ligase, ubiquitin-activating enzyme 
(docid: 5977355), and medium values to its 131 members. All other nodes are given values less than 0.02. Similar patterns of 
prominence values are observed in other eigenspaces and for other queries. On the other hand, PageRank consolidates the 
top-scoring documents from multiple eigenspaces of the other methods, resulting in a smoother distribution of prominence 
values.
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manifests itself as a structure. In general, although all rela-
tions in Biozon are undirected, each relation can be asso-
ciated with a default direction (defined by the active voice
name of the relation). However, adhering to the default
directionality is arbitrary and disregards the equally
informative reverse relations. Therefore, the undirected
graph was chosen early on as the default setup in this
study. Undirected graphs are also preferred because they
have symmetric adjacency matrices and thus real eigenval-
ues. Nevertheless, there are certain settings in which
directed graphs are useful.

If the default directions of edges in Biozon were used to
construct a directed adjacency matrix for the Hubs &
Authorities model, then certain types would be naturally
viewed as hubs and other types as authorities, regardless
of the target query type. For example, DNA sequences
would be candidate hubs with respect to protein
sequences, and protein sequences would be candidate
hubs for structures. This information can be useful when
sorting out the contributions of different entities to the
ranking of others and when tracking prominence propa-
gation. However, with the default directionality, certain
object types can never contribute to authority scores of
other object types. For example, structures will not con-
tribute any information to the authority scores of protein
sequences since the default direction of edges is from
sequences to structures. Yet, each relation can be reversed,
and this is basis for the forced directed graph. In this set-
ting, all edges are directed toward a particular data type.

Suppose we are interested in assigning prominence to
nodes of a specific data type T in a focused subgraph. To
confer as much authority on that data type as possible, we
re-organize the graph. Every edge (u, v) such that u is of
data type T and v is of data type T' ≠ T is replaced with its
reversed edge (v, u). Thus, in the resulting graph an edge
involving a node of type T will point towards the docu-
ment of type T. All edges (u, v) such that both u and v are

not of data type T are replaced with two directed edges. In
this setup, when querying for proteins, structures will con-
tribute to protein authority scores. [In the global setting
we do not know ahead of time what data type the user will
query. Therefore, we build a forcing adjacency matrix for
each data type and assign prominence according to a
node's authority score in its corresponding data type's
forcing adjacency matrix. Other ideas for combining forc-
ing adjacency matrices for different data types still need to
be investigated.]

Our experiments with forced focused subgraphs did not
indicate a significant increase in overall performance com-
pared to undirected graphs. However, the forced focused
subgraph method is advantageous because it produces a
clear and sensible distinction between hubs and authori-
ties, where authorities are elements of the query data type
and hubs are elements of other data types that contribute
to authority scores. For example, in Table 6 we list the top
hubs and authorities for the query ubiquitin in forced
subgraph mode. The top hubs for the ubiquitin and ubiq-
uitin-like proteins are either protein families or interac-
tions with other ubiquitin related proteins that are
interconnected to many other entities. Interestingly, the
ranking brings forward a ubiquitin protein that interacts
with the tumor suppressor protein p53 which is con-
nected to many other entities.

The effect of similarity data
Similarity information plays a fundamental role in the
analysis of biological entities and especially macromole-
cules. For example, analysis of a new gene almost always
starts with a database search followed by a careful exami-
nation of close homologs. Depending on the degree and
the extent of the similarity, properties of the new gene can
often be inferred from its homologs. Similarly, experi-
mentally determined protein-protein interactions in one
organism can be extrapolated to other organisms if
homologous proteins can be found.

Table 6: Top hubs & authorities objects in the principal eigenspace of a forced subgraph.

Score Definition Docid

Authority: 0.119 (A) Ubiquitin-like protein SUMO-1 365280
Hubs: 0.98 (H) Protein family, ubiquitin-protein ligase 5977355

0.01 (H) Interaction with p53 60851937
0.01 (H) Interaction with ubiquitin-like protein SMT3C 60845291

Authority: 0.117 (A) Ubiquitin-protein ligase RSP5 1026628
Hubs: 0.98 (H) Protein family, ubiquitin-protein ligase 5977355

0.01 (H) Interaction with ubiquitin-conjugating enzyme MMS2 60849549
0.01 (H) Interaction with ubiquitination pathway protein BUL1 60889006

Results are reported for the Hubs & Authorities model using the query ubiquitin with 'proteins' as the target data type. The top two ranked 
documents are shown, along with their authority scores. Below each is a list of the three neighbors with the highest hub scores (those neighbors 
that contribute most to the authority score of the original object). All interactions were contributed by DIP [6] but are available to the public only 
from the DIP website.
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Biozon integrates similarity relationships into its internal
schema, thus allowing us to exploit an enormous amount
of knowledge in an unprecedented way. The total number
of significant similarities in Biozon, based on both pro-
tein sequences and structures, exceeds 2.5 billion. In most
cases these similarity relations indicate strong homology
and similar functions.

So far our study has ignored these relations because they
increase the complexity of the analysis by orders of mag-
nitude. However, this information can be extremely use-
ful in characterizing new objects since many functional
descriptors can propagate between similar entities. We
tested the effect of similarity data on focused subgraphs
for a subset of our queries. We repeated the process of gen-
erating focused subgraphs, this time considering also sim-
ilarity relations between entities with evalue ≤ 10-10.
(Increasing the threshold, i.e. including less significant
similarities, resulted in many more similarity relations to
the point that we were not able to build the subgraphs.)
We then applied the Hubs & Authorities prominence
model, and the results were evaluated as before using the
UROC measure. Our results indicate that similarity data
can be useful for prominence calculations; however, the
results are not consistent. Two opposing examples are
given in Table 7. For one query (stromelysin) similarity
data clearly improves the ranking, while for the other
(autoimmune) the opposite effect is observed. This
behavior is most likely the result of two factors: redun-
dancy and localization (or lack thereof). Protein sequence
databases are highly redundant, and some proteins are
related to hundreds or thousands of other very similar
proteins. While overall useful, these relations can over-
whelmingly dominate other types of relations when ana-
lyzing prominence. Moreover, the definitions of proteins
similar to a particular protein can be quite diverse, intro-
ducing a high level of noise. For nodes with extremely
high in-degrees (due to many similar proteins), this often

results in less coherent subgraphs. The second problem is
even more substantial. Similarity data is localized (i.e. two
sequences usually share a similar subsequence). In other
words, similarity data should be used carefully when
extrapolating the properties of one entity to another, and
only the functional descriptors that are associated with
these subsequences can be reliably propagated between
the sequences. However, functional descriptors that are
available in sequence databases are almost never local-
ized, and therefore it is difficult to discern which descrip-
tors should be propagated and which should not. When
the coherence among related entities is weak one might
suspect that localization is to blame.

The biological significance of functional links
Not all links between entities in Biozon carry the same
functional weight. Moreover, biological databases can be
heavily biased or redundant. As a result, the functional
links in Biozon are not equally meaningful or biologically
significant. For example, a protein may be linked to a long
DNA sequence that encodes for many genes. The relevant
information that the DNA sequence carries with respect to
that particular protein is limited, and the longer the DNA
(and the more genes it encodes), the less specific is the
information. On the other hand, the same protein might
be linked to an interaction that is essential for a specific
biological process. This relation clearly carries more
weight than that with the DNA sequence when character-
izing the biological context of the protein. These factors
should be taken into account when analyzing the link
structure of the Biozon data graph. A possible solution is
to take a knowledge-based approach and weight the rela-
tions based on their biological significance.

To tailor the prominence models to the specific domain of
biological data, we test a variation where different types of
edges are weighted differently. Instead of a 1/0 adjacency
matrix we associate weights that we believe reflect the

Table 7: The effect of similarity data.

Query Term Query Type Prominence Model Focused Subgraph Average No.
Neighbors

Average Consistent
Neighbors

Average Ratio Q(R) UROC (R)

autoimmune protein Hubs & Authorities With Sim 1413.76 1.98 0 439 11773
No Sim 69.8 4.64 0.13 2062 57865

stromelysin protein Hubs & Authorities With Sim 338.52 27.98 0.083 10348 263293
No Sim 214.91 19.3 0.22 6690 181282

These quality results were calculated for the stromelysin and autoimmune focused subgraphs when searching for proteins. The Hubs & Authorities 
values were computed using the Max scoring method. To compare these results to our previous results we recomputed all performance measures 
for the focused subgraphs that include similarity relations, but using the ranking that was produced without considering these relations. 
Interestingly, when using similarity data, the top scoring entity for the 'stromelysin' query is a protein (docid 986092) that does not contain the 
query term in its definition, nor do the DNA sequences, the UniGene clusters, and the enzyme family that are related to this protein. However, this 
protein, membrane type 5 matrix metalloproteinase, is significantly similar to many stromelysin proteins.
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importance of association, and generate appropriate con-
nectivity matrices based on the weighted adjacency
matrix. For example, edges incident to a particular DNA
sequence that encodes for multiple proteins are weighted
such that the weight of each edge (DNA, Protein) is 1/n
where n is the total number of proteins encoded by that
DNA sequence. However, the reverse edges are still
assigned a weight of 1, thus breaking the symmetry that
was inherent to the original Biozon data graph. Similarly,
if multiple protein structures are mapped to the same pro-
tein sequence (this is quite often the case, as the protein
structure can be studied under different experimental con-
ditions), then each edge (Structure, Protein) is assigned a
weight 1/n where n is the total number of structures asso-
ciated with the protein sequence. The reverse edges, on the
other hand, are assigned a weight of 1. The connectivity of
a node does not always decrease the weights of its outgo-
ing edges. For example, a protein family object can point
to many proteins, and each edge is assigned a weight of 1.
This is to indicate that the information summarized in the
definition of a protein family is highly reliable compared
to the definitions of the individual proteins. On the other
hand proteins that are associated with a protein family are
usually very similar and the information contained in
their records can be highly redundant. Therefore, with our
weighting schema the sum of the weights associated with
family members is one, and their collective contribution
to the family's prominence value is equal to the average
prominence value among them. Similarly, we weight the
contributions of all similarity relations incident to a pro-
tein sequence such that their collective weight is 1. (If a
protein is linked to n other proteins through similarity
relations then each one is weighted 1/n. Alternatively, the
weight can be divided based on the pvalue of the similarity
that is derived from the evalue of the similarity score by the
transformation pvalue = 1 - exp(-evalue) as in [26].)

This simple schema can be extended to include also
descriptor documents that we have ignored so far. With
the same reasoning, descriptors should have different
weights than objects pointing to another object because
descriptors are redundant. On the other hand they rein-
force each other. A possible solution is to set the weights
of descriptors such that they sum to 1.

As with similarity data, here too we observe inconsistent
trends (results not shown). While in some cases edge
weighting clearly improves the results, in others it worsens
their quality, and further study is necessary to converge to
a stable and consistent weighting scheme. Nevertheless,
these results suggest that the biological knowledge
domain requires more fine tuning than the WWW, based
on the different functional meanings of the nodes and the
relations between them.
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