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Abstract

Background: Stochastic simulation has become a useful tool to both study natural biological
systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small"
systems, these simulations produce a more accurate picture of single cell dynamics, including
interesting phenomena missed by deterministic methods, such as noise-induced oscillations and
transitions between stable states. However, the computational cost of the original stochastic
simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid
stochastic methods partition the system into multiple subsets and describe each subset as a
different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic
process. By applying valid approximations and self-consistently merging disparate descriptions, a
method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a
collection of multiscale simulation programs.

Results: Building on our previous work on developing novel hybrid stochastic algorithms, we have
created the Hy3S software package to enable scientists and engineers to both study and design
extremely large well-mixed biological systems with many thousands of reactions and chemical
species. We have added adaptive stochastic numerical integrators to permit the robust simulation
of dynamically stiff biological systems. In addition, Hy3S has many useful features, including
embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and
translation elongation and cell division; mid-simulation perturbations in both the number of
molecules of species and reaction kinetic parameters; combinatorial variation of both initial
conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary
format to quickly read and write large datasets; and a simple graphical user interface, written in
Matlab, to help users create biological systems and analyze data. We demonstrate the accuracy and
efficiency of Hy3S with examples, including a large-scale system benchmark and a complex bistable
biochemical network with positive feedback. The software itself is open-sourced under the GPL
license and is modular, allowing users to modify it for their own purposes.

Conclusion: Hy3S is a powerful suite of simulation programs for simulating the stochastic
dynamics of networks of biochemical reactions. Its first public version enables computational
biologists to more efficiently investigate the dynamics of realistic biological systems.
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Background

The stochastic simulation of chemical and biochemical
reaction networks, also known as kinetic Monte Carlo, has
been successfully used to accurately predict the intracellu-
lar dynamics of biological organisms [1-6], including
behavior that is not captured by deterministic methods,
such as noise-induced oscillations [7], transitions
between stable states [8], population heterogeneity [9],
stochastic focusing and resonance [10], and smoothing of
critical bifurcation points [11]. Because these probabilistic
effects alter both the quantitative and qualitative dynam-
ics of a system, the use of stochastic methods is critical to
understanding natural biological systems and designing
synthetic ones. The original stochastic simulation algo-
rithm [12], or its improved variants [13,14], have been
primarily used because they produce exact realizations of
a jump Markov process with discrete states. This mathe-
matical representation capably describes how the number
of molecules of each unique chemical species in a well-
mixed single cell changes over time, including the fluctu-
ations arising from thermal noise. The same mathematical
description can also be extended to reaction-diffusion sys-
tems describing heterogeneous intracellular dynamics
[15].

However, since these methods individually execute reac-
tion or diffusion events, the computational cost increases
proportionally to the total number of occurrences of reac-
tion or diffusion events. In order to capture the long time
behavior of a system with both 'fast' and 'slow' reactions,
such as a signal transduction network coupled with gene
expression, these methods will spend the majority of their
computational time simulating the occurrences of the fast
reactions in the signalling network while only rarely exe-
cuting a reaction event related to gene expression. The
costs only increase when diffusion events are included.
Because most biological systems feature widely disparate
timescales, it becomes impractical to use the exact method
to simulate a large, realistic biological system with many
reactions and chemical species. This obstacle has moti-
vated the development and use of approximate and
hybrid stochastic methods.

Hy3S (pronounced hi-three-ess), or Hybrid Stochastic
Simulation for Supercomputers, is an open sourced soft-
ware package written for the development, dissemination,
and productive use of hybrid stochastic simulation meth-
ods. The goal of the software is allow users to utilize the
most recently developed stochastic methods to simulate
extremely large, realistic biological systems. The software
package includes multiple different hybrid stochastic sim-
ulation methods and a simple Matlab (Mathworks)
driven GUI. It uses the NetCDF (Unidata) [16] interface to
store both model and solution data in an optimized, plat-
form-independent, array-based, binary format. By com-
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bining Matlab's built-in scripting language and data
analysis functions, NetCDF's ability to quickly read or
write terabytes of data, and our recently developed MPI-
parallelized hybrid stochastic simulation method, it is
now straightforward to simulate the stochastic dynamics
of any extremely large, arbitrary biochemical reaction net-
work with widely disparate time scales. The targeted pro-
duction platform is an MPI-enabled Intel Itanium?2
computing cluster running Linux, but the simulation pro-
grams have also run on x86, IBM, Cray, and SGI Altix
computing platforms. The average user will most likely be
a scientist, engineer, or mathematician who is already
familiar with computational modelling.

Many approximate or hybrid stochastic methods that
decrease the computational cost of stochastic simulation
have been proposed [17,18]. Here, we focus on hybrid
stochastic methods. A good hybrid stochastic method for
simulating chemical kinetics partitions a system of reac-
tions into multiple subsets, describes the time evolution
of each subset as a different valid mathematical represen-
tation, and self-consistently merges all of the representa-
tions in order to produce an accurate solution and
minimize the computational costs. Because the subsets of
reactions are usually coupled, the challenge is to simulta-
neously solve different types of mathematical processes,
including the coupling effects. In recent years, a few
hybrid stochastic methods have been proposed [19-21].
While these methods each advance the state of the art, the
goal of creating a replacement for the original stochastic
simulation algorithm that quickly and accurately simu-
lates large arbitrary reaction networks, possibly featuring
dynamical stiffness or widely disparate timescales, has not
been achieved. In general, many software packages have
been developed to simulate the dynamics of biochemical
networks, using both deterministic and stochastic meth-
ods [22-25] (and all references therein).

In our recent work on developing hybrid stochastic meth-
ods, we have progressed much closer to this goal by effi-
ciently and accurately simulating a coupled jump/
continuous Markov process [26] with many thousands of
reactions and unique chemical species. Importantly, the
method uses the recently derived differential Jump equa-
tions, a type of stochastic differential equation (SDE), to
compute the times at which the slow reactions occur.
These Jump equations tie together a jump and continuous
Markov process by computing both the fast and slow
dynamics through the simultaneous solution of a system
of SDEs. The established connection between the solution
of a hybrid jump/continuous Markov process and the well
developed theory of stochastic differential equations
places the numerical method on solid ground, enables the
usage of implicit, higher order, and adaptive numerical
integration methods, and allows characterization of both
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the local and global error of the solution. Without such a
connection, it is difficult to escape the usage of hand wav-
ing. We briefly describe the details of the numerical algo-
rithm in the Methods section. Here, we will focus on the
features of the newly developed software package and its
capabilities.

Implementation

Overview of the software design

The main component of the software package is the col-
lection of simulation programs written in Fortran95/2 k
and parallelized using MPI. Each simulation program
accepts a NetCDF input file containing all of the model
data, simulates the stochastic dynamics of the model, and
places the solution data back in the NetCDF file. The
NetCDF file format is open, self-describing, and has APIs
in numerous programming languages, allowing anyone
to create the input model data or analyze the output solu-
tion data using a variety of different programs. To assist
users in quickly creating biochemical networks, we
include a simple Matlab-driven GUI to create NetCDF
input files. Users may also use Matlab's scripting language
to compose NetCDF files, allowing for the complex con-
struction of large networks. For data analysis and plotting,
one may read the solution data back into Matlab and use
its capable functions. Importantly, while we use Matlab
for creating biochemical networks and analyzing data,
both the simulation programs and the NetCDF file format
are completely open. This enables us to focus our research
and development on creating the fastest and most accu-
rate hybrid stochastic methods while using existing or
future tools to create complex biochemical networks and
analyze solution data.

The simulation programs

The collection of simulation programs include four differ-
ent numerical implementations of a hybrid jump/contin-
uous Markov stochastic simulator [26], abbreviated as
HyJCMSS, and also the Next Reaction variant of the origi-
nal stochastic simulation algorithm [13]. Each simulation
program is parallelized with MPI, creating a total of ten
different simulation programs. Extensive accuracy and
speed testing has demonstrated that HyJCMSS is currently
the most efficient and accurate hybrid stochastic numeri-
cal method, especially when simulating extremely large
reaction networks. We will briefly cover the different
numerical implementations of the algorithm. We empha-
size, however, that each program can be effectively treated
as a 'black box' and used for productive research by those
who are not interested in the details behind each numeri-
cal method.

Overview of numerical methods
The hybrid jump/continuous Markov stochastic simulator
dynamically partitions a system of reactions into 'fast/
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continuous' and ‘'slow/discrete’ subsets, describes the
effects of the fast/continuous reactions using the chemical
Langevin equation [27], and computes the times of the
slow reactions using the zero crossings of a system of
Jump equations [26]. The chemical Langevin equation
and the differential Jump equations are both It6 type sto-
chastic differential equations (SDEs) and are numerically
integrated using stochastic numerical integrators. The
approximation of fast/continuous reactions as a continu-
ous Markov process greatly increases the efficiency of sim-
ulation when compared to an exact jump Markov
simulation. The accuracy of the approximation is control-
led by two parameters, ¢ and A, which completely param-
eterize the continuity approximation for any reaction
network.

In addition, by allowing multiple occurrences of slow
reactions in between numerical integrations of the chem-
ical Langevin equation, the efficiency of the simulation of
large biochemical networks is dramatically increased.
However, when using this 'Multiple Slow Reaction' (MSR)
approximation [26] on systems with highly mixed times-
cales, the accuracy of the solution will be affected. We
include an MSR tolerance that determines the maximum
effect of the MSR approximation. The tolerance slides
between zero and one, from turning off the approxima-
tion to the blind use of it. For efficiently and accurately
simulating systems with possibly mixed timescales the
default value of 1/¢ provides an optimal trade off.

The numerical theory behind the integration of SDEs dif-
fers significantly from deterministic differential equa-
tions, especially for higher order, implicit, and adaptive
integration methods. For an excellent reference, see
Kloeden & Platen [28]. For our purposes, the system of
SDEs is typically non-linear, multiplicative, non-commu-
tative, and contains multiple Wiener processes, which are
also known as Brownian paths. We compute the solution
of the system of SDEs using four different numerical
methods of the strong type. Specifically, we include a fixed
time step Euler-Maruyama method, a fixed time step Mil-
stein method, an adaptive time step Euler-Maruyama
method, and an adaptive time step Milstein method.
However, we only include the adaptive Euler-Maruyama
method for educational purposes because it may converge
to an incorrect solution [29] and demonstrates the danger
of glossing over the differences between stochastic and
deterministic numerical methods.

The Euler-Maruyama method includes only the drift and
diffusion terms of an It6-Taylor expansion around the
solution, giving the method a local strong error of O(VAt).
The Milstein method includes the drift, diffusion, and
also a third term that requires the strong approximation of
multiple two-dimensional Wiener integrals, decreasing
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Table I: An overview of the Hy3S numerical methods
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Name

Advantages

Disadvantages

Next Reaction variant of SSA
HyJCMSS Fixed Euler-Maruyama

Essentially exact

non-stiff systems.
HyJCMSS Fixed Milstein

HyJCMSS Adaptive Euler-Maruyama

HyJCMSS Adaptive Milstein

HyJCMSS methods are much faster for 'large'
systems. Fastest SDE numerical integrator for

Increased accuracy. May use a larger time step.

Automatically chooses an accurate time step,
based on the SDE tolerance.

Dynamically chooses accurate time step.
Increased efficiency when transient stiffness
exists. With a reasonable tolerance,

Extremely slow for 'large' systems

For stiff systems, species populations may go
negative. Finding an accurate time step for a
system can be annoying.

Evaluation of 2D It6 integrals decreases speed
of simulation.

Does not always converge to the correct
solution. Usage is inadvisable. Included for
educational purposes only.

Slower than fixed methods for systems with
constant timescales, due to the computational
overhead in the adaptive code.

convergence to correct solution is guaranteed.

the local strong error to O(At). However, because the eval-
uation of these two dimensional Wiener integrals is com-
putationally intensive, the efficiency of the simulation
may be decreased.

While fixed time step methods for stochastic numerical
integrators are better characterized, it is possible to use an
adaptive time step method to increase the efficiency of
simulation, especially when dealing with dynamically stiff
systems. Adaptive time step methods dynamically deter-
mine an optimal time step for the numerical integrator
and are preferred when solving a system of SDEs that fea-
ture transient or intermittent dynamical stiffness. An
adaptive time step method will decrease the time step of
the numerical integration when dynamical stiffness exists,
but will increase it when the system is no longer stiff.
Adaptive time step methods for computing strong solu-
tions of SDEs differ significantly from their deterministic
counterparts. For example, when computing an optimal
time step, the paths of the Brownian process must be con-

ditioned on previous and future realized points of the
paths. Otherwise, the solution will use a new Brownian
path whose increments will be biased by the criteria for
time step selection, resulting in a loss of accuracy. The cri-
teria for optimal time step selection require a measure of
the local error of the solution. We use previously pro-
posed criteria [30] that measure the local error in both the
drift and diffusion terms. We also apply an additional cri-
terion that requires the fast/continuous reactions to
remain validly approximated as a continuous Markov
process during the time interval of numerical integration.
We use the evaluation of the criteria to either decrease or
increase the time step, as needed. A more detailed descrip-
tion of adaptive time step methods for SDEs is also avail-
able [29,30]. An overview of the advantages and
disadvantages of each numerical method is shown in
Table 1. We briefly describe both the fixed and adaptive
forms of the Euler-Maruyama and Milstein methods
below.

Table 2: A description of each command line argument and their default values

Command line parameter Description

Which methods use it Default value

NetCDF file name

The random number generator's
seed value.

Minimum number of molecules of
both reactant & product species
for approximation to a continuous
Markov process

Minimum rate of reaction for
approximation to a continuous
Markov process

Maximum relative effect of slow
reactions per numerical
integration of SDEs

Maximum values of drift& diffusion
error criteria

Maximum time step of numerical
integrator

Filename
Random Seed

Epsilon (&)

Lambda (1)

MSR Tolerance

SDE Tolerance

SDE time step

All None
All Randomized (system dependent)

All HyJCMSS simulation methods 100 molecules

All HyJCMSS simulation methods 10 molecules/sec

All HyJCMSS simulation methods /e

Adaptive Methods le-4

Fixed Methods 0.10 seconds or Save Time
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Each simulation program has a number of command-line
parameters that enable the user to tailor the accuracy and
efficiency of the simulation for a particular system. How-
ever, the user may elect to use default values of the param-
eters and obtain a reasonably accurate and efficiently
computed solution. A description of the parameters is
shown in Table 2.

Optimizing data structures

In the simulation programs, there are three types of
numerical operations where an optimized data structure
increases computational performance. When solving the
system of SDEs, we take advantage of the sparseness of
both the stoichiometric matrix and the system of two
dimensional stochastic integrals. By creating indexes and
inverse indexes that map the full system to a reduced one,
we minimize the computation of the solution of the SDEs.
We also use a dependency graph to only compute reaction
propensities and the derivatives of reaction propensities
when they may have changed, similar to the dependency
graph of the Next Reaction variant of the stochastic simu-
lation algorithm [13], but extended to include the pres-
ence of fast/continuous reactions and special events,
which are described below. Finally, we use an indexed pri-
ority queue to determine the reaction time corresponding
to the next zero crossing of the differential Jump equa-
tions and a sorted queue to determine the next special
event time that may occur. These optimizing data struc-
tures increase the efficiency of simulation, especially for
systems with numerous reactions and chemical species.

MPI parallelization

Each simulation program is embarrassingly parallelized
using MPI. Typically, numerous independent realizations
of the stochastic dynamics of a biochemical network are
desired. Each processor is allocated a number of inde-
pendent trials to simulate. If the number of independent
trials is divisible by the number of processors then the effi-
ciency of the implementation is near 100%. Parallel write
and read access is utilized so that no processor writes to
the same portion of the NetCDF at any time and all proc-
essors may read the NetCDF at any time. For example, if
10 000 independent stochastic simulations of a biochem-
ical network are desired and 500 processors are allocated
to the simulation program then the computational time
of the program will, in fact, be reduced by about 500
times. Computing clusters with thousands of processors,
such as the NSF supported TeraGrid [31], enable this high
level of research productivity.

Because we use MPI as our underlying programming
model for processor-to-processor communication, we can
also readily extend each simulation program's usage to a
grid computing environment, such as one utilizing
MPICH-G2 [32]. A grid computing environment allows a
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program to utilize computing processors from multiple
different computers. The computers may be geographi-
cally separated and joined with a high bandwidth, but rel-
atively high latency, communications connection. Due to
the high latency, it is important to minimize the blocking
processor-to-processor ~ communication,  which s
achieved with our current implementation. Running a
program on a previously configured grid environment can
be as simple as constructing a short script and executing a
command.

Solution of a hybrid jump/continuous Markov process

Consider a homogeneous system of M reactions and N
species with a stoichiometric matrix, v, a vector of reaction
propensities, a, and a state vector, X, consisting of the
number of molecules of each species. The system is
dynamically partitioned into fast/continuous and slow
reaction subsets with Mfast and Mslow reactions, respec-
tively. The jth reaction is classified as fast/continuous if
and only if the following is true:

a;(t) 2>>1

X; (1) > & |vy| i e {reactant or product of jth reaction}'

(1)

where & and A are the parameters described in the above
sections. The above criterion is evaluated with each itera-
tion of the algorithm. The reaction propensities for the
fast/continuous and slow reactions are respectively
labeled afand as.

The fast/continuous reactions are approximated as a con-
tinuous Markov process by performing an Q-expansion of
the governing Master equation and deriving a multi-
dimensional Fokker-Planck equation [39]. The Fokker-
Planck equation describes the evolution of the probability
distribution of the system considering the effects of only
the fast/continuous reactions. Or, equivalently, one can
determine a system of [t6 stochastic differential equations
that describes how the state of the system evolves over
time, ignoring the occurrences of the slow reactions. For
chemical reaction networks, the system of It6 stochastic
differential equations is named the chemical Langevin
equation [27], stated as

M fast M fast

X = Y, vyal (XO)+ Y, v fal (X)W, @
=1 =

where the dW refers to a vector of Wiener increments of
the multidimensional Wiener process.

The slow reactions are described as a jump Markov proc-
ess, whose events have waiting times that are distributed
according to a time-dependent probability distribution.
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The time dependence arises from changes in the state vec-
tor due to the numerical integration of the chemical Lan-
gevin equation. In order to explicitly account for this time-
dependence, we have previously derived [26] a system of
differential Jump equations,

dR;
—L=a}(0, Rit,)=1og(URN)), j=1..M"", (3)

which describe the rate of change of a system of reaction
residuals, R. A slow reaction occurs when its correspond-
ing reaction residual performs a zero crossings from a neg-
ative to positive value. By numerically integrating the
system of differential Jump equations along with the
chemical Langevin equation and monitoring the zero
crossings of the reaction residuals, one can account for the
coupled nature of the jump and continuous Markov proc-
esses and accurately compute the times of the slow reac-
tions. One can also perform an Itd6-Taylor expansion
around each reaction residual to predict the time of the
next zero crossing. Note that, because of their dependence
on the state vector, the system of differential Jump equa-
tions are also It6 stochastic differential equations, but do
not contain a Wiener process. In addition, if the jump and
continuous Markov processes are uncoupled or if there are
only slow reactions, then the system of differential Jump
equations simplify to the Next Reaction variant [13]
method of computing the reaction times.

By using stochastic differential equations to describe both
the effects of the fast/continuous reactions and the times of
the slow reactions, we now have a considerable amount of
numerical integration theory at our disposal. We have
implemented four different stochastic numerical integra-
tors to compute the solution of Eqs (2) and (3), both fixed
and adaptive schemes. When we use a fixed scheme to
numerically integrate Eqs (2) and (3) we must include the
Multiple Slow Reaction (MSR) approximation criteria in a
special fashion. An efficient method of including the tol-
erance is to numerically integrate Eq. (3) forward in time
until either the number of zero crossings has maximally
satisfied the MSR tolerance value or the time step is equal
to the chosen fixed time step. One then uses the same time
step to numerically integrate Eq. (2). If the MSR tolerance
is small, the time step may change during the simulation.
However, the method still has the properties of a fixed
scheme because the Wiener increments are only evaluated
once and no conditional probabilities are required. The
global error of this scheme is no worse than a normal
fixed scheme because enforcement of the MSR tolerance
always decreases the utilized time step, generating a
smaller local error. When using an adaptive scheme to
solve Egs. (2) and (3), we simply half or double the time
step based on the MSR criteria in addition to the other cri-
teria.
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We now briefly describe each numerical integration
scheme we use, but note that more comprehensive deriva-
tions of these methods are available[28].

The fixed euler-maruyama method

The Euler-Maruyama method is an explicit stochastic
numerical integration method with strong accuracy of
order O(VAt). It is derived from the It6-Taylor expansion
around the solution, truncating after the diffusion term.
Applied to the chemical Langevin equation, it is stated as

M Sast M fast

xE = xF+ Y vl (X)ac+ Y v ol (xXF)aw, (4)
j=1 =1

where AW(1); is a normal Gaussian random number with
a mean of zero and a variance of At. Applied to the differ-
ential Jump equations, the scheme is simply

k+1 k k
R™ =R} +aj(X")At (5)

The fixed milstein method

The Milstein method is an explicit stochastic numerical
integrator with strong accuracy of O(At). The increased
accuracy originates from retaining terms of O(At) in the
[to-Taylor expansion around the solution. These addi-
tional terms contain two-dimensional stochastic integrals,
which are defined as

t+At

(1) = | dW()dW (D). (©6)
t

The two dimensional stochastic integrals are used to
describe the time evolution of a random variable that is
dependent on multiple Wiener processes. For a single
Wiener process or when j; = j,, a single realization of Eq
(6) simplifies to the evaluation of

G 70)= (8w ) - . )

However, for multiple different Wiener processes, there is
no analytic expression for realizations of Eq (6). Instead,
once can Fourier expand Eq. (6) in terms of Gaussian dis-
tributed coefficients and generate strong approximations,
using

I(j1.j2) = Al{%fﬂf;‘z +Pp (.Uﬂé:jz - U )}

At &
+7

= %{Q‘u (NV2&2 + M2 ) = o (N2 + 11 )} )

r=1

: 11 &1
with a P-dependent constant pp = —— — 27
12 2 r=1T
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where ¢

i 7 and g are independent normal Gaussian

random numbers, N(0,1), and & is related to the Wiener

increments via &; = ﬂ forj=1..Mfstandr=1..P
i A j=1.. =1..D.
The constant P arises from the number of retained terms
in the Fourier expansion and controls the accuracy of the
approximation. We set P to 10 to generate reasonably
accurate realizations of the two dimensional stochastic
integrals without requiring an excessive number of nor-

mal Gaussian random numbers.

Applied to the chemical Langevin equations, the Milstein
scheme is stated as

M fasst M fast

X = x4 Y vl (Xac+ Y vy faf (xF)aw
j=1 j=1

fast k
1M X aj (X*) da;
= Y D v k ~1(j1,j2)
2f1r72:1":1 nr 4j, x) I Xy

where the first summation of the third term is taken over
all possible combinations of a pair of fast/continuous
reactions. Conveniently, because the stoichiometric
matrix is typically sparse, there will be many zeros in the
summations of the third term. After classifying reactions
as fast/continuous or slow we create an index of all non-
zero values and only compute the needed two dimen-
sional stochastic integrals and coefficients. Because the
differential Jump equations lack a Wiener process, the
Milstein scheme applied to them is the same as in Eq. (5).

, ()

Adaptive methods

Our implementation of an adaptive time step scheme
involves a three step process: evaluation of criteria that
measure the local error of the solution, the halving or
doubling of the time step according to the value of the cri-
teria, and the determination of the Wiener increments cor-
responding to the decreased or increased time step. We
restrict ourselves to only halving or doubling the time step
for two reasons. The first is that the structure of the Brown-
ian bridge becomes a Brownian binary tree and allows for
easy storage and retrieval. The second is that, because the
chemical Langevin equation contains multiple, non-com-
mutative, multiplicative noise sources, it is not straightfor-
ward to calculate the necessary 2D stochastic integrals
without simplifying the time step selection scheme.

We use a previously proposed set of criteria [30] that
measure the local error in both the drift and diffusion
components of the solution. The drift local error is meas-
ured by computing the difference between the Euler and
Heun methods, which is

http://www.biomedcentral.com/1471-2105/7/93

Ea(x,a0) = H%(f’(x" s (x))- (5 ))L, (10)

da;
where f’(x) is the matrix, 7] | x - The drift local error is
AL

of order O(At2). The diffusion local error is measured by
performing an Ito6-Taylor expansion of the Milstein
scheme and selecting an O(At3/2) term that is most effi-
cient to compute. The diffusion criteria is

AW? oa; ;
k 1 j j j
E(X; At) = —|| ——=— |*| vij— |\ Vi —— 11
( i ) 12 { a]-(Xk) ( ji (’}Xi IX’ J ji &X,- ‘X}( B ( )

The max norm is taken to be the maximum absolute sum
along the j dimension. A third criterion is that the num-
bers of molecules of all species affected by fast/continuous
reactions must remain above a certain threshold, which is
arbitrarily taken to be 20 molecules. The latter criterion
will force the fast/continuous reactions to remain reason-
ably approximated as a continuous Markov process dur-
ing the interval of numerical integration. We evaluate Egs.
(10) and (11) and also the third criterion for each species
in the system and consider the local error to be small only
when Egs. (10) and (11) are less than the user-defined tol-
erance value and when the third criterion is true.

Time increments are described using a binary tree struc-
ture. The top node, or row, is the initial time step of the
simulation. Additional nodes and rows are created by
halving the time step of parent nodes. The number of
nodes of each row is always 2R! and the current time step
is always At /2R-1, where R is the row number, starting at
one, and At is the initial time step. If the local error is
large, we halve the time step and move down a row. If the
local error is small, we may double the time step and
move up a row, but only if the number of the current
node, or branch, is divisible by two. If the branch is not
divisible by two, we simply maintain the time step. As we
successfully numerically integrate forward in time, we
increment the branch number.

The main reason for using the binary tree described above
is to efficiently compute the Brownian bridges. At the top
row of the tree, the Wiener increments for the initial time
step are computed. When the time step is decreased we
may not re-evaluate a Wiener increment for the halved
time increment because the value of the Wiener process at
the final time has already been evaluated. Instead, we
must compute the Wiener increment of the halved time
step, conditioned on the value of the beginning and ending
Wiener process. To generate the intermediate Wiener
increments, we use
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The main window of the graphical user interface.

(Un)Save Selected Species

[ -
AW, =~ AW "+y, p=0123.2""-1

AW :%AWI,T_I -7 r=23..,R (12)

7p=N(0.27)

where N(m, ¢2) is a Gaussian random number with mean
m and standard deviation o

In this way, previously generated Wiener increments are
always reused and new intermediate Wiener increments
are always conditioned on previously generated ones. In
addition, realizations of the two dimensional Itd integrals
for a particular time increment must never be generated
twice. The values of the Wiener increments, the current
time step, and the two dimensional It6 integrals are then
inputted into either the Euler-Maruyama or the Milstein

numerical integrators and a trajectory of the system's
dynamics for the next time step is obtained.

The graphical user interface

The graphical user interface allows users to quickly create
biochemical networks, set the necessary parameters and
model data, and create the input NetCDF file. We use the
open source project MexCDF [33] to create and compose
NetCDF files from within Matlab. The graphical interface
consists of one main window (Fig 1) with multiple auxil-
iary windows. Two of the auxiliary windows are shown in
Figures 2 and 3. The model data includes the system of
chemical or biochemical reactions, the initial conditions
of species, the initial volume, the start and end times, the
number of save time points, and the number of independ-
ent trials. Users may also add special discrete events,
including cell replication events, gamma-distributed reac-
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Figure 2

Two auxiliary windows showing the interfaces for adding reactions and setting initial conditions.

tions, and timed perturbations to both the numbers of
molecules of any chemical species or the kinetic parame-
ters of any reaction. Finally, to help perform a simple sen-
sitivity analysis, users may also create multiple models
within a single NetCDF file, where each model has a dif-
ferent set of initial conditions or kinetic parameters of
reactions.

Adding reactions and setting initial conditions

For each reaction, the user enters the stoichiometry of the
reactant and product species, the rate law, and the kinetic
parameters (see Fig 2). There are eleven different rate laws
currently available and instructions for adding more are
included. Besides the commonly used mass action rate
laws, we included other rate laws that have been shown to
be useful, such as generalized power law kinetics [34],

special gamma-distributed events [13], and Michaelis
Menten (M-M) type rate laws [35]. To make the process of
adding reactions more efficient, the GUI will assume mass
action kinetics and fill in the appropriate information in
the species boxes (Fig 2, below the 'Add Reaction' button).
The user can then enter in the kinetic parameters for the
reaction or select an alternate rate law from the list and fill
in the necessary information. By separating the stoichiom-
etry of the reaction from its rate law, the software gives the
user increased flexibility in adding a wide variety of reac-
tions. The initial conditions for each chemical species are
entered in units of molecules. Species may be selected to
'Split On Division' (SOD) so that, with every cell replica-
tion, the number of molecules of the selected species are
distributed to two daughter cells. Because one is typically
not interested in the stochastic dynamics of every species
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An auxiliary window showing the interface for adding systematic variations of kinetic parameters or initial

conditions

in a model, the software also allows users to discard or
save the solution data of each species.

Adding special events

Biological systems often exhibit behaviours that are not
easily modeled by a system of biochemical reactions. To
aid in better simulating such behaviour, we include mul-
tiple types of special events, each describing a specific bio-
logical process. While sometimes ignored or
approximated as a continuous rate of dilution, cell repli-
cation is more accurately modelled as a discrete event that
disperses soluble molecules to daughter cells. The times at
which cells divide are not constant, but typically fluctuate
around an average with a Gaussian distribution. On the
main GUI window, users may enable cell division special
events and enter the mean and standard deviation of the

cell replication times (Fig 1). The volume of the cell, start-
ing from the initial value, increases exponentially with a
rate equal to the inverse of the mean cell replication time
and is reset to the initial volume when cell replication
occurs.

Transcriptional and translation elongation is another
process that is typically ignored, but may significantly
affect the qualitative dynamics of the system through the
introduction of both a delay in mRNA and protein pro-
duction and an increase in stochasticity. One may
describe the movement of the RNA polymerase or ribos-
ome inchworming across the DNA or mRNA as a system
of N first order reactions, where N is the number of base
pairs or codons. However, because N is typically very large
and decreases the efficiency of the simulation, one can
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Fast/Continuous Reactions

Slow Reactions

A+B—>C+F k=172 kf
C+D—>E+B k=k
E+F>D+A k=32 k

k;= 1505500 [M sec]"!
Q ={100, 200, 316, 1000, 3162 10 000} [Molecules]
#A, = #B, = #C_ = #D = #E = #F, = Q, #G_ = #H_ = 0 [Molecules]

E+B—>G

A+D—-H

k.= 1.0 Na V/Q2[M sec]"!
V = le-15 [Liters] T = [0, 10] [seconds]

assume that the rate of elongation, k, is constant and
derive a single gamma-distributed event for the entire
process of elongation [13]. When adding reactions, users
may elect to describe the transcriptional and translation
elongation events as gamma-distributed with rate k and N
steps, providing an effective balance between accuracy
and efficiency.

It is often convenient to modify the kinetic parameters of
a reaction or the number of molecules of a chemical spe-
cies mid-way through a simulation in order to test the sys-
tem's response to an external perturbation or model some
complex phenomenon. For example, one can model the
addition of an inducer at some time by either increasing
the number of molecules or increasing the rate of influx of
the inducer midway through the simulation. One can also
increase the influx of a receptor-binding ligand at some
time to determine the response characteristics of a signal
transduction network. Multiple perturbations to the sys-
tem can model complex external behaviours. System per-
turbations are added in an auxiliary window, reachable
from the main window.

Specifying multi-model NetCDF files and simulations

While studying a natural biological system or designing a
synthetic one, scientists and engineers would often like to
vary a kinetic parameter or initial condition of the biolog-
ical model and determine its effect on the dynamics of the
system. Instead of constructing numerous separate
NetCDF files, each containing one set of model and solu-
tion data, Hy3S allows users to create a multi-model
NetCDF file. A multi-model NetCDF file may contain
multiple different biological models, each containing dif-
ferent kinetic parameters of reactions or initial conditions.
If a simulation program is given a multi-model NetCDF
file it will simulate the stochastic dynamics of each model,
including the specified number of independent trials, and
place the solution data back in the NetCDF file. The solu-
tion data is then four-dimensional (Number of Models x
Number of Trials x Number of Timepoints x Number of
Saved Species) and can be wholly or partially read into a
data analysis program, such as Matlab. One can then per-

form a simple sensitivity analysis of a biological model by
varying one or more parameters, simulating the stochastic
dynamics of each model, and analyzing the dynamics as a
function of a parameter.

In order to specify a multi-model NetCDF file, the user
may select an Experiment Type of 2 or 'Combinatorial var-
iation of kinetic parameters and initial conditions' and
add variations by pressing the newly named button below
the drop down menu (Fig 3). Kinetic parameters or initial
conditions may be varied from a start to end value with
any number of either linear or logarithmic steps. Adding
two or more variations will cause the GUI to compute all
combinations of each specified kinetic parameter and ini-
tial condition and place the appropriate information in
the NetCDF file. Users may also construct an arbitrary list
of kinetic parameters and initial conditions and place the
information in the NetCDF file, which is helpful if one
would like to vary one kinetic parameter and apply some
constraint to others. For example, one may want to vary a
backward kinetic constant while keeping the equilibrium
constant unchanged. Creating multi-model NetCDF files
helps to combine multiple models into a single, compact
form, containing all of the model and solution data and
enabling faster data analysis.

Creating complex biochemical networks and analyzing data with
scripts

The graphical user interface provides a fast way to create
small to medium sized biochemical networks. However,
one would often like to create a very large network which
has some special structure or characteristic. While one
could enter in these reactions by hand, it is often more
convenient to write a short program, or script, that con-
structs the biochemical network and places the necessary
information in the NetCDF file. Because the NetCDF for-
mat is open and contains APIs in many different program-
ming languages, many scientific applications may read
and write NetCDF files. These scientific applications often
contain miniature programming languages with many
useful pre-built functions and enable users to program
highly complex tasks in a small amount of time. We use
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Probability Distributions of the Non-Linear Cycle Test. Probability distributions of species (Top) E and (Bottom) H of
the Non-Linear Cycle Test at a time of 10 seconds for increasing system sizes, ranging from 100 to 10 000. The chemical Lan-
gevin and differential Jump equations are integrated using a fixed Euler-Maruyama scheme with a time step of 0.01 seconds. Al

other parameters are set to default values.

the open source project MexCDF [29] to enable Matlab to
read and write NetCDF files.

By combining the easy-to-use GUI with the capabilities of
scripting, one can create any arbitrary biochemical net-
work, possibly with thousands of reactions and chemical
species, to answer a wide variety of research questions.
Because of the variety of possible biochemical networks, it
is not feasible to write a user interface to include every-
thing. Instead, users may use the GUI to begin construct-
ing a biochemical network and use scripting to extend that
network for any particular purpose. For example, one can
examine the effects of gene dosage on the dynamics of a
gene network by using the GUI to construct a single copy
gene network and a script to duplicate all DNA sites and
their corresponding reactions to a specified copy number.
One can also use scripting to quickly construct signal
transduction networks which often have a combinatori-
ally large number of chemical species due to numerous
protein-protein interactions. We include a few example
Matlab scripts that read and write Hy3S NetCDF files to
help users write their own.

The obstacles to simulating large, realistic biological sys-
tems include not only construction and simulation of the
model, but also the analysis of the solution data. Because
the solution data set can be large, especially for multi-

model NetCDF files, it is often necessary to read in only a
portion of the solution at a time. Not all file formats allow
one to read in a subset of data. However, NetCDF is spe-
cifically optimized for direct access mode. One can easily
read or write hyperslabs of data using a NetCDF API, such
as MexCDF in Matlab. For example, if one wants to com-
pute a probability distribution of a particular species at a
single time point then only a very small subset of the data
needs to be read, which is easily performed and saves a tre-
mendous amount of time. In addition, when constructing
multi-model NetCDF files, one can extract the solution
data along the model dimension, allowing for the easy
analysis of the effects of a kinetic parameter or initial con-
dition. Combining the optimized NetCDF format, the
MexCDF interface, and Matlab functions, one can quickly
analyze solution data using a variety of techniques, create
figures, and achieve high research productivity.

Results

We present three examples to examine different character-
istics of Hy3S. The first example is a simple one that thor-
oughly analyzes the accuracy of the HyJCMSS numerical
method. The second example is a large scale system
benchmark with up to twenty thousand reactions that
explores Hy3S's ability to simulate large biochemical net-
works. The third example, a bistable multiscale biochem-
ical network with spontaneous escape, demonstrates
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Weak mean and variance errors of the Non-Linear
Cycle Test. The average normalized weak (Top) mean and
(Bottom) variance errors of the Non-Linear Cycle Test using
the Euler-Maruyama scheme with a fixed time step of 102
seconds and system sizes of (red) 100, (green) 200, (blue)
316, (magenta) 1000, (cyan) 3160, and (black) 10 000. All
other parameters are set to default values.

Hy3S ability to simulate complex, realistic networks. All
reported computational times are from simulations run
on Itanium?2 1.5 Ghz processors.

An extensive test of accuracy

When we first proposed the numerical method simulating
a hybrid jump/continuous Markov process [26] we ana-
lyzed the method's accuracy with numerous examples,
including a simple reaction network consisting of a linear
three-cycle of fast/continuous reactions and two non-lin-
ear slow reactions, named the 'Cycle Test'. However, we
would like to demonstrate that the method's accuracy is
not limited to linear fast/continuous reactions. Here, we
use a 'Non-linear Cycle Test', containing three fast/contin-
uous and two slow reactions (described in Table 3) and
perform a series of accuracy measurements to determine
how the error in the probability distribution, mean, and
variance of the solution changes with the system size. The
system size is a parameter in the reaction network that
describes how well the fast/continuous reactions may be
validly approximated as a continuous Markov process.

http://www.biomedcentral.com/1471-2105/7/93

Here, we take the system size to be the number of initial
reactant and product molecules in the fast/continuous
reactions.

The hybrid jump/continuous Markov stochastic simulator
has two sources of error. The first is the approximation of
the fast/continuous reactions as a continuous Markov
process. The second is the numerical integration of the
chemical Langevin and differential Jump equations. As
the system size is increased, we expect that the first com-
ponent of the error to decrease. As we decrease the time
step of numerical integration, the second component of
the error should also decrease. The magnitude of the sec-
ond error is proportional to At, where y is either the
strong or weak order of accuracy of the stochastic numer-
ical integration method, depending on the definition of
the error. By varying the time step of numerical integra-
tion, we can measure the contribution of the second error
source.

Ideally, to compare the HyJCMSS method using either the
Euler-Maruyama or Milstein schemes, one should com-
pute the strong error of the solution by comparing the dif-
ferences in the trajectories between the hybrid approximate
and exact solutions. To compute the strong error of the
numerical solution of a system of stochastic differential
equations (SDEs), one fixes the Brownian paths of the sys-
tem and compares the evaluation of the solution using
either different numerical schemes or, if available, an
exact analytical solution. However, because we are simu-
lating a coupled jump/continuous Markov process, it is
more difficult to 'fix' the random process and evaluate the
strong error. Consequently, we will only compute the
weak mean and variance errors and, for easier compari-
sons, normalize them with respect to the exact mean and
variance, so that

o] o)

Abeant) = E[ x50 ] (13)
A ()= Var{X,SSA(t)}_Var{XlHyss(t)H.
var () = Vaf{ XiSSA (t)}

Both the hybrid approximate and the exact mean and var-
iances are computed by running at least 10 000 independ-
ent trajectories of the system. By using the weak definition
of error, we should find that both the Euler-Maruyama
and the Milstein numerical schemes have an order of
accuracy of 1.0. We also compute the probability distribu-
tions of the exact and hybrid approximate solutions and
the average, normalized weak mean and variance errors,
where the average is taken over all time points and species.
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Effect of integrator time step on weak mean and var-
iance errorsThe average normalized weak (blue) mean and
(red) variance errors of the Non-Linear Cycle Test with a
system size of 10 000 using the fixed time step Euler-Maru-
yama scheme with time step values ranging from 10-6 to 10-2
seconds. All other parameters are set to default values.

For all of the following simulations, we use the default
values of the HyJCMSS parameters, which are (g 4, MSR
Tol) = (100, 10, 0.01), where MSR Tol is the maximum
tolerance for the Multiple Slow Reaction approximation.
We begin by using the Euler-Maruyama scheme with a
fixed time step of 0.01 seconds. As we increase the system
size of the Non-Linear Cycle Test from 100 to 10 000, the
ratio between the standard deviation and the mean of the
solution goes to zero, indicating that we are effectively
going towards the thermodynamic limit. The probability
distribution of the solution is accurately captured for all
system sizes and for both types of species, ones which are
and are not affected by fast/continuous reactions (Fig 4).
At a system size of 100, the HyJCMSS method treats at
least two of the putative fast/continuous reactions as slow
because the numbers of reactant or product molecules are
so few. As the system size increases to 200 and larger val-
ues, all of the fast/continuous are, in fact, fast/continuous.
Notice, however, that there is no noticeable difference in
the solution between the system sizes of 100 and 200. The
HyJCMSS method dynamically classifies reactions as fast/
continuous, approximating them as a continuous Markov
process only when it will produce an accurate solution. If
there are no fast/continuous reactions, the method auto-
matically reverts to the Next Reaction variant of the sto-
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Effect of adaptive scheme's user-defined tolerance on
weak mean and variance errors. The average normalized
weak (blue) mean and (red) variance errors of the Non-Lin-
ear Cycle Test with a system size of 10 000 using the adap-
tive time step Milstein scheme with user-defined SDE
tolerance values ranging from 10-2to 10-5. All other parame-
ters are set to default values.

chastic simulation algorithm. This combination of
dynamic classification and algorithm switching makes the
HyJCMSS method a drop-in replacement for the original
stochastic simulation algorithm and its variants.

While increasing the system size, the stiffness of the chem-
ical Langevin equation also increases. Stiffness is a meas-
ure of the disparity of timescales in a system of differential
or other time-evolution equations. In Figure 5, we show
the normalized weak mean and variance errors for
increasing system sizes. By keeping the time step constant
even as the system becomes more stiff, the second source
of error increases, arising from the numerical integration
of the SDEs. Notice that only the weak variance error
increases with increasing system size while the error in the
mean marginally decreases. This observation indicates
that the stiffness originates from the terms containing the
Wiener process, such as the diffusion term, and not the
macroscopic terms, known as the drift. In order to obtain
an accurate solution in terms of both the variance and the
mean, we must use a time step that accounts for stiffness
in either the drift-dominated or diffusion-dominated
regimes. By decreasing the time step of numerical integra-
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Table 4: Comparison of computational times of a large-scale system benchmark

R¢ R, Fixed EM Time (seconds) Fixed Milstein Time SSA Time (seconds)
(seconds)
2 | 0.0222 0.0632 5.870
2 100 0.5240 0.5792 54.07
2 1000 45.43 45.30 694.52
10 1000 44.78 44.39 348l
100 1000 47.71 48.34 34633
1000 1000 93.76 326.54 > 300 000
2 10000 33%4.1 3970.9 12 159
100 10000 47038 4736.1 > 600 000
1000 10000 5164.5 53379 ND
10000 10000 13099.0 30601.5 ND

The computational times of a large-scale system benchmark using the fixed Euler-Maruyama (EM) and Milstein implementations of the Hy)JCMSS
algorithm and the Next Reaction variant of the stochastic simulation algorithm (SSA). ND: Not Determined

tion, we reduce the weak variance error with little change
in the weak mean error (Fig 6).

It would be highly useful to automatically and dynami-
cally determine a time step that produces only a small
amount of numerical error, in terms of both the weak
mean and variance. Here, we use our implementation of
the adaptive Milstein method to examine how the user-
defined tolerance affects the accuracy of the solution of
the Non-Linear Cycle Test. Using a system size of 10 000,
we vary the user-defined tolerance from 105 to 102,
showing the weak mean and variance errors in Figure 7.
While alleviating the user from determining an accurate
time step, adaptive time stepping schemes have a higher
overhead than fixed step ones and may require more
computational time. However, if the system only exhibits
transient or intermittent stiffness, then an adaptive time
stepping scheme may be more computationally efficient
by using a smaller time step when the system is stiff and
a larger one when it is not. Further work in this area is
anticipated.

One important characteristic of the HyJCMSS method is
that it converts the solution of a hybrid system governed
by both Master and Fokker-Planck equations into the
solution of a system of stochastic differential equations.
The theory behind the numerical solution of SDEs has
developed well enough that one can describe the asymp-
totic convergence properties, leading orders of accuracy,
and numerical efficiency of a variety of numerical
schemes that solve a large class of Wiener process driven
SDEs, including the chemical Langevin and differential
Jump equations. By testing the accuracy of the method on
a small, but fully non-linear, example, we can demon-
strate that the method's accuracy is fully governed by the
numerical integration of the SDEs and that the accuracy
may be controlled with a small number of user-defined
parameters, such as the time step of numerical integration
or the maximum tolerance of the local error.

Benchmarks

The Non-Linear Cycle Test is a toy system that demon-
strates the accuracy of the HyJCMSS method. However,
realistic systems contain many thousands of reactions and
chemical species. We use a large-scale system benchmark
to test the computational efficiency of HyJCMSS when
simulating large biochemical networks. The large-scale
system benchmark is a system of R;bi-molecular 2nd order
fast/continuous reactions coupled to another set of R, bi-
molecular 2nd order slow reactions. The total number of
reactions and chemical species are, respectively, R; + Rs
and 3R+ 2 R,. The minimum degree of the dependency
graph of the reaction propensities is always greater than
Ry/R¢ + 1, making this network less sparse than most bio-
chemical networks. We increase Ryand R;and measure the
computational times of a simulation of a single trajectory
using the HyJCMSS method with either the Euler-Maru-
yama or Milstein schemes with fixed time steps and also
the Next Reaction variant of the stochastic simulation
algorithm. Because the system is relatively non-stiff, we set
the time step of numerical integration to 0.1 seconds. In
Table 4, we show the computational times when varying
both Ryand R, from one to 10 000 reactions. The largest
benchmark reaction network then has 20 000 reactions
and 50 000 chemical species. It is clear that the HyJCMSS
method is much faster than the stochastic simulation
algorithm and that, to simulate large biochemical net-
works with only a few fast/continuous reactions, it is
highly necessary to use a hybrid stochastic method.

A complex bistable biochemical network with multiple
timescales and spontaneous escape

Hy3S can also speed up the simulation of complex bio-
chemical networks that exhibit interesting stochastic phe-
nomena. To demonstrate its capabilities, we construct a
hypothetical reaction network that features commonly
found biological processes and generates behavior unique
to random dynamical systems. The proposed biochemical
network exhibits bistable behavior with spontaneous
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Table 5: A bistable biochemical network with multiple timescales and spontaneous escape

Reactions Kinetics Reactions Kinetics
SI +P—>SI:P k, I— Ef kg
S2+P — S2:P k| E—J ks
S3+P —S3:P k - Ef ke

S4 + P — S4:P k, E—>J k;

SI:P + S2:P — SI:P,:S2 k, Ef+ P — EfP kg

SI:P +S3:P — SI:P,:S3 k, E:P — Ef+ P kg

SI:P + S4:P — SI:P,:54 k, EfP — Ef+ P* kg2t
S2:P + S3:P — S2:P,:S3 k, Eb+ P — Eb>:P kg

S2:P + S4:P — S2:P,:54 k, Eb:P — Eb+ P kg

S3:P + S4:P — S3:P,:54 k, Eb:P — Eb + P* kg
SIP—>SI+P k| P:O + RNAP — P:O:RNAP ko
S2:P—>S2+P k. P:O:RNAP — P:O + RNAP k1o
S3:P>S3+P k| P:O:RNAP — P:O + RNAP:DNA k|

S4P >S4 +P k. P:O + (S1:P,:S2);—> P:O* kjp
S1:P,:82 — SI:P + S2:P k| P:O* — P:O + (S1:P,:S2); k_j2
S1:P»:S3 — SI:P + S3:P k. P:O* + RNAP — P:O*:RNAP ki3
S1:Py:S4 — SI:P + S4:P k. P:O*:RNAP — P:O* + RNAP k.3
S2:P,:S3 — S2:P + S3:P k| P:O*RNAP — P:O* + RNAP:DNA kg
$2:P,:S4 — S2:P + S4:P k. RNAP:DNA — RNAP + mRNA ks, Nys
$3:P,:S4 — S3:P + S4:P k| mRNA + Rib — Rib:mRNA ke

2 S1:Py:S2 — (SI:P:S2), ky Rib:mRNA — mRNA+Rib:mRNAI k7
S1:Pp:S2 + (S1:Pp:S2),— (S1:P»:S2); ks Rib:mRNAI — Rib + P kig Nig
(S1:Py:S2),— 2 SI:P,:S2 k., mRNA - ko
(S1:Py:S2)3— S1:P,:S2 + (S1:P,:S2), ks P —>J koo

Rate Laws & Kinetic Constants:
0th order: k, = 200 [molecules/sec]

Istorder: k=50, k= k3= 0.2, k;= 3.5, kg= ko= |, kg = 150, koe2t= 50, k ;o= k3= 0.1, k;; = 0.01, k_, = I.155e-3, k4= 0.2, k;; = 33, k;o=

2.31e-3, koo = I.1155e-3 [/sec]

2rd order: k, = 0.025, k, = le-3, ky = le-5, k, = 0.015 (mono-molecular), kg = 2.5e-4, ko = 8.47e-5, k o = 0.05, k;, = 0.01, k;3= 0.1, k;, = 5e-3

[molecules sec]-!
3rdorder: ks = le-4 (mono-molecular) [molecules? sec]-!

Gamma-distributed events: k5 = 30 nt/sec, N5 = 1200 nt, k;g = 33 aa/sec, N 3= 400 aa
Initial Conditions: #P_ = #P* | = 4000, #S1 = #S2, = #S3, = #54, = 1500, #Rib, = 300, #RNAP_ = 180, #Ef_ = #Eb_ = 250, otherwise 0 [Molecules]

The computational times of a large-scale system benchmark using the fixed Euler-Maruyama (EM) and Milstein implementations of the Hy)JCMSS
algorithm and the Next Reaction variant of the stochastic simulation algorithm (SSA). ND: Not Determined

transitions between stable states and contains multiple
timescales, including fast/continuous, fast/discrete, and
slow/discrete reactions whose classification change during
the simulation. The reactions in the network are extracted
from three different types of biological processes: regu-
lated gene expression, protein-protein binding interaction
networks, and a hypersensitive enzymatic futile cycle
commonly found in signal transduction cascades. This
example shows that Hy3S is capable of accurately repro-
ducing time-evolving multimodal distributions affected
by disparate timescales, while consuming much less com-
putational time. The biochemical reaction network con-
sists of 49 reactions and 32 species and contains five
coupled reaction modules:

e A protein-protein interaction network with monomers
S1 through S4 each capable of binding to a protein scaf-

fold, P. A scaffold bound to a monomer may also dimer-
ize to another bound scaffold to form a four-count
complex.

¢ The polymerization of S1:P,:S2 with itself to form both
(S1:P,:S2), and (S1:P,:S2);.

e A futile enzyme cycle consisting of two enzymes, Ef and
Eb, that rapidly deactivate and activate the scaffold, P.

¢ The Schlogl reaction network which generates bistability
and spontaneous transitioning in the number of mole-
cules of Ef.

e The transcriptional and translational initiation and
elongation of a gene which is activated by (S1:P,:S2), and
produces the scaffold protein, P.
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Distribution and trajectories of the Schlogl reaction
module(Top) The relative probability distribution of the
number of Ef molecules at 50 seconds. (Bottom) Out of 10
000 independent trajectories, the 225 shown here exhibit
spontaneous transitions from low to high or high to low
numbers of Ef molecules.

The reaction rate laws are all mass action kinetics with
parameters set to physiologically possible values. The
dynamical behaviour is qualitatively similar over a broad
range of kinetic parameters. The full biochemical reaction
network and its initial conditions and kinetic parameters
are listed in Table 5.

We simulate 10 000 trajectories of the biochemical net-
work between 0 and 2000 seconds using the HyJCMSS
algorithm with a fixed step Euler-Maruyama numerical
integration method and a parameter set of (& A, MSR Tol,
At) = (30, 10, 0.10, 2e-3). The hybrid method requires
only 82.0 seconds per trajectory while the Next Reaction
variant of the stochastic simulation algorithm requires
9980.6 seconds per trajectory for a total speed up of
121.7. Clearly, it would be highly impractical to run 10
000 trajectories of this system with the original method.
By using Hy3S, one can obtain the entire time-evolving
probability distribution of the system in about 227 cpu
hours. By using multiple processors, the actual time to
produce the solution may be reduced by up to 10 000
fold.

The dynamics of the biochemical network are both inter-
esting and complex. Starting from a single initial condi-

http://www.biomedcentral.com/1471-2105/7/93
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Figure 9

Branching of solution affects bound scaffold com-
plexes. An ensemble of 10 000 trajectories of the SI:P,:S3
scaffold complex, where trajectories are colored according
to the branch of the solution. The number of Ef molecules
resides in either the (red) low or (blue) high stable state.
Both the (black solid lines) mean and (black dashed lines)
mean * standard deviation are shown for both branches.

tion, the Schlogl reaction module causes the number of
molecules of enzyme Efto rapidly converge to a bimodal
distribution (Fig 8, top) with peaks at around 80 and 575
molecules and also to spontaneously transition from the
low to high stable states and vice versa (Fig 8, bottom)
with a specific rate of about 1.1e-5 sec! for either transi-
tion. While Ef fluctuates within its low stable state, the
number of active scaffold proteins is high, resulting in
larger numbers of bound scaffold complexes, complexed
dimers, and also complexed trimers (Fig 9). While Effluc-
tuates within its high stable state, the number of active
scaffold proteins is much fewer and all scaffold-contain-
ing complexes are reduced in number. Because the com-
plexed trimer, (S1:P,:S2);, activates transcriptional
initiation, the expression of the gene is also bistable,
including the numbers of mRNA transcripts and active
scaffold protein (Fig 10). The expression of the gene pro-
duces more active scaffold protein which results in greater
numbers of scaffold-containing complexes, including the
activator, and causing a general positive feedback loop. A
modest amount of leaky gene expression counters some
of the bistability in gene expression. Trajectories of Ef
which undergo a spontaneous transition between stable
peaks will quickly and dramatically change the number of
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Multimodal distributions of mMRNA and scaffold molecules over time. The relative probability distribution of the
numbers of (Left) mMRNA molecules and (Right) free scaffold molecules at (blue) 500 seconds, (red) 1000 seconds, and (green)

2000 seconds.

active scaffold proteins (Fig 11). The main point of this
example is that Hy3S enables the simulation of highly
complex biochemical networks in a practical amount of
computational time. A realistic biochemical network will
be at least as complex as this example and will contain
multiple disparate timescales. Hy3S can simulate these
systems whereas, in a practical amount of time, the exact
stochastic simulation methods can not.

Discussion

Hy3S, or Hybrid stochastic simulation for supercomput-
ers, enables scientists and engineers to simulate the sto-
chastic dynamics of arbitrary homogeneous chemical and
biochemical reaction networks. These models can accu-
rately capture the intracellular dynamics of biological
organisms at the single-cell level and may be used to both
study natural biological systems and design synthetic
ones. We have implemented our recently developed
hybrid jump/continuous stochastic simulation method
[26] (HyJCMSS) into a fully functional, robust software
package, capable of simulating models of biological sys-

tems with thousands of fast/continuous or slow reactions
and chemical species. We use four different stochastic
numerical integrators with either fixed or adaptive time
stepping and with different orders of strong accuracy. The
simulation programs utilize optimizing data structures
and are parallelized using MPI, enabling efficient simula-
tions on multiple processors. Multiple types of special
events are included, such as cell replication and transcrip-
tional and translation elongation, and additional ones are
easily added. The simulation program code is open source
and licensed under the Gnu General Public License (GPL).
We have also created a simple, easy to use GUI that allows
scientists and engineers to quickly create biochemical net-
works, add special events, and create multi-model simula-
tions. The NetCDF data format is open, self-describing,
and has APIs in numerous programming languages. The
APIs can access the data in direct access mode, enabling
fast read and write access to hyperslabs of data. NetCDF
files may be read and written in popular scientific applica-
tions, such as Matlab, allowing complex biochemical net-
works to be constructed and solution data to be efficiently
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Spontaneous escape results in rapid switching
between branches of solution. The effect of spontaneous
escape in the numbers of Ef molecules on the number of free
scaffold complexes, P. Trajectories are colored according to
their final solution branch, where the numbers of Ef mole-
cules transitions to either the (blue) high or (red) low stable
states. Only 20 representative trajectories are shown.

analyzed and plotted. Overall, Hy3S provides a high level
of research productivity throughout the entire process of
model composition, simulation, and analysis.

In the first public version of Hy3S, we have concentrated
on simulating homogeneous biological systems with
many fast/continuous and slow/discrete reactions. How-
ever, much of the theory behind the solution of a coupled
jump/continuous Markov process may also be applied to
heterogeneous systems. In addition, we and others have
recently developed an 'equation-free' probabilistic steady
state or partial equilibrium approximation that speeds up
the simulation of arbitrary biochemical networks with
'fast/discrete' and 'slow/discrete' reactions [36-38]. A reac-
tion is fast/discrete when it frequently occurs, but may not
be validly approximated as a continuous Markov process.
The method dynamically determines when the effects of a
subset of fast/discrete reactions have converged to a quasi-
stationary distribution, samples from the underlying dis-
tribution, and uses those samples to compute the time of
the next slow/discrete reaction along with the state of the
system at which it occurs. The method may be used in
conjunction with HyJCMSS to treat homogeneous sys-

http://www.biomedcentral.com/1471-2105/7/93

tems with many slow/discrete, fast/discrete, and fast/con-
tinuous reactions. Robust implementations of these and
other advanced hybrid stochastic methods will be added
to future versions of Hy3S.

Open source possibilities

By releasing the source code of Hy3S under the GPL, we
are offering the computational biology community the
ability to copy, modify, and distribute the Hy3S source
code with one main restriction: all distributed or pub-
lished modifications of the source code must also contain
the source code and follow the other restrictions of the
GPL. We are releasing the code in this fashion for a few
reasons. Most research projects have questions that a pre-
built software package may not specifically answer. By
modifying the source code to fit one's needs, one can tai-
lor the program for a particular research project. We have
designed the software to be as modular as possible to
allow the easier reuse of code segments. For example, each
simulation algorithm is encapsulated as a propagator, or
a single subroutine that is given the current state of the
system and returns the state of the system at some speci-
fied future time. One can greatly modify the program
without touching the innards of the simulation algo-
rithm. In addition, the simulation algorithms themselves
are structured to allow the easy insertion of additional rate
laws and special events. Instructions for adding additional
special events and rate laws are included.

Perhaps the best reason for opening up the source code is
that the field of stochastic chemical kinetics is still an
immature one. New algorithms are frequently published
and new techniques continue to be explored. By building
on top of Hy3S, one can accelerate the pace of algorithm
development and implementation while making newly
developed methods useful to the general public. Newly
developed algorithms can be fairly compared to current
ones and the ones with the highest merit can be immedi-
ately used by the community. Participation and collabora-
tion are always welcome. In this way, the software itself
will quickly improve and mature to the highest standards.

Conclusion

Hy3S allows scientists and engineers to compute the sto-
chastic dynamics of large, realistic chemical or biochemi-
cal networks with thousands of reactions and chemical
species. By using a recently developed hybrid jump/con-
tinuous Markov stochastic simulator (HyJCMSS), an accu-
rate solution is obtained using much less computational
time, as compared to the Next Reaction variant of the sto-
chastic simulation algorithm. The software is also paral-
lelized with MPI with near 100% efficiency, enabling high
research productivity on relatively inexpensive Linux
computing clusters, and contains numerous useful fea-
tures to more accurately model biological systems.
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Availability and requirements
Project Name: Hy3S, Hybrid Stochastic Simulation for
Supercomputers

Project Homepage: http://hysss.sourceforge.net/

Operating System: Platform-independent (source code
available)
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