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Abstract
Background: Multicategory Support Vector Machines (MC-SVM) are powerful classification
systems with excellent performance in a variety of data classification problems. Since the process
of generating models in traditional multicategory support vector machines for large datasets is very
computationally intensive, there is a need to improve the performance using high performance
computing techniques.

Results: In this paper, Parallel Multicategory Support Vector Machines (PMC-SVM) have been
developed based on the sequential minimum optimization-type decomposition method for support
vector machines (SMO-SVM). It was implemented in parallel using MPI and C++ libraries and
executed on both shared memory supercomputer and Linux cluster for multicategory classification
of microarray data. PMC-SVM has been analyzed and evaluated using four microarray datasets with
multiple diagnostic categories, such as different cancer types and normal tissue types.

Conclusion: The experiments show that the PMC-SVM can significantly improve the performance
of classification of microarray data without loss of accuracy, compared with previous work.

Background
Microarray data classification
In recent years the use of DNA microarrays has resulted in
the creation of large datasets of molecular information
characterizing complex biological systems. Machine
learning algorithms applied to DNA microarray data
based on molecular classification approach have shown
to have statistical and clinical relevance for a variety of

cancer types [1]. When applied to gene expression data, a
classifier begins with a set of genes that have a common
function. A separate set of genes that are known not to be
members of the functional class is specified. These two
sets of genes are combined to form a set of training exam-
ples in which the genes are labeled positively if they are in
the functional class and are labeled negatively if they are
known not to be in the functional class [2]. Using this
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training set, the classifier learns to discriminate between
the members and non-members of a given functional
class based on expression data. Having learned the expres-
sion features of the class, the classifier could recognize
new genes as members or as non-members of the class
based on their expression data. The classifier could also be
reapplied to the training examples to identify outliers that
may have previously been assigned to the incorrect class
in the training set. Thus, the classifier would use the bio-
logical information in the investigator's training set to
determine what expression features are characteristic of a
given functional group and use this information to decide
whether any given gene is likely to be a member of the
group.

Support Vector Machines
One strategy to solve classification problems is for the
computer to learn the input/output functionality from
training data. The learning algorithm attempts to find the
underlying target function which maps from the input to
the output. The estimate of the target function is known as
the solution of the learning problem, which is chosen
from a set of candidate functions that map from the input
space to the output domain. These candidate functions
are known as hypotheses. The learning algorithm takes
the training data as input and selects a hypothesis from
the hypotheses. The learning algorithm must have the
ability to correctly classify data that are not in the training
set, known as generalization [3].

When the learning problem deals with binary outputs, it
is referred to as a binary classification problem, and when
the problem deals with a finite number of outputs, it is
referred as multi-category classification problem. In recent
years, Support Vector machines (SVMs), a supervised
machine learning algorithm is being used to solve many
classification problems. SVM algorithm classifies the data
by finding the optimal hyperplane between the classes of
data. The focus is to maximise the margin between the
parallel hyperplanes (to the optimal hyperplane). The
training data which lie on the optimal hyperplane are
called support vectors. This maximum-margin classifier
was proposed by Vapnik Chervonenkis theory [4]. Many
improvements have been developed in recent years for
both binary and multi-category classification problems.
The approaches based on [5-7] have produced impressive
results. The algorithm based on [6], known as the sequen-
tial minimum optimization (SMO) algorithm [8,9],
solves the multi-category problem indirectly as it breaks
down the problem into independent binary classification
problems. The approach in [7] solves the problem
directly. The SMO algorithm can be parallelized as the
smaller independent tasks can be distributed among the
processing elements. The serial version of the SMO algo-
rithm has been implemented and freely available at [10],

named as LibSVM. The LibSVM code was used in this
project to be parallelized. This algorithm is described in
detail in a later section.

Parallel classification
MC-SVMs generate a set of diagnostic models based on
the training data and use decision functions to classify
new datasets. Though the number of models generated is
reduced by feature selection, the number of models gener-
ated is still very high [11]. This model generation is highly
computationally intensive and time consuming. As a
result there is a need to develop algorithms to reduce the
execution time for the classification of gene expression
data to make it more useful in practical applications. One
approach is to decompose the large scale problem in the
smaller problems and use multiple processors to solve the
sub-problems concurrently and reduce the execution
time. Unfortunately little work has been done in design-
ing and developing parallel SVM algorithms. A parallel
solver for large quadratic programs in training support
vector machines was developed based on the SVMlight [12]
which is an implementation of Vapnik's Support Vector
Machine [4]. However, this solver is developed for binary
classification [13,14]. In our work, a new Parallel Multi-
category Support Vector Machine (PMC-SVM) was devel-
oped based on SMO decomposition method for SVMs
(SMO-SVM) and source code of libSVM. The SMO decom-
position reduces the memory requirement of the algo-
rithm and is an efficient implementation. The task of
generating a large number of models is decomposed and
distributed among multiple processing elements (PEs).
The multicategory classification is broken down into
smaller independent binary classification problems and
assigned to each PEs. As a result the algorithm is very
memory efficient. The PMC-SVM has been implemented
in parallel using C++ and MPI, and tested on both shared-
memory supercomputer and distributed-memory Linux
cluster. The performance of PMC-SVM has been analyzed
and evaluated based on four microarray datasets with
multiple diagnostic categories [10,11]. The experiments
show that the PMC-SVM can significantly improve the
performance of classification without loss of accuracy, as
compared with previous work.

Results
PMC-SVM implementation and software
The PMC-SVM was implemented using C++ and MPI
based on the serial code available in LibSVM developed by
Chih-Jen Lin based on SMO-SVM. The experiments were
conducted on two platforms at the Mississippi Center for
Super Computing Research (MCSR) located at the Univer-
sity of Mississippi [15]. One is the shared-memory SGI
Origin 2800 Supercomputers (sweetgum) equipped with
128 CPUs, 64 gigabytes of memory, and 1.6 Terabytes of
fiberchannel disk. The other is a distributed memory
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Linux cluster (mimosa) with 251 nodes. PBS (Portable
Batch System) was used to submit the computational jobs
to the two platforms. The PMC-SVM will become publicly
available after further improvement and corroboration.

Performance evaluation results
The parallel program was executed on mimosa and sweet-
gum separately using four different training datasets. The
two datasets, Letter_scale and Mnist1_scale, are down-
loaded from [10]. The other two microarray datasets
14_Tumors and 11_Tumors are downloaded from http://
www.gems-system.org[11]. The details of the four datasets
are listed below

Dataset 1: Letter_scale

Classes: 26

Data size: 15,000 (training); 5,000 (testing)

Features: 16

Dataset 2: Mnist1_scale

Classes: 10

Data size: 21,000 (training), 49,000 (testing)

Features: 780

Dataset 3: 14_Tumors

Human tumor types: 14

Data file: 40 Mb

Normal tissue types: 12

Dataset 4: 11_Tumors

Data file: 18 Mb

Human tumor types: 11

To evaluate the performance of PMC-SVM, we have
designed six computational experiments that are different
combination of datasets and platforms, as listed in Table
1. The execution time and speedup corresponding to each
experiment are given in Table 2. The speedup S is defined
as

where Ts is the serial execution time and Tp the parallel exe-
cution time. For the convenience of comparison and anal-
ysis, the speedup and execution time are also plotted in
Figures 2, 3, 4, 5 and 6.

Performance improvement of PMC-SVM
From the experimental results, it is seen that the speedup
increases when the number of processors is increased.
Communication is needed only at the initial stage of par-
allel computing to dispatch the control parameters (e.g.,
the number of processing elements, p) and model param-
eters (e.g., the number of categories, k), and at the end of
parallel model generation to collect all trained models.
Thus, the speedup is close to ideal (linear) speedup and
efficiency, defined as the ratio of the speedup to the
number of PEs is high. In fact, when task decomposition
technique, instead of data decomposition, is used, the
communication cost is not significant in PMC-SVM. On
both platforms, PMC-SVM significantly improves the per-
formance of training multicategory models, compared
with serial results, as shown in Figures 2, 3, 4 and 5.

Prediction accuracy
After the PMC-SVM has been trained, the decision func-
tions can be used to classify new microarray data. This part
is not computationally intensive and can be easily imple-
mented in parallel using data decomposition techniques.
In case 1 with Letter-scale dataset, the training data size is
15,000 and testing data size 5,000. The classification accu-
racy of PMC-SVM is 82.24%. In case 2 with minist1_scale
dataset, the training data size is 21,000 and testing data
size is 49,000. The corresponding accuracy is 94.84%. The
accuracy results cannot be directly compared with previ-
ous work [13] because of different implementation of
SVM and techniques such as cross-validation used

Discussion
Influence of parallel platforms
PMC-SVM can be executed on both shared-memory
supercomputer and a distributed Linux cluster without
modifying the implementation when PBS is used to sub-
mit computation jobs. For the same dataset and the same
number of processors, the execution time on sweetgum is
less than that on mimosa (see Figure 3 and 5). This is
because the sweetgum is a shared-memory platform on
which the communication cost and the time to access the
shared data is lower. For the distributed Linux cluster, it
takes longer for two nodes to pass messages. While the
execution times of PMC-SVM are different on two plat-
forms, the speedups are very similar. The speedup on
sweetgum is slightly higher than that on mimosa.

For a distributed memory system, each processor has a
copy of data and communication cost is low, which is
similar to the case with shared-memory system. However,

S
T

T
s

p
= ( )1
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each node needs the same amount of the memory to hold
the entire dataset, which is memory inefficient. If data is
also partitioned on a distributed memory system, it uti-
lizes less memory but the communication cost is signifi-
cant and hence affects the performance.

Evaluation metric
To evaluate the performance of PMC-SVM, we may con-
sider computation performance evaluation metric (spee-
dup, memory and efficiency) and training/prediction
accuracy. In this paper, we compare the results from serial
and parallel programs. Both generate the same support
vectors and give the same prediction accuracy, which ver-
ifies the correctness of the parallel design and implemen-
tation. Even if the same datasets were used by other
researchers for training and testing SVM, it is hard to com-
pare the results in this paper with previous work because
the implementation and techniques in SVM are different.
The paper focuses on the parallel design, implementation
and the improvement of the computational performance,
while prediction performance is part of the future work.

Conclusion
PMC-SVM has been developed for classifying large data-
sets based on SMO-type decomposition method. For k
category problem, the system generates k(k-1)/2 submod-
els, each model solves the corresponding subproblem,
which is the most computationally expensive part in this
algorithm. The computation task is partitioned and sched-

uled among all of the available processors to improve the
performance. The PMC-SVM was implemented in MPI
and C++ based on the serial implementation of SMO-SVM
in libSVM. The performance is evaluated and analyzed on
both shared-memory supercomputer (sweetgum) and dis-
tributed-memory Linux clusters (mimosa). As an applica-
tion example, PMC-SVM was successfully trained using
four microarray datasets for multicategory classification.
The experimental results show that the high performance
computing techniques and parallel implementation can
achieve a significant speedup without loss of accuracy.

While this research focuses on classifying microarray data,
the PMC-SVM system developed can be easily applied for
multicategory classification of other large datasets.

Methods
Serial SMO-SVM
There are many implementations of SVM, such as libSVM
and SVMlight. libSVM was chosen as our basic serial pro-
gram, which was implemented by Chih-Jen Lin based on
SMO-SVM [10]. To elaborate the parallelization of PMC-
SVM, we first briefly introduce SMO-SVM here.

The basic idea behind SVM is to separate two point classes
of a training set,

D = {(xi,yi),i = 1,...N, xi ∈ Rn, yi ∈ {-1,1}},  (2)

Table 1: Sample Testing cases of PMC-SVM

Experiments Datasets Platforms Results

Case 1 Dataset 1
Letter_scale

sweetgum (SGI 2800) Table 2
Figure 2

Case 2 Dataset 2
Mnist1_scale

sweetgum (SGI 2800) Table 2
Figure 3

Case 3 Dataset 3
14_Tumors

sweetgum (SGI 2800) Table 2
Figure 4

Case 4 Dataset 4
11_Tumors

sweetgum (SGI 2800) Table 2
Figure 5

Case 5 Dataset 2
Mnist1_scale

mimosa (Linux cluster) Table 2
Figure 6

Table 2: Execution time T(s) and Speedup S for different cases

# of PEs Case 1 Case 2 Case 3 Case 4 Case 5

T S T S T S T S T S

1 64.23 - 549.62 - 592.13 - 774.29 - 260.13 -
2 33.26 1.93 278.49 1.97 299.85 1.97 390.13 1.98 132.17 1.96
4 17.17 3.74 142.35 3.86 153.47 3.85 197.56 3.92 68.09 3.82
8 9.53 6.73 75.08 7.32 79.10 7.49 100.73 7.69 36.72 7.08
16 5.19 12.37 41.25 13.32 44.26 13.38 52.56 14.73 20.25 12.85
24 3.60 17.84 31.10 17.67 35.79 16.54 42.52 18.21 15.91 16.35
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The execution time and speedup of PMC-SVM on sweetgum with Dataset 1 (Letter_scale)Figure 2
The execution time and speedup of PMC-SVM on sweetgum with Dataset 1 (Letter_scale).

Categories (Ci) and submodels (mi, j) in PMC-SVMFigure 1
Categories (Ci) and submodels (mi, j) in PMC-SVM.

1 2 3 4 5 6 7 8

1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2 2,3 2,4 3,5 2,6 2,7 2,8

3 3,5 3,5 3,6 3,7 3,8

4 4,5 4,6 4,7 4,8

5 5,6 5,7 5,8

6 6,7 6,8

7 7,8

8
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The execution time and speedup of PMC-SVM on sweetgum with Dataset 2 (Mnist1_scale)Figure 3
The execution time and speedup of PMC-SVM on sweetgum with Dataset 2 (Mnist1_scale).

The execution time and speedup of PMC-SVM on sweetgum with Dataset 3 (14_Tumors)Figure 4
The execution time and speedup of PMC-SVM on sweetgum with Dataset 3 (14_Tumors).
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The execution time and speedup on sweetgum with Dataset 4 (11_Tumors)Figure 5
The execution time and speedup on sweetgum with Dataset 4 (11_Tumors).

The execution time and speedup of PMC-SVM on mimosa with Dataset 2 (Mnist1_scale)Figure 6
The execution time and speedup of PMC-SVM on mimosa with Dataset 2 (Mnist1_scale).
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by using a decision function F:Rn → {-1,1} obtained by
solving a convex quadratic programming optimization
problem of the form

min f(α) = α TQα - eTα

Subject to 0≤αi≤C, i = 1,...,l,  (3)

yTα = 0

where y = [y1, y2, ..., yN]T, α = [α1, α2, ..., αN]T and C is a con-
stant. e is a vector of all ones. Q is the symmetric positive
semi-definite matrix and entries Qi, j are defined as

Qi,j = yiyjK(xi,xj), i, j = 1,2 ..., N,  (4)

where K(·, ·) denotes a kernel function, such as linear
kernel, polynomial kernel and radial basis function
(RBF). RBF kernel is used in the numerical experiments of
this project.

Currently, decomposition method is one of the major
methods to train SVM, in which only a subset of variable
is considered per iteration. The subset, denoted as B, is
called working set. If B is restricted to have only two ele-
ments, this special type of decomposition method is the
Sequential Minimal Optimization (SMO). There are four
steps to implement SMO [8]:

1. Find α1 as the initial feasible solution. Set k = 1.

2. If αkis a stationary point of (2), stop. Otherwise, find a

two-element working set B = {i,j}⊂{1,..., l}. Define N ≡

{1,..., l}\ B, and  and  as sub-vector of αkcorre-

sponding to B and N, respectively.

3. If ai,j = Kii + Kjj - 2Kij > 0

Solve the following sub-problem with the variableαB :

else

Solve

subject to constra int s of (5)

4. Set  to be the optimal solution of (4) and

 Set k ← k + 1 and go to step 2.

After the PMC-SVM is trained, the decision functions are
used to classify new datasets.

Parallelization
Task decomposition

Task decomposition is the first step for the parallel algo-
rithm design. In multicategory classification of support
vector machines, the algorithm will generate multiple
binary SVM models, denoted by mi, j, i, j = 1,...,k, for k cat-

egories, each denoted by Ci, i = 1,...,k. Each model mi, j is

generated from categories Ci and Cj. A total of

 submodels are generated from k categories

in MC-SVM. For example, if we have 4 processors and 8
categories, 28 models will be generated, as shown in Fig-
ure 1. Generating submodels is the most time consuming
task in MC-SVM so it is efficient to distribute the task onto
multiple processors and each processor can perform dif-
ferent subtasks concurrently. To achieve the optimal per-
formance, execution time, communication cost among
processors, task dependency and memory utilization are
analysed. From figure 1, it is intuitive to decompose the
datasets so that each PE generates a number of submodels
based on a subset of training data. This decomposition
technique is memory efficient but it results in large com-
munication cost because one PE needs to receive certain
category of data from other PEs in order to generate a sub-
model. The communication cost can affect the perform-
ance of this parallel model. It is observed that training
each submodel only needs two categories of data and all
submodels are independent. Thus, an alternative
approach is to partition the task of generating submodels
and to dispatch the subtasks among multiprocessors. For
example, the 28 submodels in Figure 1 can be distributed
among 4 PEs and each PE performs the subtask of gener-
ating 7 submodels. This technique can achieve better load
balance. Task scheduling is described in the next section.

1
2

αB
k αB

k

min ( )
,α α

α α
α
α

α
i j

i j
ii

ij jj

i

j
B BN N

kQ Qij

Q Q
p Q

1
2

⎡⎣ ⎤⎦
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ + + TT i

j

i j

i i j j N
T

N
k

subject to C

y y y

α
α

α α

α α α

⎡

⎣
⎢

⎤

⎦
⎥

≤ ≤

+ = −

0 5, , ( )

,Δ

min ( )
,α α

α α
α
α

α
i j

i j
ii

ij jj

i

j
B BN N

kQ Qij

Q Q
p Q

1
2

⎡⎣ ⎤⎦
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ + + TT i

j

ij
i i

j
j j

k

α
α

τ α
α α α α

⎡

⎣
⎢

⎤

⎦
⎥

−
− + − ( )

4
62 2(( ) ( ) )

αB
k+1

α αN
k

N
k+ =1

k
k k

0
1

2
= −( )
Page 8 of 10
(page number not for citation purposes)



BMC Bioinformatics 2006, 7(Suppl 4):S15
Task scheduling algorithm

When k0 submodels are assigned to p PEs, each PE per-

forms the generation task of  submodels. A task sched-

uling algorithm is needed to determine which categories
of data are used by each PE. The pseudocode of scheduling
tasks is given as follows

Task scheduling algorithm

// Task scheduling algorithm for PMC-SVM training

// model_no: the index of models

// p: the total number of PEs.

// my_rank: processor index, 0<=rank <p

// i, j: class index

// k: total number of classes

model_no = 0;

for ( int i = 2; i <= k; i++){

for( int j = 1; j < i; j++){

model_no++;

if(my_rank = = model_no % p);

// processor with my_rank gets class i and class j

get_data(i) // read class i data

get_data(j) // read class i data

generate_bin_svm(i,j); // generate a submodel for cate-
gory i and j

}

}

With this scheduling algorithm, tasks are evenly distrib-
uted among multiple processors and achieve better bal-
ance.

Parallel job submission
The Portable Batch System (PBS) is a flexible workload
management system [15]. It provides users with a single
coherent interface to all their computing resources. It can
improve understanding of computational requirements

and user needs and provides a more cost-effective solu-
tion. The PBS used to submit a job to sweetgum machine
is given below

#PBS -S /bin/tcsh

# Set up the cpus and memory

#PBS -l ncpus = 4

# Name this job "job_svm"

#PBS -N job_svm

rm job_svm.o* # Remove any PBS output files from pre-
vious runs

rm job_svm.e* # Remove any PBS error files from previ-
ous runs

# Do our job

# make the makefile

make

# run the svm-train, save the file to svm8.out

/usr/local/appl/mpich-1.2.1/bin/mpirun -np 8 svm-train
letter.scale >> svm.out
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