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Abstract

Background: An important step in understanding the conditions that specify gene expression is
the recognition of gene regulatory elements. Due to high diversity of different types of transcription
factors and their DNA binding preferences, it is a challenging problem to establish an accurate
model for recognition of functional regulatory elements in promoters of eukaryotic genes.

Results: We present a method for precise prediction of a large group of transcription factor
binding sites — steroid hormone response elements. We use a large training set of experimentally
confirmed steroid hormone response elements, and adapt a sequence-based statistic method of
position weight matrix, for identification of the binding sites in the query sequences. To estimate
the accuracy level, a table of correspondence of sensitivity vs. specificity values is constructed from
a number of independent tests. Furthermore, feed-forward neural network is used for cross-
verification of the predicted response elements on genomic sequences.

Conclusion: The proposed method demonstrates high accuracy level, and therefore can be used
for prediction of hormone response elements de novo. Experimental results support our analysis
by showing significant improvement of the proposed method over previous HRE recognition
methods.

Background

Steroid hormones are signal molecules that play essential
roles in various physiological and pathological processes.
In particular, one of the most important factors of regula-
tion commonly applied in medical treatment is the use of
hormones. Cancer treatment on early stages of tumor
development is often associated with action of steroid
hormones - progesterone [1] and estrogen [2]. Steroid

hormones are believed to play an important role in the
regulation of the development of breast cancer [3].

Hormone functions are mediated by hormone-specific
receptors which are transcription factors [4]. The molecu-
lar effects of estrogen and progesterone are reflected by
their receptor-regulated gene expression [5]. The overall
mechanism of the gene expression regulation by steroid
hormones in a cell does include several stages of reaction,
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and up to now, none of them is described in details. In the
multi-stage regulation, the "primary target genes" may
produce proteins involved in regulation of other genes,
causing the second stage of "regulatory answer", and so
on. Elucidation of the regulation network is further com-
plicated by at least four possible hormone reactions [6]:

e Usual pathway: hormone receptors (HR) are activated
by the correspondent hormones, and then bind directly to
hormone response elements (HRE) within regulatory
areas of DNA. Binding to regulatory elements induces
changes in gene expression;

¢ Hormone receptors can be activated by different signal-
ing molecules other than hormones (e.g. growth factors),
and also interact with DNA of HREs;

e Activated hormone receptors bind indirectly to non-
HRE sites via forming protein complexes together with
other transcription factors; and

e Different signaling pathways through cellular mem-
brane with effect on tissue responses (not related to gene
expression).

We are especially interested in identification of the "pri-
mary target genes" of steroid hormone receptors and dif-
ferentiation of them from the down-stream targets of
these genes. The first step of investigation of the hormone-
regulated gene expression network is the HRE prediction
and analysis. Listed in the above, the first and second hor-
mone reactions involve recognition of specific HREs.

In general, for the purpose of identification of transcrip-
tion factor binding sites (TFBS), a number of tools have
been reported, to name a few, MatInspector [7], Match [8]
and MAPPER [9]. However, all of them, being appropriate
for genome-scale analysis of trends and frequencies [10],
provide too many false positives for investigation of sin-
gular sites to be reliable. We need to explore more accurate
prediction methods with high sensitivity and specificity.
First, a training HRE set from both literature and wet-lab
experiments should be carefully constructed. Then a sta-
tistic model should be established with machine learning
through the reported specific features of binding sites, in
order to distinguish the HREs from other DNA sequences.

 3bp spacer

In this study, we exhaustively searched for training HREs
from more than 200 literature sources. Two main criteria
were taken into account: detection of DNA-receptor com-
plex, usually with use of gel shift retardation assay [11];
and confirmed involvement into gene expression regula-
tion, i.e. hormone treatment-associated changes either in
mRNA or protein level, or in any plasmid construct activ-

1ty.

We then examined the specific structure of binding sites of
interest, which requires investigation of biological nature
of hormone receptors. Some transcription factors, includ-
ing the steroid hormone receptors, bind DNA as dimers
[12]. Therefore, consensus hormone response element
should include two constituent parts, or half-sites, which
are usually separated by a short spacer.

Two classes of steroid HREs have been characterized;
Androgen, progesterone and glucocorticoid response ele-
ments (ARE/PRE/GRE), with a consensus sequence AGT-
ACAnnnTGTTCT, has been studied the most extensively
[13-15]. Mineralocorticoid receptors can also act via the
HRE [16]. The estrogen response element (ERE) consen-
sus sequence GGTCAnnnTGACC can be converted to a
functional ARE/PRE/GRE by just changing two bases. The
sequences are imperfect palindromes to which the recep-
tor dimers bind [17]. Consensus sequence of the first class
of HREs is shown in Fig. 1.

Finally, we developed a statistic model and implemented
the tools for prediction of a specific group of steroid HREs
including the above progesterone, androgen and gluco-
corticoid whose receptors were reported to share the same
response elements [15]. Our approach involved extensive
search for available experimental data and use of an
adapted method of sequence representation, Position
Weight Matrix, based on nucleotide position frequencies.
Supervised machine learning was implemented to further
improve the prediction accuracy.

Results

Experimentally verified HREs are used for training the
statistic model

The data was collected from more than 200 literature
sources and our in-house wet-lab experiments. Such a col-
lection for HREs has no analogs in the current public and
commercial databases of TFBS profiles. While a few of the

TGTTCT right flanking 3

left flanking
region

Figure |
HRE consensus.

region
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regulatory elements are derived from genes of fish and
birds, most of the sites are mammalian and 89% of all
sites are from human or rodent genomic DNA.

It is also worth mentioning that most collections do not
filter out confirmed binding sites from the recognized
ones (i.e. when a DNA region is found to exercise pro-
moter activity, regions similar to HRE consensus are pre-
dicted within the long promoter sequence by a
computational method). Our aim is to collect sites with
binding affinity, whatever their structure is. Therefore,
only experimentally confirmed binding sites are included
into our collection.

It is known that progesterone receptor, androgen receptor
and glucocorticoid receptor tend to share the same bind-
ing sites on DNA (for a review, see [15]). While that was
shown by many experiments, our statistic model further
verified it and would serve as an additional control of
appropriateness of the training HRE collection. None of
the experimental methods allow detecting a response ele-
ment to a single nucleotide precision. Therefore, after col-
lection of the sequences, they were aligned [18] and HRE
motifs within them were detected. Position weight matri-
ces were computed with the aligned HREs for mono and
di-nucleotide patterns. (For comparison, tri-nucleotide
patterns were also examined.) Then, to check the above
assumption of the same response element to be shared by
three steroid hormone receptors, we used the chi-square
criterion for homogeneity, and these three steroid hor-

Table I: Joined HRE Position Weight Matrix.

mones of interest do share the same response elements,
with p-value of less than 10-4.

We joined the three position frequency matrices for AR,
GR and PR into one Position Weight Matrix of Steroid
Hormone Response Element, and used this matrix for fur-
ther prediction of HREs. The joined matrix is given in
Table 1.

Combination of mono and di-nucleotide models
significantly improves the accuracy

Based on the TFBS recognition strategy (details described
in the section of Methods below), we implemented two
modules: mono-nucleotide PWM1 and di-nucleotide
PWM2. Each of them was characterized by non-lucrative
trade-off between re-value and sensitivity.

With PWM1, a sensitivity of 86% was achieved only with
re-value of 1 prediction per 1325 bp (threshold for calcu-
lated probability of 0.865), and re-value of 1:6 kb corre-
sponds to sensitivity of 73% (threshold of 0.920). With
PWM2, a sensitivity of 86% with re-value of 1:1025 bp
(threshold of 0.725) vs. 71% with 1:5 kb (threshold
0.885) was achieved. None of them shows an impressive
level of accuracy in recognition.

We then combined the results from two modules; that is,
a motif is recognized if it is recognized by both modules.
To our expectation, more false positives were removed.
This can be achieved because while the first PWM meas-

position Nucleotide frequency C, value, %
A C G T

| 0,19 0,28 0,24 0,30 1,08

2 0,26 0,20 0,23 0,31 1,09

3 0,17 0,24 0,36 0,24 2,60

4 0,39 0,08 0,34 0,19 9,80

5 0,16 0,08 0,60 0,16 20,86
6 0,28 0,21 0,12 0,39 5,84
7 0,58 0,09 0,13 0,20 18,63
8 0,13 0,60 0,15 0,12 20,16
9 0,52 0,15 0,15 0,19 11,93
10 0,33 0,16 0,23 0,29 2,40
I 0,25 0,25 0,30 0,19 0,85

12 0,42 0,23 0,22 0,13 6,01

13 0,13 0,03 0,02 0,82 55,29
14 0,00 0,00 0,99 0,00 97,45
15 0,01 0,01 0,00 0,97 89,76
16 0,11 0,14 0,05 0,70 33,33
17 0,01 0,94 0,00 0,04 80,66
18 0,05 0,17 0,01 0,76 47,44
19 0,29 0,21 0,23 0,27 0,54
20 0,36 0,11 0,25 0,28 516
21 0,34 0,21 0,18 0,26 2,05
21 0,34 0,21 0,18 0,26 2,05
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ures only independent single nucleotide frequencies, the
second also takes into account di-nucleotides which are
often preserved in patterns other than simple combina-
tions of independent nucleotides; for instance, CpG di-
nucleotides occur in real genomic sequences much less
than the expected rate of 1/4 x 1/4 = 1/16 in arbitrary
nucleotides [19].

We indeed managed to eliminate a large number of the
false positives, while holding the true positives at a rea-
sonable level. Here sensitivity and re-values are functions
of two variables, and it is possible to change them by mov-
ing in a two-dimensional space. In applications, to solve a
specific problem, trade-off is made in regard with which
direction to move in the space. In our case, we set the fol-
lowing values for recognition thresholds: PWM1 - 0.91,
and for PWM2 - 0.79, in order to receive optimal combi-
nation of the sensitivity of 76% and random expectation
of 1 hit per 7.14 kb.

Supervised machine learning with neural network

We implemented an artificial neural network (ANN) to
cross-verify the previous PWM-based predictions. ANN is
to date the best tool to model individual prototypes. Due
to its inherent nature, an ANN structure with enough con-
nections and parameters to fit is able to mime almost any
complex pattern.

During supervised learning and testing, most of sequences
come to convergence to an exact YES/NO answer, but the
rest requires setting up a threshold for decision making,
when the relation of Euclidian distances from the actual
ANN output to the YES (1;-1) and NO (-1;1) points is
measured.

With the threshold value of 0.05, we achieved the specifi-
city of 99.6%, and 8 of 661 HREs were misclassified
(Details in the section of Discussion below). When the
distance threshold was set to 0.005, sensitivity level
decreased to 89%, i.e. 528 of 661 true HREs were indeed
identified, but the specificity reaches as high as 99.8%.

We initially intended to use the ANN model only for
cross-validation of the prediction, and through the
machine learning process, we eventually further improved
the prediction accuracy. The model now implies not only
independent nucleotide positions but also a HRE
sequence as whole. Thus, with an appropriate number of
neurons, it is possible to reach very high sensitivity and
specificity. Such an accurate model is approachable, pro-
vided that the exhaustive training procedure can be
matched by computing power. We are currently in devel-
opment of hardware acceleration of ANN training models
[20,21].

Discussion and Conclusion

One can hardly declare that each HRE predicted by the
model is functional and involved in regulation of gene
expression, though we have confirmed that our model can
detect potential HREs with high confidence. Our correctly
predicted HREs cover most of the microarray-verified pro-
gesterone primary target genes. The average number of the
found PREs in promoter area for 380 human PR-respon-
sive genes listed in [22] is 1.06; for the total set of human
genes, this value is 0.62 HREs per promoter. Note that the
promoter area is set from -3000 to +500 according to the
annotated transcription start site. In the current work,
Genbank build #35.1 has been used.

The highest probability of steroid hormone primary target
gene was found for human MMP1 gene encoding for
matrix metalloproteinase 1 (interstitial collagenase). Its
promoter contains three predicted HREs, and two of them
are adjacent and with a very high chance to be functional
[23]. Steroid hormone progesterone was previously
reported to reduce level of human MMP1 gene expression
significantly [24]. The second significant PR-responsive
gene NGRF was also reported to be progesterone-regu-
lated [25].

The unsupervised learning of PWMs and the supervised
learning procedure of ANNs imply different strategies for
both modeling of HRE pattern and training the model. As
for the structure, the probability score of PWM-predicted
score is additive along the sequence of single model units
(mono or di-nucleotides), while the ANN takes the input
HRE sequence as a whole. That explains why, with compa-
rable specificity value, ANN fits much close to a given
training set of response elements. Major difference in
learning lies in the strategy of binding site recognition.
Neural network has both positive and negative patterns
for the training, and thus the final recognition procedure
during testing is a selection between two stable points —
neutral or potential regulatory sequence. It can be under-
stood why higher specificity value can be expected for the
ANN model. However, as shown in our experiment, train-
ing a highly accurate ANN model takes a prohibitivly long
time on our current workstation. Hardware acceleration
such as Field-Programmable Gate Arrays may provide us
with a solution.

Though, with use of ANN, we managed to model the HRE
training set and separate it from the neutral DNA
sequences quite well, some outliers were detected as well.
They were found through non-consensus binding sites for
progesterone, androgen and glucocorticoid receptors in
the promoters and gene regions for a number of genes:
rabbit uteroglobin gene [26], chicken lysozyme gene [27],
porcine uteroferrin gene [28], pro-opiomelanocortin gene
[29], murine c-myc gene [30], late leader of the control
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region of the human polyomavirus BK [31], gene pro-
moter of two milk protein genes (B-casein and whey
acidic protein) [32], human Na/K ATPase o. 1 gene pro-
moter [33], and mouse sex-limited protein enhancer [34].
The first three are progesterone-regulated genes, the next
five are glucocorticoid primary targets, and the last one is
associated with androgen activity. Unless they are experi-
mental artifacts, the possible explanation could lie in the
area of complex protein-DNA interaction which is beyond
DNA sequence similarity itself, like secondary molecular
structure of DNA or location of surrounding nucleo-
somes. Nevertheless, more sensitive procedures should be
implemented. The subspace of HREs looks like to be non-
uniform and can be clustered into different types [35],
possibly avoiding more false positive in future model
development.

In conclusion, our proposed model for steroid receptor
binding sites prediction can be used for determination of
androgen, progesterone and glucocorticoid primary target
genes, detection of steroid hormone response elements de
novo, and evaluation of known HREs. It is a crucial start-
ing-point for reconstruction of the global hormone-regu-
lated gene expression network, which is indeed a great
challenge for both molecular biology and life science in
general.

Methods

Unsupervised training for the HRE model

As an implementation of unsupervised learning algorithm
for HRE modeling, an adapted position weight matrix
approach is developed in this study.

* The Position Weight Matrix algorithm

We start with a statistic model of position weight matrix
(PWM) which was first described by Quandt et al. [36].
We adapted the concept for recognition of HRE patterns.
To justify if a given sequence is a PRE, we compare this
sequence with a set of experimentally validated
sequences. The similarity score of the comparison is pro-
portional to the sum of all the results of position compar-
isons. For comparing a sequence to a matrix, we develop
following processes:

A) Calculation of relative conservation for each position i
in the matrix:

C;=100/In5*[ Y
be A,C,G,T, gap

P(i,b) *In P(i,b) + In 53] Q)

where P(i, b) is relative frequency of letter b in position i.

This relative conservation is proportional to the informa-
tion content for each position, which, in turn, is indirectly
concerned with nucleotide to amino acid binding energy

[37]. As can be easily calculated, it takes value of 0 when
nucleotide distribution on a particular position is uni-
form and demonstrates no preservation. The value of 1 is
reached in the case of strong conservation of a particular
nucleotide. The normalization factors were selected in
order to vary C; strictly from O to 1. If for a particular posi-
tion, an outcome of 'gap' is not rated, then in the above,
coefficients 5 should be changed into 4; that is, it is always
the number of possible outcomes for each position.

B) Calculation of the matrix similarity coefficient which
represents resemblance of a given sequence and the pat-
tern. The pattern is represented by the position frequency
matrix.

n
2 C; * score(i,b)
MS = —=L ()

n
Z C; * max_ score(i)
i=1

where b is the it" letter of the sequence, and score(i, b) is the
element of the position frequency matrix located in the
row i and corresponding to the nucleotide b.

As can be seen, the higher MS coefficient is, the higher cor-
respondent score(i, b) values will be; thus, higher MS val-
ues correspond to the sequences which consist of more
frequent nucleotides. Finally, the higher MS value is, the
closer the sequence is to the training set of experimentally
validated binding sites.

The matrix similarity reaches 1 only if the candidate
sequence corresponds to the most conserved nucleotide at
each position of the matrix. Multiplying each score by the
C, value emphasizes the fact that mismatches at less con-
served positions are more easily tolerated than mis-
matches at highly conserved positions.

* Mono and di-nucleotide position weight matrices

In the modeling of PRE recognition for a given sequence
two matrix similarity coefficients are calculated: MNMS
(mono-nucleotide matrix similarity) and DNMS (di-
nucleotide matrix similarity). Before calculating these
coefficients, the sequence is aligned with consensus HRE.
After all, for calculating the matrix similarity coefficients,
only aligned sequence is used. However, it may contain
one or more gaps after alignment procedure.

The first coefficient calculation is a simple comparison of
mono-nucleotide position frequency matrix with the
aligned sequence exactly as described above.

The second comparison requires prior preparation. A

nucleotide sequence is to be pre-processed for appropriate
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comparison with di-nucleotide position frequency matrix.
Alphabet of existing di-nucleotides consists of 25 ele-
ments (four different nucleotides and a gap in all possible
combinations). Latin alphabet contains enough different
letters to reconstruct one-to-one conformity, in which
every di-nucleotide corresponds to a single letter of the
new alphabet.

Then, for a sequence acquired as a result of this conver-
sion, the matrix similarity coefficient is calculated exactly
as in the above for mono-nucleotide frequency matrices,
but the matrix in use now is the dinucleotide frequency
one. The only correction is the change of normalization
coefficients. Because the number of different di-nucle-
otides (and the corresponding number of letters in the
newly implemented alphabet) is as many as 25, it is nec-
essary to change 4 or 5 to 16 or 20 or 25, depending on
whether a gap symbol is assumed in any position of the
di-nucleotide.

Once these two coefficients have been calculated, the deci-
sion-making procedure is implemented. It uses cut-off lev-
els for each of two coefficients. These cut-off levels must
be predetermined by some tuning methods or cross-vali-
dation.

If for a given sequence, the MNMS is greater than the cut-
off level for this value, and DNMS exceeds its threshold as
well, then it is a HRE.

For each recognized HRE the most similar element of
training set is defined. It is also indicated if such a
sequence of the right half-site (which is expected to be
highly conserved) is presented in any of found experimen-
tally validated HREs. This is important in the case of rather
large and representative training set used, when absence
of a given sequence in the sample might be a valuable
indicator for tuning the model.

Supervised machine learning
Feed-forward neural network is then used for cross-verifi-
cation of the predicted HREs.

* Input/output representation

The collected dataset consists of a number of DNA
sequences in 4-letter alphabet Q = {A, C, G, T}. In the
above position frequency based model, the letters are
annotated as different, independent and equidistant
states. However, the neural network model works with
digital numbers. The space of numbers is one-dimen-
sional, so if we confront all 4 nucleotides with numbers,
they are not equidistant any more, and therefore we bring
some artefacts to our model. After a few tests we found out
that the artefacts of modelling using one-dimensional per-
formance of input nodes are quite critical for the accuracy.

Therefore, we implement the "one-hot" representation for
DNA encoding.

()

— O © ©

For Yes/No decision, it is enough to represent the output
as a single bit. However, for the purposes of distinguishing
Androgen, Progesterone and Glucocorticoid response ele-
ments (which form our dataset of HREs), or any other
clusters of HREs (as the HREs are definitely not a uniform
subspace of DNA sequences), we present the output as a
vector. In particular, the Yes/No output is a 2-vector: Yes =
(1,-1) and No = (-1,1). In this case, the movement of out-
put is in the two-dimensional space and allows more flex-
ibility.

* The neural network structure

With the input as 4-dimensional vectors, for a 15 bp-long
HRE, we have 60 input nodes. The neural network theory
[38] suggests that for the confident learning the number
of degrees of freedom, or weights to fit, be at most half of
the number of constrains (the inputs). Hence, in the case
of one hidden layer and a dataset of about 7000 positive
and negative HREs, we should limit the number of hidden
layer neurons to about 50. Thus, we have 60 x (50+1)
weights of the hidden layer and (50+1) x 2 weights of out-
put layer (plus one is for a bias term), total about 3000. In
the case of two hidden layers, the maximum number of
neurons on each layer is about 40. However, we found use
of two layers is excessive for the current problem.

In our neural network model, bipolar sigmoid functions
are used for implementation of all layers. The whole net-
work structure is illustrated in Fig. 2.

* Back-propagation learning

For training of the model, the back-propagation learning
is implemented: for each exemplar pattern from the train-
ing set, find difference of the weights for the output layer,
back-propagate the difference to the hidden layer, then
find the difference of the weights for the hidden layer, and
finally modify all the weights of the network.

The equation of weights adjustment for each neuron is:
wtl=wt+axdx (4)

where wt+1 is a vector of weights for a particular neuron at
the tth step of learning, ot is the learning parameter at the

tthstep (0 < at< 1V t> 0), the delta value for each neuron
is calculated as follows:
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Training set Ist letter
of HREs
|
HRE u Output
sequence < - 2-vector
|
15th letter
Input Hidden Output
60 nodes layer layer
Figure 2
Artificial Neural Network for PRE recognition.
() rent pass error is less than the previous one, we are mov-
goutPut = 22 I (d' - o) for the neurons of the output layer (5) . . . . . .
' ing in a right direction and can move a bit faster,
increasing o by 5%. If we've jumped over the minimum
gouckpropugned _ W) §+ st o e neurons of the hidden layer @  and received larger error, the system goes back with

ou'

where d! and o represent the desired and currently
obtained outputs of the neuron respectively, x is the input
to the layer being considered (either hidden or output), ut
= wix is the synaptic input to the neuron, and f(u!) is the
activation function of the neuron. Also, for the back-prop-
agated delta value, K is a number of neurons on the output
layer, wy,_., is the weight coefficient of the connection
between hth neuron of hidden layer and kth neuron of the
output layer, §, outputis a delta value for the kth neuron of
the output layer calculated as shown by formula (5).

The back-propagation is terminated when error tolerance
for the accuracy of 99% is satisfied, the desired number of
epochs is passed, or the error plateau is reached.

Learning rate parameter o regulates the stride of gradient
descent algorithm for minimization of the learning error.
The higher the learning rate is the faster convergence goes.
But with a very high learning rate there is a chance to jump
over the minimum of error, or receive oscillations instead
of steady state. On the other hand, a very low learning rate
provides less chance to find the global minimum, and
instead, it uses the first randomly found local minimum.
Our solution is to adjust the learning parameter: if the cur-

smaller steps, and otis decreased by 30%.

For the supervised learning, a set of experimentally veri-
fied HREs is used with desired answer YES (1;-1), and a
tenfold set of neutral DNA sequences is associated with
desired answer NO (-1;1). Both training sets are large,
therefore, in order for the neural network to avoid severe
oscillations, we mix them; otherwise, while looking
through several hundreds of the positive (negative) train-
ing set, the network may adapt itself towards the positive
(negative) answers, without attention to the negative
(positive) ones.

Accuracy estimation

For accuracy estimation purpose, ten-fold cross-validation
is used, 90% of the total dataset being the training set and
the rest 10 % being used for testing purposes. This separa-
tion is repeated 10 times (with non-overlapping testing
sets), and the average error values are calculated.
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