
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
Maximum common subgraph: some upper bound and lower bound
results
Xiuzhen Huang*1, Jing Lai2 and Steven F Jennings3

Address: 1Department of Computer Science, Arkansas State University, State University, Arkansas 72467, USA, 2Department of Applied Science,
University of Arkansas at Little Rock, Little Rock, Arkansas 72204, USA and 3Department of Information Science, University of Arkansas at Little
Rock, Little Rock, Arkansas 72204, USA

Email: Xiuzhen Huang* - xzhuang@csm.astate.edu; Jing Lai - jxlai@ualr.edu; Steven F Jennings - sfjennings@ualr.edu

* Corresponding author

Abstract
Background: Structure matching plays an important part in understanding the functional role of
biological structures. Bioinformatics assists in this effort by reformulating this process into a
problem of finding a maximum common subgraph between graphical representations of these
structures. Among the many different variants of the maximum common subgraph problem, the
maximum common induced subgraph of two graphs is of special interest.

Results: Based on current research in the area of parameterized computation, we derive a new
lower bound for the exact algorithms of the maximum common induced subgraph of two graphs
which is the best currently known. Then we investigate the upper bound and design techniques for
approaching this problem, specifically, reducing it to one of finding a maximum clique in the product
graph of the two given graphs. Considering the upper bound result, the derived lower bound result
is asymptotically tight.

Conclusion: Parameterized computation is a viable approach with great potential for investigating
many applications within bioinformatics, such as the maximum common subgraph problem studied
in this paper. With an improved hardness result and the proposed approaches in this paper, future
research can be focused on further exploration of efficient approaches for different variants of this
problem within the constraints imposed by real applications.

Background
Introduction
Of the many challenging problems related to understand-
ing the biological function of DNA, RNA, proteins, and
metabolic and signalling pathways, one of the most
important is comparing the structure of different mole-
cules. The hypothesis is that structure determines function

and therefore it should follow that molecules with similar
structure should have similar function. Evaluating the
similarity of structures can be reduced to a comparison of
a set of abstracted graphs if the biological structures can be
abstracted as graphs.

from Symposium of Computations in Bioinformatics and Bioscience (SCBB06) in conjunction with the International Multi-Symposiums on Computer and
Computational Sciences 2006 (IMSCCS|06)
Hangzhou, China. June 20–24, 2006

Published: 12 December 2006

BMC Bioinformatics 2006, 7(Suppl 4):S6 doi:10.1186/1471-2105-7-S4-S6
<supplement> <title> <p>Symposium of Computations in Bioinformatics and Bioscience (SCBB06)</p> </title> <editor>Youping Deng, Jun Ni</editor> <note>Research</note> <url>http://www.biomedcentral.com/content/pdf/1471-2105-7-S4-info.pdf</url> </supplement>

© 2006 Huang et al; licensee BioMed Central Ltd
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7(Suppl 4):S6
Using bioinformatic techniques, biological structure
matching can be formulated as a problem of finding the
maximum common subgraph. The solution to this problem
has important practical applications in many areas of bio-
informatics as well as in other areas, such as pattern recog-
nition and image processing [1-3]. For example, protein
threading, an effective method to predict protein tertiary
structure [4-8], and RNA structural homology searching, a
method for annotating and identifying new non-coding
RNAs [9-12], both align a target structure against structure
templates in a template database.

Song et al [13] makes the following definitions and pro-
poses the following graphical models for RNA structural
homology searching: A structural unit in a biopolymer
sequence is a stretch of contiguous residues (nucleotides
or amino acids). A non-structural stretch between two con-
secutive structural units is called a loop. A structure of the
sequence is characterized by interactions among structural
units. For example, structural units in a tertiary protein are
α helices and β strands, called cores. Given a biopolymer
sequence, a structure graph H = (V, E, A) can be defined
such that each vertex in V(H) represents a structural unit,
each edge in E(H) represents the interaction between two
structural units, and each arc in A(H) represents the loop
ended by two structural units. Similarly, the target
sequence can also be represented as a mixed graph G, called
a sequence graph. Based on the graphical representations,
the structure-sequence alignment problem can be formu-
lated as the problem of finding in the sequence graph G a
subgraph isomorphic to the structure graph H such that the
objective function optimizes the alignment score.

Problem Definition
Throughout this paper, we will use the basic definitions
and terminology from [1]: All graphs are simple, undi-
rected graphs. Two graphs are isomorphic if there is a one-
to-one correspondence between their vertices and there is
an edge between two vertices in one graph if and only if
there is an edge between the two corresponding vertices in
the other graph. If edge (u, v) is an edge connecting u and
v, then an induced subgraph G' of a graph G = (V, E) con-
sists of a vertex subset V' ⊆ V and for all edges (u, v) ∈ E
where u, v ∈ V'. A graph G12 is a common induced subgraph
of two given graphs G1 and G2 if G12 is isomorphic to one
induced subgraph G'1 of G1 as well as one induced sub-
graph G'2 of G2. A maximum common induced subgraph
(MCIS) of two given graphs G1 and G2 is the common
induced subgraph G12 with the maximum number of ver-
tices. Similarly, the maximum common edge subgraph
(MCES) is a subgraph with the maximum number of
edges common to the two given graphs. The MCIS (or
MCES) between two graphs can be further divided into a
connected case and a disconnected case. All the different

cases of the problem are useful within different biological
contexts.

Figure 1 gives an illustration of MCIS of two graphs. In
this figure, the maximum common induced subgraph of
G1 and G2 contains four vertices (2, 3, 4 and 5) and the
maximum common edge subgraph of them involves five
vertices (1 through 5).

MCES can be transformed into a formulation of MCIS.
Interested readers are referred to [1] for details of the
transformation. Here we focus on the maximum common
induced subgraph (MCIS) problem. For convenience, we
call it the maximum common subgraph problem.

The maximum common subgraph problem is NP-com-
plete [14] and therefore polynomial-time algorithms for it
do not exist unless P = NP. In fact, the maximum common
subgraph problem is APX-hard [15] which means that it
has no constant ratio approximation algorithms. This
problem is a famous combinatorial intractable problem.
Approaches for the maximum common subgraph prob-
lem and different variants of this problem are intensively
studied in the literature [1].

In this paper, we derive a strong lower bound result for the
maximum common subgraph problem in the light of the
current research progress in the research area of parame-
terized computation. We then design the approaches for
addressing this problem.

Methods
Parameterized Computation and Recent Progress on
Parameterized Intractability
Many problems with important real-world applications in
life science are NP-hard within the context of the theory of
NP-completeness. This excludes the possibility of solving
them in polynomial time unless P = NP. For example, the
problems of cleaning up data, aligning multiple
sequences, finding the closest string, and identifying the
maximum common substructure are all famous NP-hard
problems in bioinformatics [16-18,1]. A number of
approaches have been proposed in dealing with these NP-
hard problems. For example, the highly-acclaimed
approximation approach [19] tries to come up with a
"good enough" solution in polynomial time instead of an
optimal solution for an NP-hard optimization problem
[20-23].

The theory of parameterized computation [17] is a newly
developed approach introduced to address NP-hard prob-
lems with small parameters. It tries to give exact algo-
rithms for an NP-hard problem when its natural
parameter is small (even if the problem size is big). A
parameterized problem Q is a decision problem consisting
Page 2 of 9
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S6
of instances of the form (x, k), where x is the problem
description and the integer k = 0 is called the parameter.
The parameterized problem Q is fixed-parameter tractable
[17] if it can be solved in time f(k)|x|O(1), where f is a
recursive function. The class FPT contains all the problems
that are fixed-parameter tractable. In this paper, we
assume that complexity functions are "nice" with both the
domain and range being non-negative integers and the
values of the functions and their inverses are easily com-
puted. For two functions f and g, we write f(n) = o(g(n))
if there is a nondecreasing and unbounded function λ
such that f(n) = g(n)/λ(n). A function f is subexponential if
f(n) = 2O(n).

For a problem in the class FPT, research is focused on
identifying more efficient, parameterized algorithms.
There are many effective techniques to design parameter-
ized algorithm including the methods of "bounded search

tree" and "reduction to a problem kernel". Another exam-
ple is the vertex cover problem.

Definition
Vertex cover problem: given a graph G and an integer k,
determine if G has a vertex cover C of k vertices, i.e., a sub-
set C of k vertices in G such that every edge in G has at least
one endpoint in C. Here, the parameter is k.

Given a graph of n vertices, there is a parameterized algo-
rithm that can solve the vertex cover problem in time
O(kn + 1.286k) [24].

Accompanying the work on designing efficient and practi-
cal parameterized algorithms, a theory of parameter
intractability has previously been developed [17]. In
parameterized complexity, to classify fixed-parameter
intractable problems, a hierarchy of classes (the W-hierar-

MCIS of two graphsFigure 1
MCIS of two graphs. For G1 and G2, the maximum common induced subgraph of them contains four vertices, and the maxi-
mum common edge subgraph of them involves five vertices.
Page 3 of 9
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S6
chy ∪t = 0 W [t], where W [t] ⊆ W [t+1] for all t = 0) have
been introduced in which the 0-th level W [0] is the class
FPT. The hardness and completeness have been defined
for each level W [i] of the W-hierarchy for i = 1, and a large
number of W [i]-hard parameterized problems have been
identified [17]. For example, the clique problem is W[1]-
hard.

Definition
Clique problem: given a graph G and an integer k, deter-
mine if G has a clique C of k vertices, i.e., a subset C of k
vertices in G such that there is an edge in G between any
two of these k vertices, i.e., the k vertices induce a com-
plete subgraph of G. Here the parameter is k.

The clique problem can be solved in time O(nk), based on
the enumeration of all the vertex subsets of size k for a
given graph with n vertices.

It has become commonly accepted that no W[1]-hard
(and W [i]-hard, i > 1) problem can be solved in time
f(k)nO(1) for any function f (i.e., W[1] ? FPT). W[1]-hard-
ness has served as the hypothesis for fixed-parameter
intractability. An example is a recent result by Papadimi-
triou and Yannakakis [25], showing that the database
query evaluation problem is W[1]-hard. This provides
strong evidence that the problem cannot be solved by an
algorithm whose running time is of the form f(k)nO(1),
thus excluding the possibility of a practical algorithm for
the problem even if the parameter k (the size of the query)
is small as in most practical cases.

Based on the W[1]-hardness of the clique algorithm, com-
putational intractability of problems in bioinformatics
has been derived [26-31], the author point out that
"Unless an unlikely collapse in the parameterized hierar-
chy occurs, the results proved in [31] that the problems
longest common subsequence and shortest common
supersequence are W[1]-hard rule out the existence of
exact algorithms with running time f(k)nO(1) (i.e., expo-
nential only in k) for those problems. This does not mean
that there are no algorithms with much better asymptotic
time-complexity than the known O(nk) algorithms based
on dynamic programming, e.g., algorithms with running
time nvk are not deemed impossible by our results."

Recent investigation has derived stronger computational
lower bounds for well-known NP-hard parameterized
problems [32,33]. For example, for the clique problem –
which asks if a given graph of n vertices has a clique of size
k – it is proved that unless an unlikely collapse occurs in
parameterized complexity theory, the problem is not solv-
able in time f(k)no(k) for any function f. Note that this
lower bound is asymptotically tight in the sense that the
trivial algorithm that enumerates all subsets of k vertices

in a given graph to test the existence of a clique of size k
runs in time O(nk).

Based on the hardness of the clique problem, lower
bound results for a number of bioinformatics problems
have been derived [34]. For example, our results for the
problem's longest common subsequence and shortest
common supersequence have strengthened the results in
[31] significantly and advanced the understanding on the
complexity of the problems. We show that it is actually
unlikely that the problems can be solved in time nγ(k) for
any sublinear function γ(k) and the known dynamic pro-
gramming algorithms of running time O(nk) for the prob-
lems are actually asymptotically optimal.

In the following section, we derive the lower bound for
exact algorithms of the maximum common subgraph
problem.

Lower Bound for Maximum Common Subgraph Problem
The formal parameterized version of the maximum com-
mon subgraph problem is described above; we choose the
number of vertices in the common subgraph as the
parameter. Based on the reduction from the parameter-
ized clique problem to the parameterized common sub-
graph problem, we derive the hardness result of the
parameterized common subgraph problem.

An NP optimization problem Q is a four-tuple (IQ, SQ, fQ,
optQ) [19], where:

1. IQ is the set of input instances. It is recognizable in pol-
ynomial time;

2. For each instance x ∈ IQ, SQ(x) is the set of feasible solu-
tions for x, which is defined by a polynomial p and a pol-
ynomial time computable predicate π (p and π only
depend on Q); SQ(x) = {y: |y| = p(|x|) and π(x, y)};

3. fQ(x, y) is the objective function mapping a pair x ∈ IQ
and y ∈ SQ(x) to a non-negative integer; the function fQ is
computable in polynomial time;

4. optQ∈ {max, min}. Q is called a maximization problem
if optQ = max and a minimization problem if optQ = min.

An NP optimization problem Q can be parameterized in
a natural way as follows [35,32]:

Definition
Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem.
The parameterized version of Q is defined as:
Page 4 of 9
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S6
1. If Q is a maximization problem, then the parameterized
version of Q is defined as Q = {(x, k) | x ∈ IQ ^ optQ(x) = k
};

2. If Q is a minimization problem, then the parameterized
version of Q is defined as Q = {(x, k) | x ∈ IQ ̂ optQ(x) = k}.

We now provide the definitions of the maximum com-
mon subgraph problem and the parameterized common
subgraph problem.

Definition
Maximum common subgraph problem:

Input: two graphs G1 = (V1, E2) and G2= (V2, E2).

Output: the maximum common vertex-induced subgraph
of the two graphs G1 and G2.

Definition
Parameterized common subgraph problem:

Input: two graphs G1 = (V1, E2) and G2= (V2, E2), and a
positive integer k;

Parameter: k;

Output: "Yes", if there is a common vertex-induced sub-
graph of k vertices, i.e., a common subgraph of size k of
the two graphs G1 and G2. Otherwise, output "No".

Lemma 1
The parameterized common subgraph problem is W[1]-
hard.

Proof: We will give an FPT-reduction from clique to the
parameterized common subgraph problem as follows.

Given an instance (G, k) of the clique problem, where the
graph G has n vertices and k is a positive integer, we con-
struct an instance of the parameterized common subgraph
problem as follows: let G1 be the graph G, and G2 a com-
plete graph of k vertices. The problem can therefore be
stated as "Is a common vertex-induced subgraph of k ver-
tices for the graphs G1 and G2?"

We can verify that the graph G has a clique of size k if and
only if the graphs G1 and G2 have a common subgraph of
k vertices. Since the reduction may be finished in polyno-
mial time O(nk), the reduction is an FPT-reduction from
clique to parameterized common subgraph problem.

To prove our main result, we will use the definition of lin-
ear FPT-reduction and W1[1]-hard [36]:

Definition
A parameterized problem Q is linear FPT-reducible, or
more precisely, FPTl-reducible, to a parameterized problem
Q' if there exist a function f and an algorithm A of running
time f(k)nO(1) that, on each (k, n)-instance x of Q, pro-
duces a (k', n')-instance x' of Q', where k' = O(k), n' =
nO(1), and x is a yes-instance of Q if and only if x' is a yes-
instance of Q'.

Linear FPT-reduction has the transitivity property [36,34].
The transitivity of the FPTl-reduction is proved in the fol-
lowing lemma:

Lemma 2
Let Q1, Q2 and Q3 be three parameterized problems. If Q1
is FPTl-reducible to Q2, and Q2 is FPTl-reducible to Q3,
then Q1 is FPTl-reducible to Q3.

Proof: If Q1 is FPTl-reducible to Q2, then there exists a
function f1 and an algorithm A1 of running time
f1(k1)n1

o(k1)m1
O(1), such that for each (k1, n1, m1)-

instance x1 of Q1, the algorithm A1 produces a (k2, n2, m2)-
instance x2 of Q2, where n2 = n1

O(1), m2 = m1
O(1), and k2 =

c1k1, where c1 is a constant.

If Q2 is FPTl-reducible to Q3, then there exists a function f2
and an algorithm A2 of running time f2(k2)n2

O(k2) m2
O(1),

such that on each (k2, n2, m2)-instance x2 of Q2, the algo-
rithm A2 produces a (k3, n3, m3)-instance x3 of Q3, where
k3 = O(k2), n3 = n2

O(1), m3 = m2
O(1).

We now have an algorithm A that reduces Q1 to Q3, as fol-
lows: For a given (k1, n1, m1)-instance x1 of Q1, A first calls
the algorithm A1 on x1 to construct a (k2, n2, m2)-instance
x2 of Q2, where k2 = c1k1, n2 = n1

O(1), and m2 = m1
O(1).

Then A calls the algorithm A2 on x2 to construct a (k3, n3,
m3)-instance x3 of Q3. It is therefore obvious that x3 is a
yes-instance of Q3 if and only if x1 is a yes-instance of Q1.
Moreover, from k2 = c1k1 and k3 = O(k2), we have k3 =
O(k1), and from n2 = n1

O(1), m2 = m1
O(1), n3 = n2

O(1), m3 =
m2

O(1), we get n3 = n1
O(1) and m3 = m1

O(1). Finally, since
the invocation of algorithm A1 on x1 takes time
f1(k1)n1

o(k1) m1
O(1), the invocation of algorithm A2 on x2

takes time f2(k2)n2
O(k2) m2

O(1), k2 = c1k1, n2 = n1
O(1), and

m2 = m1
O(1), we conclude that the running time of algo-

rithm A is bounded by f1(k1)n1
O(k1) m1

O(1), where f(k1) =
f1(k1) + f2(c1k1). By definition, A is an FPTl-reduction from
Q1 to Q3; i.e., Q1 is FPTl-reducible to Q3.

Definition
A parameterized problem Q is W[1]-hard under the FPTl-
reduction, or more precisely Wl[1]-hard, if the Weighted
antimonotone CNF 2SAT (abbreviated wcnf -2sat-) prob-
lem is FPTl-reducible to Q.
Page 5 of 9
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S6
In particular, it has been shown [32,33] that the clique
problem is Wl[1]-hard.

Lemma 3
(From theorem 5.2 of [33]) Unless all SNP problems are
solvable in subexponential time, no Wl[1]-hard problem
can be solved in time f(k)nO(k) for any recursive function f.

Note Papadimitriou and Yannakakis [30] have introduced
the class SNP which contains many well-known NP-hard
problems. Some of these problems have been the major
targets in the study of exact algorithms, but have so far
resisted all efforts for the development of subexponential
time algorithms to solve them. Thus, it has been com-
monly agreed that it is unlikely that all SNP problems are
solvable in subexponential time. A recent result showed
the equivalence between the statement that "all SNP prob-
lems are solvable in subexponential time" and the col-
lapse of a parameterized class called Mini[1,37] to FPT,
which is also considered as an unlikely collapse in param-
eterized computation.

Lemma 4
The parameterized common subgraph problem is Wl[1]-
hard.

Proof: Referring to the proof of Lemma 1, the reduction
from a clique to a parameterized common subgragh prob-
lem is a linear FPT-reduction.

Based on the transitivity property of the linear FPT-reduc-
tion of Lemma 2, and the fact that the clique problem is
Wl[1]-hard, the parameterized common subgraph prob-
lem could not be solved in time f(k)nO(k), where k is the
number of vertices in the common subgraph and f is any
recursive function, unless some unlikely collapse (Mini[1]
= FPT) occurs in parameterized computation.

From Lemma 4 and Proposition 3, we have the following
theorem:

Theorem
Given two graphs G1 and G2 with each graph having n ver-
tices, there is no algorithm of time f(k)nO(k) for the param-
eterized common subgraph problem, where k is the
number of vertices in the common subgraph and f is any
recursive function, unless some unlikely collapse (Mini[1]
= FPT) occurs in parameterized computation.

In consideration of the upper-bound result, we now show
that our lower-bound result for the maximum common
subgraph problem presented here is asymptotically tight.

Upper Bound – Clique Based Approaches
The following approach for the maximum common sub-
graph problem is based on the reduction [15,1] from a
maximum common subgraph problem to the maximum
clique problem.

From two graphs G1= (V1, E1) and G2= (V2, E2), a new
graph G= (V, E) is derived as follows: Let V = V1 × V2 and
call V a set of pairs. Call two pairs <u1, u2> and <v1, v2>
compatible if u1 ≠ v1 and u2 ≠ v2 and if they preserve the
edge relation, that is, there is an edge between u1 and v1 if
and only if there is an edge between u2 and v2. Let E be the
set of compatible edges. A k-clique in the new graph G can
be interpreted as a matching between two induced k-node
subgraphs. The two subgraphs are isomorphic since the
compatible pairs preserve the edge relations. The new
graph G is called the modular product graph of the two
graphs G1 and G2.

We suppose n = |V1| = |V2| (The analysis for the case when
|V1| ? |V2|, is similar, and thus is omitted). From the con-
struction of G, we have |V| = n2. By a close observation of
the new graph G, we can see that G is indeed an n-partite
graph, where the vertices are partitioned into n disjoint
partitions with each partition having n vertices.

We may use a matrix to denote the n2 vertices of the n-par-
tite graph with n vertices in each partition.

v{1,1}, v{1,2}, ..., v{1,n}

v{2,1}, v{2,2}, ..., v{2,n}

... ...

v{n,1}, v{n,1}, ..., v{n,n}

The n vertices of the first row v{1,i}, 1 = i = n, belong to par-
tition one of the n-partite graph. The n vertices of the sec-
ond row v{2,i}, 1 = i = n, belong to partition two and so on.

There is no edge between any two vertices within the same
partition. Edges only appear between two vertices that are
in two different partitions. So, at most one vertex from
each partition (of the n vertices) could be in a clique of the
graph. Therefore, to find a clique of size k, there will be nk

possible ways for choosing the clique vertices. For each
possible way, the algorithm needs O(k2) time to check if
it constructs a clique of size k. Therefore, this gives an
algorithm of time O(nkk2) for the maximum common
subgraph problem. We call this algorithm ALG-COM-
MON SUBGRAPH for the convenience of the following
discussion.
Page 6 of 9
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S6
This problem – when the maximum clique size k is equal
to n – has been studied by Sze et al [38]:

Definition
Given an n-partite graph G with n vertices in each part, the
n-CLIQUEnp problem finds an n-clique in the graph G.

For this problem, they developed a fast and exact divide-
and-conquer approach. The basic idea of this novel
approach is to subdivide the given n-partite graph into
several n0-partite subgraphs with n0 < n and solve each
smaller subproblem independently using a branch-and-
bound approach as long as the number of cliques of size
n0 in each subproblem is not too high. The reader is
referred to [38] for the details of this divide-and-conquer
approach. However, their approach in the worst case still
has the same upper bound.

Given this O(nk k2)-time algorithm for the maximum
common subgraph problem, the lower bound result of
our Theorem is asymptotically tight.

When the number of vertices in the common subgraph k
is not very far away from the value of n, we define k = n –
c, where c is a constant. We illustrate the basic idea for c =
1 as follows [39]: Suppose the n-partite graph G has a
clique C of size k-1. We add one more vertex to each of the
n partitions. And we also add edges from this vertex to any
vertices (except the newly added vertices) that are not in
the same partition. Now we get a new graph G'. G' is an n-
partite graph with n + 1 vertices in each partition. The new
graph G' has a clique C' of size n if and only if the original
n-partite graph G has a clique of size (n-1). The vertices of
this clique C' include the vertices of the original clique C
and one newly added vertex.

For the newly constructed graph G', we can now apply the
algorithm ALG-COMMON SUBGRAPH without any
change. And we need time O((n+1)n n2). After we find the
clique C', we just remove the newly added vertex and
return the other vertices of C'.

Similarly, if the n-partite graph G has a clique of size k –
c, where c is a positive integer constant, we can find the
clique by adding c new vertices and associated edges as
described above and then applying the algorithm ALG-
COMMON SUBGRAPH which runs in time O((n+c)n n2).

This simple idea of dealing with cliques of a size less than
n is useful since it makes the algorithm ALG-COMMON
SUBGRAPH work uniformly for finding cliques of differ-
ent sizes on n-partite graphs. In the following, we give the
following algorithm for finding cliques of size k – c.

Algorithm for (K-C)-CLIQUE
INPUT: an n-partite graph G, with n vertices in each parti-
tion, and a small constant c, where c is a positive integer;

OUTPUT: a clique of size no less than k – c;

Step 1: For i = 0 to c do

• Step 1.1: Construct a new graph G1, by adding i new ver-
tices to each partition of the graph G and adding edges
from each of the new vertices to any vertices (except the
newly added vertices) that are not in the same partition.

• Step 1.2: Apply the algorithm ALG-COMMON SUB-
GRAPH on the graph G1.

• Step 1.3: If a clique C1 is found, then return "a clique C
of size k – i has been found" (C is constructed by remov-
ing all the newly-added vertices from the clique C1).

• Endfor

Step 2: Return "no clique has been found".

We now propose two approaches for the maximum com-
mon subgraph problem which are based on the relation-
ship between the vertex cover problem and the clique
problem:

Algorithm 1: ALG-APPROX-CLIQUE
INPUT: an n-partite graph G, with n vertices in each parti-
tion, and a small constant c, where c is a positive integer;

OUTPUT: a clique for the graph G.

Step 1. Compute the complement graph G' of the modu-
lar product graph G = (V, E) of graph G1 and G2;

Step 2. Apply the approximation algorithm for the vertex
cover problem to get a vertex cover C;

Step 3. Return V – C as the clique vertex set.

ALG-APPROX-CLIQUE gives an approximate solution for
the maximum common subgraph problem in polynomial
time. This approach uses the following approximation
algorithm for the vertex cover problem with an approxi-
mation ratio 2 in [40]:

ALG-APPROX-VERTEX COVER
INPUT: a graph G = (V, E);

OUTPUT: a vertex cover C of approximation ratio 2 for the
graph G.
Page 7 of 9
(page number not for citation purposes)

BMC Bioinformatics 2006, 7(Suppl 4):S6
Step 1. C ← Φ;

Step 2. E' ← E(G);

Step 3. While E' ≠ Φ

• Step 3.1. Let (u, v) be an arbitrary edge of E';

• Step 3.2. C = C ∪ {u, v};

• Step 3.3. Remove from E' every edge incident on either
u or v;

Step 4. Return C as the vertex cover set.

In this algorithm, ALG-APPROX-VERTEX COVER selects
an edge from the set of edges of the graph G = (V, E) and
adds it to C. Repeating this procedure for (u, v) ∈ E(G)
and deleting edges from E' that are covered by u or v
results in a running time of O(V+E).

Algorithm 2: ALG-EXACT-MAXCLIQUE
INPUT: an n-partite graph G, with n vertices in each parti-
tion, and a small constant c;

OUTPUT: a clique for the graph G.

Step 1. Compute the complement graph G' of the modu-
lar product graph G = (V, E) of graph G1 and G2;

Step 2. Apply the parameterized exact algorithm for the
Vertex Cover problem on G' and compute the minimum
vertex cover C0.

Step 3. Return the maximum clique with the vertex set V –
C0.

Alternatively, ALG-EXACT-MAXCLIQUE could apply in
Step 2 the current best algorithm for vertex cover [24]
which is of time O(kn + 1.286k). By running the vertex
cover algorithm for at most n times, we produce the min-
imum vertex cover of the product graph G.

Results
In this paper we investigated the lower-bound result for
the maximum common subgraph problem. We proved
that it is unlikely that there is an algorithm of time
f(k)nO(k) for the problem, where k is the number of verti-
ces in the common subgraph and f is any recursive func-
tion. We then presented the upper bound of algorithms
which solve this problem: O(nkk2) time where k is the
number of vertices in the common subgraph. In consider-
ation of the upper-bound result, we point out that our
lower-bound result for the maximum common subgraph
problem is asymptotically tight.

Conclusion
Parameterized computation is a viable approach with
great potential for investigating many applications within
bioinformatics, such as the maximum common subgraph
problem studied in this paper. With an improved hard-
ness result and the proposed approaches in this paper,
future research can be focused on further exploration of
efficient approaches for different variants of this problem
within the constraints imposed by real applications.

Authors' contributions
XH carried out the study on the lower bound and
approaches for the maximum common subgraph prob-
lem and helped to provide background information on
parameterized computation theory. JL and SFJ partici-
pated in the design and expression of the algorithms for
the maximum common subgraph problem. All authors
have read and approved the final manuscript.

Acknowledgements
This publication was made possible in part by NIH Grant #P20 RR-16460
from the IDeA Networks of Biomedical Research Excellence (INBRE) Pro-
gram of the National Center for Research Resources.

This article has been published as part of BMC Bioinformatics Volume 7, Sup-
plement 4, 2006: Symposium of Computations in Bioinformatics and Bio-
science (SCBB06). The full contents of the supplement are available online
at http://www.biomedcentral.com/1471-2105/7?issue=S4.

References
1. Raymond JW, Willett P: Maximum common subgraph isomor-

phism algorithms for the matching of chemical structures.
Journal of Computer-aided Molecular Design 2002, 16:521-533.

2. Horaud R, Skordas T: Stereo correspondence through feature
grouping and maximal cliques. IEEE Trans Pattern Anal Mach Intell
1989, 11(11):1168-1180.

3. Shearer K, Bunke H, Venkatesh S: Video indexing and similarity
retrieval by largest common subgraph detection using deci-
sion trees. No. IDIAP-RR 00–15, Dalle Molle Institute for Perceptual Arti-
ficial Intelligence, Martigny, Valais, Switzerland 2000.

4. Bowie J, Luthy R, Eisenberg D: A method to identify protein
sequences that fold into a known three-dimensional struc-
ture. Science 1991, 253:164-170.

5. Bryant SH, Altschul SF: Statistics of sequence-structure thread-
ing. Curr Opin Struct Biol 1995, 5:236-244.

6. Xu Y, Xu D, Uberbacher EC: An efficient computational
method for globally optimal threading. Journal of Computational
Biology 1998, 5(3):597-614.

7. Lathrop RH, Rogers RG Jr, Bienkowska J, Bryant BMK, Buturovic LJ,
Gaitatzes C, Nambudripad R, White JV, Smith TF: Analysis and
algorithms for protein sequencestructure alignment. In Com-
putational Methods in Molecular Biology, Salzberg, Searls Edited by: Kasif.
Elsevier; 1998.

8. Xu J, Li M, Kim D, Xu Y: RAPTOR: optimal protein threading
by linear programming. J Bioinform Comput Biol 2003,
1(1):95-117.

9. Doudna JA: Structural genomics of RNA. Nature Structural Biology
2000, 7(11 supp):954-956.

10. Eddy SR: Computational genomics of non-coding RNA genes.
Cell 2002, 109:137-140.

11. Rivas E, Eddy SR: Noncoding RNA gene detection using com-
parative sequence analysis. BMC Bioinformatics 2001, 2:8.

12. Lowe TM, Eddy SR: tRNAscan-SE: A Program for improved
detection of transfer RNA genes in genomic sequence.
Nucleic Acids Research 1997, 25:955-964.
Page 8 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7?issue=S4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12510884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12510884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1853201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1853201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1853201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7648327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7648327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9773353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9773353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15290783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15290783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12007398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11801179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11801179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9023104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9023104

BMC Bioinformatics 2006, 7(Suppl 4):S6
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

13. Song Y, Liu C, Huang X, Malmberg R, Xu Y, Cai L: Efficient param-
eterized algorithm for biopolymer structure-sequence align-
ment. Proceedings of 5th Workshop on Algorithms in BioInformatics
(WABI 2005), Lecture Notes in Bioinformatics 2005, 3692:376-388.

14. Gary MR, Johnson DS, Computers and Intractability: a Guide to the
Theory of NP-Completeness WH. Freeman and Co; 1979.

15. Kann V: On the approximability of the maximum common
subgraph problem. In Proc 9th Annual Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science 577
Springer-Verlag; 1992:377-388.

16. Cheetham J, Dehne F, Rau-Chaplin A, Stege U, Taillon PJ: Solving
large FPT problems on coarse-grained parallel machines.
JCSS 2003, 67:691.

17. Downey R, Fellows M: Parameterized Complexity Springer; 1999.
18. Lanctot JK, Li M, Ma B, Wang S, Zhang L: Distinguishing string

selection problems. Inf Comput 2003, 185:41.
19. Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela

A, Protasi M: Complexity and Approximation, Combinatorial Optimization
Problems and Their Approximability Properties New York: Springer-Verlag;
1999.

20. Deng X, Li G, Li Z, Ma B, Wang L: A PTAS for distinguishing
(sub)string selection. LNCS 2002, 2380:740.

21. Deng X, Li G, Li Z, Ma B, Wang L: Genetic design of drugs with-
out side-effects. SIAM Journal on Computing 2003, 32:1073.

22. Jiang T, Li M: On the Approximation of shortest common
Supersequences and longest Common subsequences. SIAM J
Comput 1995, 24:1122.

23. Li M, Ma B, Wang L: On the closest string and substring prob-
lems. Journal of the ACM 2002, 49:157.

24. Chen J, Kanj I, Jia W: Vertex cover: further observations and
further improvements. Journal of Algorithms 2001, 41:280-301.

25. Papadimitriou C, Yannakakis M: On the complexity of database
queries. JCSS 1999, 58:.

26. Bodlaender HL, Downey RG, Fellows MR, Hallett MT, Wareham HT:
Parameterized complexity analysis in computational biol-
ogy. Comput Appl Biosci 1995, 11:49-57.

27. Bodlaender H, Downey R, Fellows M, Wareham M: The parame-
terized complexity of sequence alignment and consensus.
Theoretical Computer Science 1995, 147:31.

28. Fellows M, Gramm J, Niedermeier R: Parameterized intractabil-
ity of motif search problems. LNCS 2002, 2285:262.

29. Hallett M: An Integrated Complexity Analysis of Problems for Computa-
tional Biology Ph.D. Thesis, University of Victoria; 1996.

30. Papadimitriou C, Yannakakis M: On limited nondeterminism and
the complexity of VC dimension. JCSS 1996, 53:161.

31. Pietrzak K: On the parameterized complexity of the fixed
alphabet shortest common supersequence and longest com-
mon subsequence problems. JCSS 2003, 67:757.

32. Chen J, Chor B, Fellows M, Huang X, Juedes D, Kanj I, Xia G: Tight
lower bounds for parameterized NP-hard problems. Proc of
the 19th Annual IEEE Conference on Computational Complexity
2004:150-160.

33. Chen J, Huang X, Kanj I, Xia G: Linear FPT reductions and com-
putational lower bounds. Proc of the 36th ACM Symposium on The-
ory of Computing 2004:212-221.

34. Huang X: Parameterized Complexity and Polynomial-time Approximation
Schemes Ph.D. Dissertation, Texas A&M University; 2004.

35. Cai L, Chen J: On Fixed-Parameter Tractability and Approxi-
mability of NP Optimization Problems. J Comput Syst Sci 1997,
54:465-474.

36. Chen J, Huang X, Kanj I, Xia G: W-hardness linear FPT-reduc-
tions: structural properties and further applications. Proceed-
ings of the Eleventh International Computing and Combinatorics
Conference (COCOON 2005), Lecture Notes in Computer Science 2005,
3595:975-984.

37. Downey R, Estivill-Castro V, Fellows M, Prieto E, Rosamond F: Cut-
ting up is hard to do: the parameterized complexity of k-Cut
and related Problems. Electr Notes Theor Comput Sci 2003, 78:.

38. Sze S-H, Lu S, Chen J: Integrating sample-driven and pattern-
driven approaches in motif finding. WABI2004 2004:438-449.

39. Sze S-H: Lectures notes of Special Topics in Computational Biology, Fall
2002.

40. Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to Algo-
rithms 2nd edition. MIT Press; 2001.
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7796275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7796275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7796275
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Introduction
	Problem Definition

	Methods
	Parameterized Computation and Recent Progress on Parameterized Intractability
	Lower Bound for Maximum Common Subgraph Problem
	Upper Bound – Clique Based Approaches

	Results
	Conclusion
	Authors' contributions
	Acknowledgements
	References

