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Abstract
Background: Recently several statistical methods have been proposed to identify genes with
differential expression between two conditions. However, very few studies consider the problem
of sample imbalance and there is no study to investigate the impact of sample imbalance on
identifying differential expression genes. In addition, it is not clear which method is more suitable
for the unbalanced data.

Results: Based on random sampling, two evaluation models are proposed to investigate the impact
of sample imbalance on identifying differential expression genes. Using the proposed evaluation
models, the performances of six famous methods are compared on the unbalanced data. The
experimental results indicate that the sample imbalance has a great influence on selecting
differential expression genes. Furthermore, different methods have very different performances on
the unbalanced data. Among the six methods, the welch t-test appears to perform best when the
size of samples in the large variance group is larger than that in the small one, while the Regularized
t-test and SAM outperform others on the unbalanced data in other cases.

Conclusion: Two proposed evaluation models are effective and sample imbalance should be taken
into account in microarray experiment design and gene expression data analysis. The results and
two proposed evaluation models can provide some help in selecting suitable method to process
the unbalanced data.

Background
Microarrays enable us to monitor expressions of thou-
sands of genes simultaneously and generate enormous
amount of data. Using such techniques, it is possible to
explore the secret of biology at the molecular level and
understand the fundamental biological processes ranging
from gene function to development and to cancer [1-3]. In

microarray experiments, the expression levels of several
thousands candidate genes have been monitored in two
opposite conditions, such as Treatment versus Control
conditions, where each condition is represented by several
samples. Unfortunately, most monitored genes are unre-
lated to the conditions and their expression levels do not
change or change by chance, while other genes are
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strongly related to the conditions and truly change their
expression levels according to conditions. However, these
differentially expressed genes are very useful in latter
research and clinical applications [2,3]. Therefore, one of
the important tasks in microarray data analysis is to com-
pare the expression levels of genes in samples drawn from
two different conditions and to select genes with differen-
tial expression under those two conditions. Specifically,
we are interesting in identifying which of several thou-
sands candidate genes have had their expression levels
changed by condition, given a microarray data.

One simple approach used in literature to detect differen-
tial expression genes is "fold change" method, in which a
gene is declared to be differentially expressed if its average
expression level varies by more than a given constant
between two conditions. However, "fold change" method
has been demonstrated to be unreliable and inefficient,
because statistical variability is not considered [4]. Then,
many sophisticated statistical approaches have been pro-
posed [5,6]. These approaches can be roughly classified
into two categories. The parametric methods based on sta-
tistical model is the first category of methods. This kind of
methods include various versions of the two-sample t-test
[6-8]. Due to the reason that gene expression data are
often noisy and not normally distributed [9], the strong
assumption of parametric method can be violated in prac-
tice. The second category of approaches is nonparametric
statistical methods, including the Wilcoxon rank-sum test
[10], the Significance Analysis of Microarray (SAM)
method [11], the Empirical Bayes (EB) method [12], the
mixture model method [13] and other modified nonpar-
ametric methods [14,15]. For recent reviews, please see
[5,6].

However, very few studies consider the problem of sample
imbalance in detecting differential expression genes and
there are no studies as well as quantitive method to inves-
tigate the effect of sample imbalance on differential
expression genes selection. Sample imbalance means that
the size of samples in one group is very different to that in
another group. In fact, the problem of sample imbalance
usually appears in gene expression data, especially in the
data about tumor samples. For example, the data in [16-
23] are all unbalanced. There are many factors causing the
problem of sample imbalance, such as the limit of source
of tumor samples, budgetary constraints and reducing
samples in the control group artificially and factitiously.
Coupled with the small sample in gene expression data,
the problem of sample imbalance may be more serious.
Consequently, two important and natural questions may
be asked by biologists as follows: How does the sample
imbalance affect the methods for identifying differential
expression genes? Which method is more suitable for the
unbalanced data? In addition, previous studies [24,25]

have found that the variability of gene expression may be
related to the average expression. It suggests that the two
sample t-test being used should be based on unequal var-
iances. An instant but reasonable question is: whether the
above suggestion is still true on the unbalanced data.

In this paper, we investigate the new problem about the
impact of sample imbalance on identifying differential
expression genes. Two evaluation models based on ran-
dom sampling are proposed and six famous methods are
compared on both the real data and the simulated data.
Under each evaluation model, the random sampling is
utilized to estimate the expected performances of meth-
ods on the unbalanced data which satisfy one specific
sample ratio between two groups. Then the variations of
performances are used to illustrate the effect of sample
imbalance on differential expression genes selection and
method selection.

Results
In this section, six methods including two-sample t-test
with equal variances (equalling F-test) [6], two-sample t-
test with unequal variances (i.e. Welch t-test) [5,7], Wil-
coxon rank-sum test [10], SAM [11], Regularized t-test [8]
and the permutation-based method of Pan [15] are sys-
tematically compared on real data and simulated data
according to two evaluation models. All experiments are
conducted in Matlab environment on a Pentium PC with
a 3.20 GHz CPU and 512 MB RAM. The processing proce-
dure is as follows. For every pair of fixed parameters n1 and
n2 (which are the numbers of samples in class one C1 and
class two C2) in each experiment under two evaluation
models, first, we randomly create a set of x independent
artificial data or simulated data and test all six methods on
these x data to get the results. For a specific method, each
one in the x random data will only get one result for each
measure, for example Overlap Rate, Precision Rate or
Recall Rate. Then, these x values are treated as a random
sample of size x from the fixed parameters n1 and n2. Last,
the expected performance of each method and its 0.95
confidence interval are calculated from this kind of ran-
dom samples.

Datasets
Two real datasets are the liver dataset [21] and the prostate
dataset [26]. Taking a data preprocess protocol similar to
that in Dudoit et al [27], we screen out genes with missing
data in more than 5% arrays, impute other missing data
by 0, and then apply a base 2 logarithmic transformation.
Each experiment is standardized to zero median across the
genes. The prostate data finally consists of gene expression
profiles of 62 primary prostate tumours and 41 normal
specimens with expression values of 7931 genes. The liver
data consists of gene expression profiles of 105 primary
HCC and 76 non-tumor liver tissues, 7 benign liver tumor
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samples, 10 metastatic cancers, and 10 HCC cell lines on
11763 genes. We select two largest classes from the liver
dataset to do experiments.

The simulated data is created according to the protocol in
[10], where the gene expression value is a normally gener-
ated random value with a noise generated from one uni-
form distribution of U(-0.1, 0.1), which is very similar to
real data. In each simulated data, there are 1000 genes
(first 50 with differential expression and next 950 with
non-differential expression) and two classes C1 and C2
(having n1 and n2 samples, respectively). For any non-dif-
ferential expression gene j (i.e. 51 ≤ j ≤ 1000), its expres-
sion value aij on each sample i is randomly generated from
N(μ, 0.5) and U(-0.1, 0.1), where μ ~N(0, 0.25). For gene
j ≤ 50, the value of gene j on any sample in class C1 is gen-
erated from N(μ1, σ1) and U(-0.1, 0.1), while that in class
C2 is generated from N(μ2, σ2) and U(-0.1, 0.1), where μ1,
μ2~N(0, 0.5). For the problem of multiple testing
involved in identifying differential expression genes, bon-
fenorri correction of the significant level α can be used to
reduce the error of type I. But a very small α will be disad-
vantaged to compare the performances of methods. In
this paper, a relatively small significant level α will be
used to control the type error I. On the real data, the value
of α is set to 0.0001. On the simulated data, the significant
level α is set to 0.01.

Results on real data

In the experiments of the evaluation model 1, the number
of samples in Class C1 of the artificial data, which are cre-

ated from the liver data or the prostate data, is always fixed
at 60. The results under the evaluation model 1 are pre-
sented in figure 1. Because of the limitation of sample size
in real data, in the experiments of the evaluation model 2,
the value of n1+ n2 in the artificial data created from the

liver data is fixed at 120 and that from the prostate data is
fixed at 60. The results of the evaluation model 2 on real
data are presented in figure 2. The expected Overlap Rates
and its 0.95 confidence interval (or Error Limit) of each
method at each specific SR are obtained from 100 ran-
domly generated artificial data. Furthermore, in order to

test whether the average Overlap Rate at SR ≠ 1 (denoted

as i(i ≠ 1))is significantly different with that at SR = 1

(denoted as 1), we make a two sample t-test, where the

observations are these 100 Overlap Rates calculated from
100 random artificial data with SR = 1 and those calcu-

lated from 100 random artificial data with SR ≠ 1. So our

null hypothesis states that i(i ≠ 1) = 1, while the

alternative hypothesis states that i(i ≠ 1) ≠ 1. The p-

values associated with the t-statistic in the evaluation
model 1 and 2 are summarized in table 1 and 2, respec-
tively. The experiments on real data indicate that the sam-
ple imbalance has a great influence on the performances
of all six methods. As can be seen in figures 1 and 2, on
both real datasets, the Overlap Rates of all methods are
gradually decreasing in response to the increasing
amounts of sample ratio. For example, in the figure 2(a),
the margins between the average Overlap Rates at SR = 1
and that at SR = 3 on 6 methods (F, welch-t, wilcoxon,
SAM, Regularized-t and Pan) are 0.2249, 0.1842, 0.2429,
0.2255, 0.2378 and 0.1932. According to the p-value
showed in Table 2, we can conclude that on the real data
the difference of the performance for each method

between SR = 1 and SR ≠ 1 has a very high statistical con-
fidence. Additionally, there is also a difference among the
Overlap Rates of different methods. It can be seen from
figure 1 and 2 that Welch t-test and the method of pan cre-
ate higher Overlap Rates on the unbalanced liver data
than other 4 methods, while Wilcoxon test shows a lower
Overlap Rate compared with other 5 methods on the
unbalanced prostate data. However, because of without
true solution, we can't decide directly and strictly which
one of the six methods has the best performance on real
data.

Results on simulated data
In this section, under two proposed evaluation models,
we generate two kinds of simulated data to compare the
performances of different methods on the unbalanced
data. In the first category, the differential expression genes
have equal variances in sample class C1 and sample class
C2 (i.e. σ1 = σ2), but have unequal variances (i.e. σ1 ≠ σ2)
in the second category of simulated data. The result on a
simulated data is the average result on 1000 random data
generated with a specific sample ratio.

Equal variances
Figure 3 shows the results on the simulated data in the
case of equal variances (σ1 = σ2 = 0.5), where the number
of samples in class C1 is fixed at 60 in the evaluation
model 1 and the number of overall samples is fixed at 60
in the evaluation model 2. The corresponding p-values of
the t-statistic on the simulated data with equal variances
under the evaluation model 1 and 2 are summarized in
table 3 and 4, respectively. From the experiments on sim-
ulated data with equal variances, we have the following:

The results on the simulated data with equal variances
indicate the performances of all methods are greatly
affected by the sample imbalance. Each of two metrics for
the performance of method (Precision Rate and Recall

OR

OR

OR OR

OR OR
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Rate) is steadily declined as the sample ratio increases.
This result is consistant with that of previous experiments
on the real data.

Furthermore, the downward trend of Recall Rate in
response to the increasing amounts of sample ratio is
steeper than that of Precision Rate. In other words, the

The results on prostate and liver datasets under the evaluation model 2Figure 2
The results on prostate and liver datasets under the evaluation model 2. The expected Overlap Rates of six meth-
ods as well as their error limits on prostate and liver datasets under the evaluation model 2, where the number of overall sam-
ples in the artificial data from liver data is fixed at 120 and that from the prostate data is fixed at 60.
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(a) Prostate dataset
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(b) Liver dataset

The results on prostate and liver datasets under the evaluation model 1Figure 1
The results on prostate and liver datasets under the evaluation model 1. The expected Overlap Rates of six meth-
ods as well as their error limits on prostate and liver datasets under the evaluation model 1, where the sizes of samples in 
Class C1 of the artificial data, which are created from the liver data and the prostate data, are all fixed at 60.
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Recall Rate (the false negative) of the method for selecting
differential expression genes is more sensitive than the
Precision Rate (the false positive) to sample imbalance,
although they are all affected by sample imbalance.

It is certain that the sample imbalance appears to have dif-
ferent effects between different methods. The difference
between different methods become great when the degree
of sample imbalance increases. In detail, the Precision
Rates of the Wilcoxon rank-sum test and the Regularized
t-test are higher than those of others, that is, the Wilcoxon
rank-sum test and the Regularized t-test have lowest false
positive rate (Type I error). Whereas, the Recall Rate of
SAM is superior to that of other methods, i.e. the method
of SAM has the lowest false negative rate (Type II error).
And Welch t-test shows the worst performance.

Unequal variances

In this section, under two evaluation models, the simu-
lated data are generated in two case: the first case satisfies

σ1 ≤ σ2 and n1 ≥ n2, for example, σ1 = 0.5, σ2 = 1 and SR =

1, 2, 3. The second case is that σ1 ≤ σ2 and n1 ≤ n2, for

example, σ1 = 0.5, σ2 = 1 and SR = 1, , . The results of

the evaluation model 1 on the two case of simulated data

with unequal variances σ1 = 0.5, σ2 = 1 are showed in fig-

ure 4. Figure 5 plots the results of the evaluation model 2
with n1 + n2 = 60 on two case of simulated data with une-

qual variances σ1 = 0.5, σ2 = 1.

As observed in figure 4 and 5, the performance of each of
six methods degrades when the degree of sample imbal-

1
2

1
3

Table 2: The p-value of t-statistic under the evaluation model 2 on two real datasets.

SR 2 3 4 5 7

Prostate
F 7.2e-030 9.0e-068 8.8e-089 7.1e-107
welch-t 1.8e-016 6.9e-056 5.6e-087 1.6e-110
sam 9.2e-034 4.7e-071 1.6e-099 9.0e-121
wilcoxon 1.6e-028 3.7e-070 5.2e-099 2.6e-123
Reg-t 1.2e-033 1.1e-073 1.3e-094 1.0e-113
Pan 2.1e-017 2.0e-054 5.5e-083 2.8e-112

Liver
F 1.6e-060 8.9e-111 1.2e-137 6.5e-147 1.6e-177
welch-t 3.2e-008 4.5e-049 1.8e-085 5.9e-106 1.6e-137
sam 1.3e-050 5.5e-099 1.1e-129 9.5e-142 2.0e-170
wilcoxon 3.4e-036 3.1e-089 3.1e-121 5.0e-136 8.9e-171
Reg-t 6.3e-062 1.4e-112 6.5e-138 8.6e-148 2.1e-178
Pan 3.1e-005 1.7e-039 1.3e-069 1.2e-094 6.5e-124

Table 1: The p-value of t-statistic under the evaluation model 1 on two real datasets.

SR 2 3 4 5 6 7.5

Prostate
F 1.4e-115 l.0e-162 9.9e-174 1.8e-188 1.6e-201 6.2e-232
welch-t 2.3e-112 3.3e-157 5.0e-177 4.4e-189 3.4e-213 3.2e-249
sam 4.8e-090 1.3e-146 3.0e-164 3.1e-186 7.9e-203 4.8e-230
wilcoxon 1.3e-112 1.4e-156 6.3e-182 9.5e-202 1.6e-230 1.2e-279
Reg-t 2.8e-108 4.9e-159 3.9e-170 1.3e-183 9.7e-199 2.8e-229
Pan 1.7e-084 2.8e-135 1.3e-154 5.9e-176 2.0e-192 9.3e-227

Liver
F 3.1e-118 5.3e-151 4.6e-171 4.7e-188 7.3e-198 1.5e-204
welch-t 9.8e-086 1.9e-122 1.8e-144 1.7e-156 6.6e-173 7.8e-185
sam 6.1e-106 3.5e-139 7.4e-166 2.0e-178 2.8e-187 3.1e-195
wilcoxon 2.6e-107 1.3e-148 1.6e-173 1.7e-189 1.2e-200 2.9e-211
Reg-t 3.4e-119 4.7e-153 8.9e-177 1.2e-188 8.6e-198 8.8e-205
Pan 5.1e-073 1.1e-111 7.0e-135 1.8e-144 5.9e-165 1.8e-177
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ance increases, and on the same unbalanced data there
exists great variance among the performances of six meth-
ods. These features are the same as those on the simulated
data with equal variances. Furthermore, there are surpris-
ing variation on the performances of all methods com-
pared in this paper between two different types of

unbalanced data with unequal variances. In the case of σ1

= 0.5, σ2 = 1 and n1 ≥ n2, Regularized t-test shows the high-

est Precision Rate and Recall Rate while Welch t-test per-
forms the worst capability. In contrast, Regularized t-test
has the medium performance and Welch t-test shows the

best performance when σ1 = 0.5, σ2 = 1 and n1 ≤ n2. This

surprising observation can be easily explained by figure 5.
As we can see in figure 5, the curve of each method per-
formance under the evaluation model 2 is a function of
sample ratio, which maximize its value at a specific sam-
ple ratio. These results imply that one should select a rel-
atively feasible method to detect differentially expressed
genes on an actual and specific unbalanced data. If one
more suitable method has been selected to process the
unbalanced data, then the result of analysis can be
improved greatly.

In order to investigate the combined influence of sample
ratio and varied variance on method performance, Regu-
larized t-test and Welch t-test are selected as examples to
demonstrate the dependency of the difference between
methods with respect to different variances and sample
ratios. Figure 6 shows the difference between Regularized
t-test and Welch t-test against varied variance at different

sample ratios. When σ1 ≤ σ2, Regularized t-test is always

superior to Welch t-test on the unbalanced data which sat-

isfies n1 ≥ n2. When σ1 ≤ σ2and n1 ≤ n2, the results become

relatively complex. In the plot b of figure 6, several curves
cross the line of zero, which implies that both methods of
Regularized t-test and Welch t-test have some region of

superiority. But when σ1≤ σ2 and n1 ≤ n2, Welch t-test

have obvious dominance. In addition, the more differ-

ence between variances σ1 and σ2 in unbalanced data, the

higher different effects on different methods.

Discussion
From this study, it is clear that there is a great effect on the
performances of methods for selecting differential expres-
sion genes by the sample imbalance. Because of many
objective factors, the gene expression data always involve
the problem of small sample. As mentioned earlier in the
previous section, coupled with the problem of small sam-
ple, the presence of the unbalanced data makes detecting
differential expression genes more difficult. The sample
imbalance is an important and inevitable problem in gene
expression data analysis. Hence, one need to consider the
problem of sample imbalance in the design of microarray
experiments and the following data analysis.

Careful experimental design is necessary to improve the
result of data analysis and reduce the cost of experiment
simultaneously. By the comparison between plot a and b
in figure 3, we can find that the expected Recall Rates and
the expected Precision Rates at SR = 1 in plot b are higher
than those at SR = 6 in plot a. In other words, because of
the influence of sample imbalance, the result from one
gene expression data of size 60 can be superior to that
from another similar gene expression data of size 70. This
finding is very considerable and exciting.

1
3

1
2

1
3

Table 3: The p-Value of t-statistic on the simulated data with σ1 = σ2 = 0.5, under the evaluation model 1 (n1 ≡ 60).

SR 2 3 4 5 6 7.5

Precision
F 2.1e-10 5.8e-20 3.5e-50 3.0e-085 2.1e-096 7.6e-150
welch-t 2.3e-12 1.9e-36 9.3e-85 3.8e-164 4.2e-231 0.0
sam 5.9e-08 4.5e-24 2.6e-47 3.1e-079 3.3e-092 1.7e-144
wilcoxon 1.5e-06 1.7e-14 2.3e-26 1.4e-044 9.5e-045 3.3e-064
Reg-t 1.7e-06 2.7e-15 3.2e-36 1.6e-063 3.6e-073 4.2e-123
Pan 6.7e-12 5.3e-29 1.9e-61 6.8e-117 5.5e-152 1.0e-228

Recall
F 6.6e-76 2.0e-211 0 0 0 0
welch-t 2.1e-81 4.1e-247 0 0 0 0
sam 3.7e-74 8.5e-204 0 0 0 0
wilcoxon 9.0e-80 1.8e-228 0 0 0 0
Reg-t 3.4e-79 5.9e-215 0 0 0 0
Pan 3.1e-82 8.3e-246 0 0 0 0
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Furthermore, our results also indicate that on the unbal-
anced data, there have a great difference between the per-
formances of different methods, especially on the data
with heterogeneity. Some previous studies [24,25] have

found that the variance  (for i = 1, 2) of expression val-

ues for gene j may depend on the mean expression value

μi. Hence, it will be very helpful to the result of analysis if

a more suitable method has been selected to process the

unbalanced data. For example, given an unbalanced data
with unequal variances, one can improve the result of
analysis if a feasible method from the six methods is
selected. However, it is very likely that all six methods are
not feasible for the unbalanced data and there is a require-
ment to find new methods more suitable to process the
unbalanced data.

σi
2

The expected performances of six methods on the simulated data with equal variances, i.e. σ1 = σ2= 0.5Figure 3
The expected performances of six methods on the simulated data with equal variances, i.e. σ1 = σ2= 0.5. The 
expected Precision Rates and Recall Rates of six methods as well as their error limits on the simulated data with equal vari-
ances (σ1 = σ2 = 0.5), where the number of samples of class C1 is fixed at 60 in the evaluation model 1 and the number of over-
all samples is fixed at 60 in the evaluation model 2.
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(a) Evaluation Model 1 (n1 ≡ 60)
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It should be noted that this paper does not consider the
problem of determining sample size for detecting differ-
entially expressed genes in microarray data. An interesting
topic is how to assign samples between two groups in
order to maximize a method performance under the con-
straint of the given number of overall samples n1 + n2.

The results of this paper are based on six popular and typ-
ical methods for identifying differential expression genes
including parametric method and nonparametric
method. The similar effect of the sample imbalance on
both kinds of methods leads us to believe that the find-
ings in this paper should have, at least qualitatively, a
comprehensive meaning. Also, two proposed evaluation
models can be used to compare and evaluate other meth-
ods.

Conclusion
The experiments in this paper demonstrate that sample
imbalance has a great effect on identifying differential
expression genes and two proposed models are effective
to quantify the effect of sample imbalance. Moreover, dif-
ferent methods have different performances on the unbal-
anced data and we can not find one method to be suitable
for all unbalanced data in the experiments. Among the six
methods, the welch t-test appears to perform best when
the size of samples in the large variance group is larger
than that in the small one, While the Regularized t-test
and SAM outperform others on the unbalanced data in
other cases. In conclusion, two proposed evaluation mod-
els and the results provide some help in selecting suitable
method to process the unbalanced data.

In future work, we will apply the evaluation models to
evaluate more methods, for example the methods based
False Discovery Rate. Furthermore, we attempt to investi-

gate the problem of determining the sample size to maxi-
mize the performance of a given differential expression
genes selection method.

Methods
First, some notations used in this paper are introduced
here. We assume there are n samples in the gene expres-
sion data and these n samples consist of two nonoverlap-
ping categories named class one (C1) and class two (C2).
In each sample, the expression values of p genes have been
detected. Then the gene expression data may be repre-
sented by a n × p matrix

An × p = (aij)n × p,

where the element aij is the expression value of gene j in

sample i. The rows of A correspond to samples, and the i-
th row vector of A is called the expression profile of the i-

th sample. We assume that nk, k(j) and Sk(j) are number

of samples, sample mean and sample variance of gene j in
the class Ck, respectively, where k = 1, 2.

Basic concepts
Definition 1 (Sample Ratio)
Given a gene expression data, let nk denotes the number of sam-
ples in class Ck, k = 1, 2. Then, Sample Ratio, denoted by SR,
is defined to be n1/n2, i.e. SR = n1/n2.

We use the Sample Ratio (SR) to measure the degree of
sample imbalance between two groups. As revealed by
definition 1, the further the value of SR departs from 1, the
more serious the degree of sample imbalance is.

A key question also involved in this paper is how to eval-
uate the performance of a method for identifying differen-

a

Table 4: The p-Value of t-statistic on the simulated data with σ1 = σ2 = 0.5, under the evaluation model 2 (n1 + n2 ≡ 60).

SR 2 3 4 5 6.5

Precision
F 6.6e-2 5.3e-06 5.9e-17 4.2e-029 3.4e-055
welch-t 2.5e-4 3.7e-23 1.6e-44 7.1e-128 2.3e-254
sam 3.1e-2 4.0e-08 1.6e-19 1.0e-030 7.3e-061
wilcoxon 2.3e-l 1.1e-02 1.2e-08 1.2e-018 6.3e-022
Reg-t 4.6e-2 6.6e-07 8.7e-17 4.0e-029 1.4e-056
Pan 2.6e-2 1.1e-09 1.5e-29 1.8e-056 1.4e-112

Recall
F 9.2e-6 2.3e-47 6.6e-102 1.0e-180 1.2e-288
welch-t 2.0e-9 6.2e-77 1.4e-169 1.9e-309 0
sam 3.7e-6 1.0e-48 7.9e-103 3.7e-184 1.9e-290
wilcoxon 7.2e-7 5.2e-56 3.5e-122 2.3e-213 0
Reg-t 2.0e-8 4.7e-57 2.6e-115 3.1e-199 2.9e-310
Pan 4.2e-9 1.7e-80 4.6e-172 8.1e-315 0
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tial expression genes, that is, how to evaluate the solution
resulted from the method. For thousands of genes in a real
gene expression data, it is generally unclear that which
ones are differentially expressed genes. This situation has
resulted in an obstacle to assess a method directly and
strictly. In contrast, the true solution is known for the sim-
ulated data. So, in order to assess the performance of
method directly, the simulated data are introduced. Fur-
thermore, several measures are introduced to measure the

quality of the method solution. Different measures are
applicable in different situations, depending on whether a
true solution is known or not.

First, we present a metric to assess the method perform-
ance for selecting differential expression genes on the real
gene expression data.

The expected performances of six methods under the evaluation model 1 on the simulated data with unequal variances, where σ1= 0.5, σ2 = 1Figure 4
The expected performances of six methods under the evaluation model 1 on the simulated data with unequal 
variances, where σ1 = 0.5, σ2 = 1. The expected Precision Rates and Recall Rates of six methods as well as their error limits 
on the simulated data with unequal variances (σ1 = 0.5, σ2 = 1) in the evaluation model 1, where the numbers of samples of 
class C1 and class C2 are fixed at 60, respectively.
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Given real data, the whole real data is treated as the orig-
inal data (OD) and the artificial data (AD), which satis-
fies the given parameters n1 and n2, is generated by
randomly sampling samples from the original data. Thus
the Overlap Rate denoted by OR is calculated according to
the following definition.

Definition 2 (Overlap Rate)
Let DEGOD and DEGAD be the sets of Differentially Expressed
Genes identified by some method on the original data (OD)
and the artificial data (AD), respectively, then the Overlap
Rate (OR) is defined as OR = |DEGOD ∩ DEGAD|/|DEGOD|.

To assess the method performance on the simulated data,
we can compare the true solution with the suggested solu-
tion by the following method. Given simulated data with
p genes, any solution can be represented by a binary 1 × p
vector T, where T(i) = 1 if and only if the i-th gene is dif-
ferentially expressed gene (or positive gene). Suppose that
T and S be the true solution and the suggested solution of
a method, respectively. And let nxy denote the number of
pair (i, i), for which T(i) = x and S(i) = y, where x, y = 0 or
1. Thus, n11 is the number of true positive genes, n01 is the
number of false positive genes, n00 is the number of true
negative genes, and n10 is the number of false negative
genes. Consequently, two different metricss, Recall Rate
and Precision Rate, are introduced to measure the perform-
ance of method.

Definition 3 (Recall Rate)
Suppose that S and T be the suggested solution of a differential
expression gene selection method and the true solution, respec-
tively. Then Recall Rate (RR) is defined as RR = n11/(n10 +
n11).

Definition 4 (Precision Rate)
Suppose that S and T be the suggested solution of a differential
expression gene selection method and the true solution, then
Precision Rate (PR) is defined as PR = n11/(n01+n11).

From the definitions 3 and 4, We can see that the Recall
Rate focuses on the false negative while the Precision Rate
focuses on the false positive. However, the false negative
and the false positive are two different keystones in the
context of selecting differential expression genes, and the
false negative is inconsistent with the false positive. So in
a particular problem specification, one can choose either
Recall Rate or Precision Rate as the main focus.

Random sampling

For one specific method of differential expression genes
selection and one given data with n1 samples in class C1

and n2 samples in class C2, we can only get one specific

value of each of the metrics OR, RR and PR of the method
on the given data. So after one specific method and the set
of gene expression data with size m are given, there exists
the set of ORs (RRs or PRs) with size m resulted from the
method. A perfect way to evaluate the performance of one

The expected performances of six methods under the evaluation model 2 on the simulated data with unequal variances, where σ1 = 0.5, σ2 = 1 and n1 + n2 ≡ 60Figure 5
The expected performances of six methods under the evaluation model 2 on the simulated data with unequal 
variances, where σ1 = 0.5, σ2 = 1 and n1 + n2 ≡ 60. The expected Precision Rates and Recall Rates of six methods as well as 
their error limits on the simulated data with unequal variances (σ1 = 0.5,σ2 = 1) in the evaluation model 2, where the number 
of overall samples is fixed at 60.
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method is to run the method on the whole set of gene
expression data which satisfy given parameters n1 and n2

and to calculate the average value of each metric. But the
cardinality of the set of data with parameters n1 and n2

may be very large or infinite. For example, if a real micro-
array data has 50 and 30 samples in class C1 and

C2respectively, then the number of different artificial data

with parameters n1 = 40 and n2 = 20 is  > 3 ×

1017. In order to reduce the computation cost and avoid

the problem of infinity, one feasible way is to estimate the
expected value of each metric and its approximate confi-
dence interval (or Error Limit) by sampling a sample from
the specific gene expression data randomly.

Lemma 1

[28]Suppose that population X has mean μ, and finite variance

σ2, and X1, X2, ..., Xn are an independent random sample of

size n from the population X, then the sample mean is an
C C50

40
30
20⋅

X

The average performance Regularized t-test minus the corresponding performance of Welch t-test on the simulated data with varied variance σ2, where n1 + n2 ≡ 60 and σ1 ≡ 0Figure 6
The average performance Regularized t-test minus the corresponding performance of Welch t-test on the 
simulated data with varied variance σ2, where n1 + n2 ≡ 60 and σ1 ≡ 0.5. The average Precision Rate and Recall Rate of 
Regularized t-test minus that of Welch t-test on the simulated data with varied variance σ2, where σ1 ≡ 0.5 and n1 + n2 ≡ 60.
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unbiased estimate of μ and the sample variance S2is an unbi-

ased estimate of σ2. Moreover, the variance of , denoted by

D( ), satisfies D( ) = σ2/n, where

According to lemma 1, we can use the sample mean  to

estimate the population mean μ and calculate its approx-
imate confidence interval. In sampling survey, the exact

distribution of the estimate (i.e. ), is unknown. How-
ever, according to the central limit theorem, we can expect

the sampling distribution of  to be approximately nor-

mal distribution with mean E( ) = μ and variance

D( ). That is

As a result, a (l-α)100% approximate confidence interval

for the estimate of μ is . In prac-

tice, the standard deviation of sampled population σ is

typically unknown. Replacing σ by S leads to the corre-

sponding estimate  and  is referred to as the

standard error (SE) of . Therefore, a feasible confidence

interval of μ at a significant level α is [  - zα,  +

zα] and the approximate Error Limit (EL) is zα.

For sample of size n ≥ 30, regardless the shape of most
population, sampling theory guarantees good results [28].

When population is finite, the change is the introduction

of the factor 1 - f for the variance D( ), where f = n/N is
the sampling fraction and N is the size of population. The
factor 1 - f is called the finite population correction (fpc).
That is, the confidence interval is

. In practice, the fpc can

be ignored whenever the sampling fraction does not
exceed 5% [29].

Evaluation models
In order to investigate the effect of sample imbalance on
differential expression genes selection, one simply needs
to consider the change of the performance of a method in
response to different sample ratios (SRs), because the
sample ratio is a measure of the degree of sample imbal-
ance between two groups. Therefore, two evaluation mod-
els are proposed as follows.

Evaluation model 1
Let the number of samples of certain class always equal to con-
stant C, for instance n1= C, and the artificial data (or the sim-
ulated data) is randomly created with different Sample Ratios.
Then compare the method results on the data with various Sam-
ple Ratios.

Evaluation model 2
Let the number of all samples in the artificial data (or the sim-
ulated data) always equal to constant C, i.e. n1+n2 ≡ C, and
the artificial data (or the simulated data) is randomly created
with different Sample Ratios. Then the method is evaluated
based on these random data with particular parameter SR.

Calculating cutoff point

For the parametric method, the cutoff point of a signifi-
cance level a is calculated from the assumed distribution.
In the nonparametric method, for a given significance

level α, following the spirit of SAM, we find the 100(1 -

α)% quantile of the null distribution, i.e. noted as ,

using the following formula

where B is the number of permutations and  is the

value of the statistic for the i-th gene in the b-th permuta-

tion. Then the quantile value  is used as the cutoff

point for that statistic to select differential expression
genes.
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