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Abstract

Background: The genomic revolution has led to rapid growth in sequencing of genes and proteins,
and attention is now turning to the function of the encoded proteins. In this respect, microscope
imaging of a protein's sub-cellular localisation is proving invaluable, and recent advances in
automated fluorescent microscopy allow protein localisations to be imaged in high throughput.
Hence there is a need for large scale automated computational techniques to efficiently quantify,
distinguish and classify sub-cellular images. While image statistics have proved highly successful in
distinguishing localisation, commonly used measures suffer from being relatively slow to compute,
and often require cells to be individually selected from experimental images, thus limiting both
throughput and the range of potential applications. Here we introduce threshold adjacency statistics,
the essence which is to threshold the image and to count the number of above threshold pixels
with a given number of above threshold pixels adjacent. These novel measures are shown to
distinguish and classify images of distinct sub-cellular localization with high speed and accuracy
without image cropping.

Results: Threshold adjacency statistics are applied to classification of protein sub-cellular
localization images. They are tested on two image sets (available for download), one for which
fluorescently tagged proteins are endogenously expressed in |0 sub-cellular locations, and another
for which proteins are transfected into | | locations. For each image set, a support vector machine
was trained and tested. Classification accuracies of 94.4% and 86.6% are obtained on the
endogenous and transfected sets, respectively. Threshold adjacency statistics are found to provide
comparable or higher accuracy than other commonly used statistics while being an order of
magnitude faster to calculate. Further, threshold adjacency statistics in combination with Haralick
measures give accuracies of 98.2% and 93.2% on the endogenous and transfected sets, respectively.

Conclusion: Threshold adjacency statistics have the potential to greatly extend the scale and
range of applications of image statistics in computational image analysis. They remove the need for
cropping of individual cells from images, and are an order of magnitude faster to calculate than
other commonly used statistics while providing comparable or better classification accuracy, both
essential requirements for application to large-scale approaches.
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Background

Obtaining the sequence of numerous genomes and subse-
quent identification of the encoded proteome has created
the need for large-scale systematic approaches to under-
stand the functions of the tens of thousands of proteins at
the cellular level [1,2]. High-throughput automated fluo-
rescent microscope imaging technologies enable the
experimental determination of a protein's sub-cellular
localization and its dynamic trafficking within a range of
cellular contexts. These approaches generate vast numbers
of images including multiple fluorophores for cells under
a variety of experimental conditions [3,4]. Furthermore,
cells may now be imaged in 3D, or indeed 4D with 3D
stacks captured over time to observe protein trafficking in
live cells [5]. The desire and the ability to carry out high-
throughput screenings of protein localization and traffick-
ing for applications such as drug discovery [4] is leading
to a rapid growth in cell images in need of analysis on a
scale comparable to that of the genomic revolution. It has
been estimated that to take a single image for each combi-
nation of protein, cell type and timescale would require of
the order of 100 billion images [6]. Currently, image data-
bases such as the Yeast GFP Fusion Localization Database
[7], the LOCATE mouse protein sub-cellular localization data-
base [2] and the LIFEdb database for the integration and
dissemination of functional data [8] offer the possibility
to present, integrate and search the vast amounts of data
being created by high throughput cell imaging. However,
to a large degree the analysis and comparison of localiza-
tions are still performed by the slow, coarse-grained and
possibly biased process of manual inspection. To deal
with the scale of the data becoming available automated
annotation, analysis, comparison, classification and stor-
age of cellular images is essential.

Image statistics have proven to be of great utility in the
automated analysis of cellular images. Haralick texture
measures define a variety of statistics based on the spatial
dependence of individual pixel intensities across an image
[9]. Zernike moments [10,11] calculate the decomposi-
tion of an image onto an orthogonal set of polynomials in
much the same way that Fourier coefficients may be used
to decompose a time series. These and other [12] meas-
ures may be used to generate a vector of numbers for a
given cell image, and have a wide range of applications.
For a given set of images, a representative image may be
chosen by selecting the image with vector closest to the
mean vector of the entire image set [13,14]. Images may
be clustered [15] or ranked by distance from a given image
to find similar images [14]. And given two sets of sub-cel-
lular localization images under differing experimental
conditions, image statistics can be used to assess whether
there is a statistically significant difference, even to the
extent that visually indistinguishable images of distinct
localizations may be differentiated [16]. One important
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application is in automated sub-cellular localization clas-
sification. Here, a machine learning technique such as a
neural network [17] or support vector machine (SVM)
[18] is trained on image vectors of known localization,
and subsequently used to predict those of unknown local-
ization. With accuracies of well over 90% [19-21] such
predictors have proved very successful, and have exceeded
human classification accuracy [13,19]. Once statistical
techniques such as the above are fully integrated into cell
image databases, a much greater degree of refinement,
content searching, unbiased clustering and hypothesis
testing will be enabled.

While image statistics have performed well in sub-cellular
localization classification, they often suffer from high
computational cost and require individual cells to be
cropped from an image, hence limiting the extent to
which they may be applied. Here, we introduce threshold
adjacency statistics (TAS), a simple and fast morphological
measure for distinguishing sub-cellular localization.

Results and discussion

Algorithm

Threshold adjacency statistics are generated by first apply-
ing a threshold to the image to create a binary image (Fig-
ures 1 and 2), with a threshold chosen as follows. The
average intensity, 1, of those pixels with intensity at least
30 is calculated for the image, the cut off 30 chosen as
intensities below this value are in general background,
and is considered in more detail below in the Testing sub-
section (an 8-bit grayscale image has pixel has intensities
from 0 to 255). The experimental image is then binary
thresholded to the range u-30 to pu+30 (Figure 2a'). The
range was selected to maximise the visual difference of
threshold images for which the localisation images had
distinct localisations but were visually similar, as in Figure
1. The following nine statistics were designed to exploit
the dissimilarity seen in the threshold images. For each
white pixel, the number of adjacent white pixels is
counted (Figure 2 (0)-(8)). The first threshold statistic is
then the number of white pixels with no white neigh-
bours; the second is the number with one white neigh-
bour, and so forth up to the maximum of eight. The nine
statistics are normalised by dividing each by the total
number of white pixels in the threshold image. Two other
sets of threshold adjacency statistics are also calculated as
above, but for binary threshold images with pixels in the
ranges I-30 to 255 and U to 255, giving in total 27 statis-
tics. A variety of other thresholds ranges were tested but
found to give lower performance in later classification
tests (data not shown).

Testing
To test the utility of threshold adjacency statistics, we cre-
ated two epi-fluorescent image collections, each with
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Figure |
Distinguishing cell images by thresholding. Images of the endoplasmic reticulum (a) and the microtubule cytoskeleton (b)
are thresholded (a' and b') such that pixels with intensity in the range 11-30 to L+30 are shown in white, where L is the average
pixel intensity of each image. Though images (a) and (b) are texturally and visually similar, images (2') and (b') are more distin-
guished. Image (a') contains more solid white regions, while (b') shows more interior speckling and feathering of edges.

approximately 50 images per sub-cellular location. One
for which an endogenous protein or feature of the specific
organelle was detected with a fluorescent antibody or
other probe (10 organelles, 503 images). The second a set
for which an epitope- or GFP-tagged protein was tran-

siently expressed in the specific organelle and subse-
quently detected (11 organelles, 553 images). Each image
contained between 1 and 13 cells. Details of markers used
are given in Table 1, and (cropped) sample images are
shown in Figures 3 and 4. The efficacy of threshold adja-
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Threshold statistics for cell images. Once a cellular image (a) is thresholded (a'), statistics are calculated from the thresh-
old image. For each white pixel the number of pixels adjacent that are also white are counted. Examples of having zero to eight
white neighbours are given in (0)-(8). The first threshold statistic is then the number of white pixels with zero white neigh-
bours, the second is the number with one white neighbour, and so on up to eight. These nine statistics are then normalised by
dividing each by the total number of white pixels in the threshold image.

cency statistics in predicting sub-cellular localization was
then tested by generating statistics for the endogenous
and transfected images, and creating a SVM for each. For
the endogenous set, a 5-fold cross validation classification
accuracy (percentage of true positives) of 95.2% was
obtained, while the cross validation accuracy on the trans-
fected set was 88.8%. To ensure against potential data bias
in cross validation, each data set was randomly split
(class-balanced) into 4/5ts for training and 1/5t for test-
ing. A SVM was then trained on the training set and the
overall and by localization class classification accuracies
on the test set were recorded. Random data splitting, train-
ing and testing was then repeated 1000 times. The overall
average classification accuracy on the 1000 endogenous
test sets was then 94.4%, and 86.3% for the transfected
test sets. The classification accuracies for each class of
localization for the endogenous set were all high being in
the range 92.8% to 98.2%, while the transfected set accu-
racies showed a wider variation ranging from 76.2% to
95.7% (Table 1). The classes with lower classification
accuracy such as mitochondria, ER and plasma membrane
appear to be those that exhibit higher visual similarity to
each other than to other classes.

Both the Haralick texture measures and the magnitudes of
the Zernike moments have previously been shown to be
useful in distinguishing sub-cellular localization [12,13].
To compare performance with that of threshold adjacency
statistics, a set of 20 Haralick measures and 49 Zernike
measures were selected. The Haralick measures were cho-
sen from a list of those shown to be good for distinguish-
ing sub-cellular localization in Conrad et al. [12], and
have previously been described and tested in the Auto-
mated Sub-Cellular Phenotype Classification (ASPiC) sys-
tem [20]. The Zernike measures chosen were the
magnitudes associated with the first 12 Zernike polyno-
mials, and have also previously been applied to sub-cellu-
lar localization [13].

Zernike measures require single cell images, and hence the
ASPiC automated cropping system was used to select cells
from the image. This gave 1420 cell images from the
endogenous image set, and 1075 from the transfected set.
Haralick, Zernike and threshold adjacency statistics were
then generated for each cropped image, and each class of
statistics tested using a SVM and 5-fold cross validation.
On the cropped endogenous image set, threshold adja-
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Table I: Average classification accuracies using TAS statistics on Endogenous and Transfected data test sets and the subcellular

markers used

Organelle Endogenous Accuracy  Transfected Accuracy  Endogenous Marker  Transfected Marker

Nucleus 97.4% 92.6% DAPI myc-nbp-45 (txreg 1920050F21)
Cytoplasm - 95.5% - GFP-V5

Endoplasmic Reticulum 90.8% 82.5% anti-PDI ICAT-GFP

Golgi 98.2% 87.7% anti-Beta-COP GCC-GFP

Plasma Membrane 93.3% 82.4% anti-EGFR myc-Lysophosphatidic acid receptor
Endosome 93.9% 88.1% anti-SNX| rab5a-GFP

Lysosome 96.5% 76.5% Lysotracker myc-chloride channel 7 (5330412018)
Peroxisome 95.9% 95.7% anti-catalase ALD

Mitochondria 92.6% 76.2% Mitotracker myc-carntine/acylcarnitine translocase
Actin Cytoskeleton 97.8% 92.3% Phalloidin YFP-actin

Microtubules 92.8% 92.1% anti alpha-tubulin YFP-tubulin

The accuracies (percentage of true positive predictions) are averaged over 1000 random division of each data set into 4/5ts for training and |/5% for
testing. The overall average classification accuracies on the test sets were 94.4% and 86.3% on the endogenous and transfected sets, respectively.

cency statistics had a predictive accuracy of 94.4%, the
Haralick statistics gave 94.2%, and the Zernike moments
gave 75.8% (see Table 2). For the cropped transfected
image set, threshold adjacency statistics gave an accuracy
of 90.3%, Haralick statistics 86.0%, while Zernike
moments gave 68.6%. Hence threshold adjacency statis-
tics had comparable or better results in all cases, with the
Zernike moments having significantly lower accuracy
than the other two types of image measure. There is a clear
trend for the three types of statistics tested to give lower
predictive accuracy on the transfected data set.

To test if the information contained within the threshold
adjacency statistics and the Haralick texture measures was
complementary, SVMs were trained that combined both

types of statistics for each cropped image. In this case, 5-
fold cross validated accuracies of 98.2% and 93.2% were
obtained on the endogenous and transfected sets, respec-
tively, showing a significant improvement over either
individual class of statistic.

The high predictive accuracy when applying Haralick and
Zernike statistics comes with the expense of relatively high
computational complexity. To compare the computa-
tional cost of Haralick, Zernike and threshold adjacency
statistics the time taken to calculate each was recorded for
the endogenous data set of 503 images. Since the Haralick
measures are usually applied to single cell images and
Zernike measures require them, the time to crop the 503
images to create 1420 single cell images was first bench-

Figure 3
Sample images of the 10 localisation classes of endogenously expressed proteins. (a) Microtubule, (b) Golgi, (c)

Plasma membrane, (d) Actin cytoskeleton, (e) Nucleus, (f) Endosome, (g) ER, (h) Mitochondria, (i) Peroxisome, (j) Lysosome.
Scale bar 10 um.
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Figure 4
Sample images of the || localisation classes of transfected proteins. (a) Microtubule, (b) Golgi, (c) Plasma membrane,
(d) Actin cytoskeleton, (e) Nucleus, (f) Endosome, (g) ER, (h) Mitochondria, (i) Peroxisome, (j) Lysosome, (k) Cytoplasm. Scale
bar 10 um.
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marked and found to be 4 minutes 16 seconds. Genera-
tion of 20 Haralick measures then took 11 minutes 50
seconds, and 49 Zernike moments took 17 minutes 22
seconds. This compares to 62 seconds to generate thresh-
old adjacency statistics directly with no cropping for the
503 images. More detailed timing of just the function call
to calculate the 27 threshold statistics once the image was
loaded into memory, showed an average time to calculate
the 27 statistics of 20 ms per image. Threshold adjacency
statistics are hence an order of magnitude faster to calcu-
late than either the Haralick or Zernike measures.

In general, segmentation of cell images into cellular and
non-cellular regions is a difficult problem. When calculat-
ing the average intensity U of pixels whose intensity is at
least 30, the lower bound 30 was chosen as intensities
below this value are in general background for the endog-
enous and transfected image sets. The sensitivity of the
predictive accuracy using TAS for different choices of
lower bound was tested as follows. As described above, a
lower bound of 30 gave a 5-fold cross validation accuracy
of 95.2% on the endogenous set. Further tests with a
lower bound of 40 gave an accuracy of 94.2%, and a lower

bound of 20 gave an accuracy of 96.6%. Tests with the
transfected image set yielded similarly small variation
(data not shown). Hence, while there is some variation in
accuracy, threshold adjacency statistics appear relatively
insensitive to the choice of threshold.

A commonly used auto-thresholding scheme is to find a
threshold intensity ¢, such that t is (approximately) the
average of the average intensity of those pixels with inten-
sity less than or equal to ¢, and the average intensity of
those pixels with intensity greater than t (see Image] FAQ
[22]). Using such a scheme on the endogenous image set
with threshold adjacency statistics gave a 5-fold classifica-
tion accuracy of 91.6%. Visually examining the selections
showed auto-thresholding had had variable success in
highlighting the cellular regions of the images. One partic-
ular problem was that there was a general trend to under-
select cells, that is to miss regions. To compensate for this
a lower bound of the auto threshold value minus 15 was
tested and gave an accuracy of 93.2%. Hence auto-thresh-
olding, while performing reasonably well, is computa-
tionally more expensive and is not as effective as choosing
a fixed threshold when applying threshold adjacency sta-

Table 2: Comparison of TAS, Haralick and Zernike statistics classification accuracies by 5-fold cross validation

Image Set TAS (uncropped) TAS Haralick Zernike TAS+Haralick
Endogenous 95.2% 94.4% 94.2% 75.8% 98.2%
Transfected 88.8% 90.3% 86.0% 68.6% 93.2%

The 5-fold classification accuracies (as described in Implementation) are shown for each of type of statistic tested. The first TAS column shows
accuracies obtained on un-cropped the endogenous (502 images, |10 localisations) and transfected (553 images, || localisations) data sets. The
remaining columns refer to when individual cells were been selected from the endogenous and transfected data sets, giving 1420 and 1075 cell
images, respectively. The 5-fold classification accuracies obtained on the cell selected images using each of TAS, Haralick, Zernike or TAS combined

with Haralick are then shown.
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tistics. It is possible that another variable thresholding
scheme or segmentation algorithm might give better cell
region selection results and hence better predictive accu-
racy with threshold adjacency statistics, but the computa-
tional complexity of such a scheme is likely to be high.

Another point to consider is that cell populations may not
be heterogeneous due to variations in cell cycle. In prepar-
ing the image sets, DAPI images were examined to exclude
those cells that were not in interphase. For non-heteroge-
neous populations an interesting and useful addition
could be to apply an automated cell phase predictor such
as is described in by Pham et al. in [23] prior to classifica-
tion. Cells that are not in interphase could then either be
excluded or treated separately.

Conclusion

Threshold adjacency statistics have been shown to be well
suited to sub-cellular localization classification, and offer
a number of advantages over other image statistics. With
a classification accuracy of up to 95% they offer compara-
ble or better accuracy than the Haralick texture measures,
while being an order of magnitude faster to calculate.
While comparison with previous literature is problematic
in that each group has distinct image sets with different
sub-cellular classes and varying degrees of automation,
threshold adjacency statistics appear at least on par with a
reported 92% accuracy previously obtained [19]. Auto-
mated region selection and cropping of cells for classifica-
tion can be exceptionally difficult and computationally
expensive, especially when cells are highly confluent.
Threshold adjacency statistics require no cropping and are
additive, hence giving better statistics the more cells there
are in an image. Another advantage is that every image
presented is classified. With automated cropping/selec-
tion systems a wide range of images are dealt with, and so
it is not uncommon to fail to locate a cell within an image
because it is relatively faint, or some other criteria. Fur-
ther, for applications in which speed of calculation is not
critical, the use of threshold adjacency statistics in combi-
nation with Haralick texture measures give an accuracy of
up to 98%. Finally, with 3D and 4D cell imaging become
more widespread, new methods are required to distin-
guish and classify protein localization. While automated
classification of 3D sub-cellular localization using image
statistics has proved very successful [24], the addition of
an extra dimension greatly increases the computational
expense, and hence application of threshold adjacency
statistics to 3D has the potential to significantly increase
classification throughput.

Methods

Image data sets collection

An image collection was created for sub-cellular
organelles consisting of either or both of two types of sets;
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one set for which an endogenous protein or feature of the
specific organelle was detected with a fluorescent anti-
body or other probe (10 organelles); and another set for
which an epitope- or fluorescence-tagged protein was
transiently expressed in the specific organelle and subse-
quently detected (11 organelles). Each image was accom-
panied by an additional image of the cells counterstained
with the DNA specific dye 4',6-diamidino-2-phenylindole
(DAPI), which highlights the location of the nucleus of
every cell in the image. In addition, the DAPI image was
reviewed to exclude images that contained one or more
cells not in interphase. Each organelle set consists of 50
localisation images and 50 DAPI counterstained images,
with the exception of the endogenous nuclear which con-
tains only DAPI images. In total, 502 endogenous and
553 transfected localization images were obtained. All
images were of fixed HeLa cells, taken at 60x magnifica-
tion under oil immersion. The images are 8 bit greyscale,
768 by 512 pixels, each containing up to 13 cells.
Cropped sample images of each organelle are given in Fig-
ures 3 and 4, and the antibodies or probes used are given
in Table 1. The complete image set is available for down-
load from the LOCATE website [2].

Implementation and testing

Image statistics were implemented in C++ within the
ASPiC software [20]. The time tests were conducted on a
Pentium 4 2.4 GHz machine running Red Hat Enterprise
3.

SVMs were created using the libsum software [25] with a
radial basis function (RBF) kernel. Two parameters are
required to train the RBF kernel, y the coefficient of the
exponent, and C the penalty term of the error. A grid
search was performed to choose those values of y and C
that gave the best 5-fold cross validated performance on
each data set. For testing, 5-fold cross validation was uti-
lized. Data is split into 5 equal parts, each part in turn is
tested on an SVM trained on the remainder, and the aver-
age test set accuracy returned. By splitting data as
described above, cross-validation may be used to avoid
over-fitting the training data and give an estimate of the
prediction error for unseen data, though care does need to
be taken [26]. In certain cases, it can be proved that the
cross-validation error estimate is an almost unbiased esti-
mate of the true error on unseen data [27]. The 1000
repeated tests of splitting the data sets into 4/5ts for train-
ing and 1/5t% for testing (Table 1) gave comparable classi-
fication accuracies to that of 5-fold cross validation, hence
suggesting that over-fitting has not occurred to a signifi-
cant degree.
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