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Abstract

Background: With the popularisation of high-throughput techniques, the need for procedures
that help in the biological interpretation of results has increased enormously. Recently, new
procedures inspired in systems biology criteria have started to be developed.

Results: Here we present FatiScan, a web-based program which implements a threshold-
independent test for the functional interpretation of large-scale experiments that does not depend
on the pre-selection of genes based on the multiple application of independent tests to each gene.
The test implemented aims to directly test the behaviour of blocks of functionally related genes,
instead of focusing on single genes. In addition, the test does not depend on the type of the data
used for obtaining significance values, and consequently different types of biologically informative
terms (gene ontology, pathways, functional motifs, transcription factor binding sites or regulatory
sites from CisRed) can be applied to different classes of genome-scale studies. We exemplify its
application in microarray gene expression, evolution and interactomics.

Conclusion: Methods for gene set enrichment which, in addition, are independent from the
original data and experimental design constitute a promising alternative for the functional profiling
of genome-scale experiments. A web server that performs the test described and other similar

ones can be found at: http://www.babelomics.org.

Background

Genes do not operate alone within the cell, but in a intri-
cate network of interactions that we have only recently
started to envisage [1-3]. It is a widely accepted fact that
coexpressing genes tend to be fulfilling common roles in
the cell [4,5]. Moreover, coexpression seems to occur, in
many cases, in contiguous chromosomal regions [6] and
furthermore, recent evidences suggest that functionally
related genes map close in the genome, even in higher
eukaryotes [7]. Many higher-order levels of interaction are

continuously being discovered and even complex traits,
including diseases, have started to be considered from a
systems biology perspective [8]. In this scenario, a clear
need exists for methods and tools which can help to
understand large-scale experiments (microarrays, pro-
teomics, etc.) and to formulate genome-scale hypothesis
(evolution, architecture of the interactome, etc.) from a
systems biology perspective [9]. Thus, the functional
interpretation of genome-scale data in this context must
be taken within a systems biology framework, in which
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the collective properties of groups of functionally-related
genes are considered.

DNA microarray technology can be considered a para-
digm among genome-scale experimental methodologies.
Its extensive use has fuelled the development of tools for
the functional interpretation of such experiments. These
tools study the enrichment of functional terms shown by
groups of genes defined by experimentally determined
gene expression levels. Programs such as ontoexpress [10],
FatiGO [11], GOMiner [12], etc., can be considered repre-
sentatives of a family of methods designed for this pur-
pose [13,14]. The difficulties for defining repeatable lists
of genes of interest across laboratories and platforms
using common experimental and statistical methods [15]
has led several researchers to propose different
approaches which aim to select blocks of genes with
known common functional properties.

Thus, the Gene Set Enrichment Analysis (GSEA) [16,17],
although not free of criticisms [18], pioneered a family of
methods conceived to search for groups of functionally
related genes with a coordinate over- or under-expression
across a list of genes, ranked by their differential expres-
sion, coming from microarray experiments. Different tests
have recently been proposed for this purpose [19-24] and
also for ESTs [25]. Nevertheless, it is surprising that,
despite the abundance and availability of genome-scale
data, the notion of testing entities more complex than sin-
gle genes (such as blocks of functionally related genes) has
not been applied in fields other than microarray data
analysis. In fact, any genome-scale data in which some
measurement is available for individual genes can be ana-
lysed in a similarly conceptual way.

Here we "officially" present the FatiScan program, which
implements a segmentation test [19] that allows studying
many relevant functional terms, which include Gene
Ontology (GO) [26], KEGG pathways [27] and many oth-
ers, along with a sophisticated system for the visualisation
of results. Although FatiScan had been mentioned in pre-
vious papers dealing with generalities of the GEPAS [28]
and Babelomics [29,30] program packages, a proper
detailed description of FatiScan and their possibilities was
not available to date. FatiScan can deal with ordered lists
of genes independently from the nature of the experiment
that originated the data or the method used to rank the
genes. This interesting property allows for its application
to other type of data apart from microarrays. We show
how FatiScan can be applied to different genome-scale
datasets such as protein-protein interaction networks or to
test functional evolutionary hypotheses. We also show
how conclusions on the molecular roles fulfilled by the
genes can be reached by taking into account the func-
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tional interplay of genes in the cell as defined by their
shared biological properties.

Threshold-based functional profiling

The interpretation of genome-scale data is usually per-
formed in two steps: in a first step, genes of interest are
selected (for example, in microarray experiments, because
they are significantly over- or under-expressed when two
classes of experiments are compared), and then, the
enrichment of any type of biologically relevant term in
these genes with respect to a background (typically the rest
of the genes) is studied. In the active field of microarray
data analysis, there are different available tools, such as
Oncomine [10], FatiGO [11] and others [13,14], that use
different functionally relevant terms taken from different
curated repositories (GO [26], KEGG pathways [27], etc.)
It has been noted that this strategy causes an enormous
loss of information due to the large number of false nega-
tives that are accepted in order to preserve a low ratio of
false positives (and the noisier the data the worse the
effect) [16,19,30].

Threshold-free functional profiling

Under a systems biology perspective, a threshold-based
approach to understanding the molecular basis of a
genome-scale experiment is far from being efficient. Meth-
ods that draw inspiration from systems biology focus on
functional classes such as blocks of genes that act cooper-
atively rather than on single entities such as genes. These
strategies use lists of genes ranked by any biological crite-
ria (e.g. differential expression when comparing cases and
healthy controls, genes with different evolutionary rates,
etc.) and directly search for the distribution of blocks of
functionally related genes across such list [16,19-24]. Any
macroscopic observation that causes this ranking in the
list of genes will be a consequence of the cooperative
action of genes arranged into functional classes (GO,
pathways, etc.) Each functional class "responsible" for the
macroscopic observation will, consequently, be found in
the extremes of the ranking with the highest probability.
Figure 1 illustrates this concept. Let's imagine that a list of
genes is ranked by differential expression between two
experimental conditions (A and B in the figure). If the
position of the genes belonging to different functional
classes is studied (columns 1, 2 and 3 in Figure 1) it is evi-
dent that the functional class represented in the first col-
umn is completely uncorrelated with the arrangement,
while the other two are clearly associated to high expres-
sion in the experimental conditions B and A, respectively.
If, for example, the two experimental conditions were dis-
eased versus healthy controls, column 1 could correspond
to a functional class related to housekeeping processes.
Consequently, the genes corresponding to this functional
class would be active in both conditions (healthy and dis-
eased) and will be scattered across the list. Conversely,
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columns 2 and 3 would correspond to biological proc-
esses much more active in diseased cases (B) or in healthy
controls (A), respectively. If thresholds were imposed to
select genes differentially expressed (dotted lines in Figure
1), and genes over this threshold were compared to the
rest for enrichment in these functional classes, the chance
of finding a significant enrichment in this pre-selection of
genes would be much lower, if not null. The imposition
of a previous threshold based on experimental values that
ignores the cooperation among genes is thus avoided
under this threshold-free perspective.

Implementation

FatiScan: the segmentation test implemented

The aim of the test is to find functional classes, namely
blocks of genes that share some functional property,
showing a significant asymmetric distribution towards the
extremes of a list of ranked genes. This is achieved by
means of a segmentation test, which consists on the
sequential application of a Fisher's exact test over the con-
tingency tables formed with the two sides of different par-
titions made on an ordered list of genes. The Fisher's exact
test finds significantly over or under represented func-
tional classes when comparing the upper side to the lower
side of the list, as defined by any partition. Previous
results show that a number between 20 and 50 partitions
often gives optimal results in terms of sensitivity and
results recovered [19]. Given that multiple functional
classes (C) are tested in multiple partitions (P), the unad-
justed p-values for a total of C x P tests are corrected by the
widely accepted FDR [31]. Performing C x P tests would
correspond to the worst scenario, in a situation in which
no a priori biological knowledge of the system is available.
Usually many functional classes can initially be discarded
from the analysis due to prior information or just by com-
mon sense.

A fundamental advantage of the FatiScan methods is that
it does not depend on the original data from which the
ranking of the list was derived. The significance of the test
depends only on the numerical values used to rank the
genes in the list and the strategy used for performing the
partitions. This means that, in addition to DNA microar-
ray data, this method can be applied to any type of
genome-scale data provided that an experimental or theo-
retical value can be obtained for each gene, and genes can
be ranked according to such value.

FatiScan: the program

The FatiScan program [32] is a web-based application that
can be found within the Babelomics environment [33] for
functional analysis of large-scale data, which is in turn,
integrated in the GEPAS environment [28,34-36] that pro-
vides a whole set of tools and data bases for microarray
data analysis.

http://www.biomedcentral.com/1471-2105/8/114

The input form and the data

Figure 2 shows the application's main page. This interface
allows entering the data by just pasting it into the box or
uploading it from a text file. The data format is straightfor-
ward: There are two columns, the first one corresponds to
the gene identifiers, and the second one to the value of the
parameter used to rank the list. The example shown below
corresponds to the case study presented (see section
"Functional analysis of microarray experiments"), in
which the ordered list has been generated by means of a t-
test for differential gene expression between healthy con-
trols (class NTG in the list stands for normal tolerance to
glucose) and diabetics, as well as diabetic associated dis-
eased cases (DM2/IGT stands for Diabetes Mellitus 2 and
Impaired glucose tolerance patients) taken from literature
[16]. Most rows starting by the # symbol are used to add
comments to the dataset and are ignored by the program.
The exception are rows starting with #TOP and #BOTTOM
tags. These two tags may be used to describe the biological
meaning attached to the order of the genes and are used
by FatiScan to make the result plots more understandable
to each particular user.

#TOP genes more expressed in 'NGT' class
#BOTTOM genes more expressed in 'DM2/IGT" class
219666_at 4.5308394432

200941_at 4.2713012695

221559_s_at 3.957174778

200885_at 3.9373190403

219244 s_at 3.7689547539

213348_at 3.6691555977

220547_s_at 3.6681389809

217741_s_at-3.929725647

201539_s_at-3.9333205223
216651_s_at-3.9856903553
213710_s_at -4.8559875488

214587_at -5.0099239349
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Threshold-free functional analysis. A list of genes is ranked by their differential expression between two experimental condi-
tions (A and B) using, for example, a t-test which is applied individually to each gene. Columns I, 2 and 3 represent the posi-
tion of the genes belonging to three different functional classes (e.g. GO terms, etc.) across the arrangement. The first
functional class is completely uncorrelated with the arrangement, while functional classes 2 and 3 are clearly associated to high
expression in the experimental conditions B and A, respectively. Dotted lines represent a threshold based on the individual t-
tests with some adjustment for multiple testing. The arrow makes reference to the multi-functional character of the genes: a
gene can belong to more than one functional class. In this case the gene pointed out by the arrow is in this position not
because of its membership to functional class | but because is fulfilling the role corresponding to functional class 3, which is
related to high expression in experimental condition A.
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Figure 2
Interface to the FatiScan program displaying the available model organisms.

The organism to which the gene identifiers refer to must  until the completion of the test (which sometimes may

be selected from a list of choices that includes the most  take a few minutes). A name for the project is optional,

representative species and model organisms (see below). but quite useful when many tests are simultaneously
being performed.

At the bottom of the form the user can choose to provide

an email address, to which the results will be automati-  The tests and the statistic

cally submitted, so that it is not necessary to wait online  Figure 2 also displays the available options for the test:
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® One tailed Fisher's exact test (alternative greater): will
detect functional classes over-represented in the upper
part of the list or under-represented in the lower part.
(corresponding to U-arrow up and L-arrow down labels in
Figure 3).

® One tailed Fisher's exact test (alternative lower): will
detect functional classes over-represented in the lower
part of the list or under-represented in the upper part.
(corresponding to U-arrow down and L-arrow up labels in
Figure 3).

e Two tailed Fisher's exact test: will simultaneously
detect all the four scenarios of the two previous options.
(all the cases in Figure 3).

Depending on the nature of the experiment and the
arrangement, one of the three options can have more bio-
logical meaning than the other two.

As previously described, the FatiScan method proceeds
through a series of partitions. The user has the option of
using different number of partitions, nevertheless, previ-
ous studies show that 30 is a reasonable choice and so it
is set as a default value [19].

Finally a p-value defining the threshold of statistical sig-
nificance for the test can also be entered here.

The functional data

Different repositories of functional and biological infor-
mation are used to define the functional classes used in
the test. We have collected information from different
repositories for several model organisms (Homo sapiens,
Mus musculus, Rattus norvegicus, Drosophila melanogaster,
Caenorhabditis elegans, Saccharomyces cerevisiae and Arabi-
dopsis thaliana), which have been cross-referenced using
Ensembl [37] identifiers. The repositories used are:

e GO which is probably the most successful among the
initiatives for the standardisation of the nomenclature of
biological processes, molecular functions and subcellular
location (its three main ontologies) [26].

e InterPro [38] which is a database of protein families,
domains and functional sites from which identifiable fea-
tures (motifs) found in known proteins can be used to
predict the possible functionality of unknown protein
sequences

e The SwissProt [39] database, now part of the Unitprot
resource, which contains a field called keywords for each
entry that implements a controlled vocabulary of words,
many of them (although not all) with functional mean-
ing.

http://www.biomedcentral.com/1471-2105/8/114

e KEGG pathways [27] which is a collection of pathway
maps representing the knowledge on the molecular inter-
action and reaction networks for Metabolism, Genetic
Information Processing, Environmental Information
Processing, Cellular Processes and Human Diseases.

¢ Transcription factor binding sites predicted using Trans-
fac® [40]. Transcription factors (TFs) are assigned to genes
if their corresponding predicted transcription factor bind-
ing sites (TFBS) are found in the 10 kb 5' region of the
genes. The search is carried out by the Match program
[41], using only high quality matrices and with a cut-off
to minimize false positives, from the Transfac database.
TFBSs are only available for human and mouse.

e CisRed [42] which is a database for conserved regulatory
elements predicted in promoter regions using multiple
discovery methods. In theory, all the Transfac® predictions
should be a subset of these regulatory elements, but in
practice the overlap is not complete. For this reason the
Transfac® predictions are independently provided. CisRed
tables are only available for humans.

The tables of correspondence from genes to functional
terms derived from these repositories are used to define
different categories of functional classes for further use in
the functional analysis of the experiments. These func-
tional classes are composed by genes that share the same
functional term, depending therefore, on the category
(repository) used for the annotation, genes will be part of
different functional classes. Given their multi-functional
character (e.g. a number of genes simultaneously belong
to the functional classes "transcription factor" and "DNA
binding") genes can indeed belong to more than one
functional class.

The results

Once the organism, the category and the test have been
selected, the program can be ran. The results will report
the functional classes, corresponding to the category
selected, which have been found to be asymmetrically dis-
tributed towards the extremes of the list. Figure 4 shows
an example (more extensively discussed below, in the sec-
tion "Differential gene expression in human diabetes sam-
ples") in which the two general processes found (oxidative
phosphorylation and nucleotide biosynthesis, belonging to the
biological process ontology of GO) are shown (upper part
of the figure). In addition, the user can visualise the distri-
butions of both GO terms with respect to the background
distribution in the rest of genes. Also, information on the
genes belonging to the different functional classes (GO
terms in this case) is listed.
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Figure 3

% Genes with the specific GO annotation for each partition

Lt

A general picture of the results of the FatiScan program. Over- and under-representations of functional classes in both tails of
the list of arranged genes can be detected. U-arrow up: functional classes over-represented in the upper part of the list. U-
arrow down: functional classes under-represented in the upper part of the list. L-arrow up: functional classes over-repre-
sented in the lower part of the list. L-arrow down: functional classes under-represented in the lower part of the list. See text

for the different choices of tests that detect the different cases.

Testing terms across the GO directed acyclic graph

Most of the functional or biological terms used for the def-
inition of functional classes are "flat", that is, there is no
structure behind them. For example, KEGG pathways are
independent from each other (at least, information on
dependencies is not included in the database). This is not
the case of GO, in which the biological knowledge is rep-
resented as a tree (more precisely as a directed acyclic
graph, DAG, in which a node can have more that one par-

ent). In the GO hierarchy (see Figure 5), upper nodes rep-
resent more general concepts and, as the DAG is traversed
towards deeper levels, the definitions are more and more
detailed (e.g. GO terms in the tree from more general to
more detailed would be: biological process > physiological
process > death > cell death > programmed cell death > apopto-
sis, etc.) Since genes are annotated at different levels it is
common to use the inclusive analysis [43] (or custom
level of abstraction [13]) instead of using directly the level
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Graphical results of FatiScan. Upper part: a summarised view of all the functional classes found. In the case of GO, only the
deepest significant terms in the hierarchy are displayed. Lower part, comparison of the distribution of the two GO terms found
significantly over-represented in the upper part of the list with respect to the background of GO terms in the rest of genes.

of annotation of the genes. In this case we consider that a
gene annotated to a given level, is automatically anno-
tated to all the upper levels in the hierarchy (e.g., a gene
annotated as apoptosis is, obviously, a gene of programmed
cell death, of cell death, and so on upwards). Then, if cell
death, is chosen as the level of abstraction to be analysed,
genes annotated as programmed cell death, apoptosis, and so
on downwards, will be annotated as cell death. This
abstraction can also be found in the GoSlim project [44]
of the Gene Ontology project. Using this strategy incre-
ments the efficiency of the test given that there are less
terms to test and more genes per term, but the selection of
the level is arbitrary. Here we have implemented the
Nested Inclusive Analysis (NIA), in which the test is recur-
sively conducted at different abstraction levels until the
deepest level in which a statistically significant enrich-
ment is reached. Only this deepest level is reported in the
summary (which would correspond to the upper part of
Figure 4). The results obtained for the upper levels can

also be found in the detailed report of the results. In this
way, both the aspects of efficiency and that of reporting
the GO terms with the highest descriptive precision are
optimised. Figure 5 shows an example in which the GO
terms apoptosis, regulation of apoptosis, negative regulation of
apoptosis and negative regulation of neuron apoptosis were sig-
nificant. In this case only negative regulation of neuron apop-
tosis will be reported in the summary of functional classes
(upper part of Figure 4).

Results and discussion

Functional analysis of microarray experiments

Functionally related genes show coordinate expression

It is a long recognized fact that genes with similar overall
expression often share similar functions [4,45-47]. This
observation is consistent with the hypothesis of modu-
larly-behaving gene programmes, where sets of genes are
activated in a coordinated way to carry out functions.
Therefore, if a list of genes ranked according to their mag-
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nitude of differential expression between two experimen-
tal conditions is studied, the genes fulfilling molecular
roles that account for the experimental differences will
most probably be found at the extremes of the list (that is,
these blocks of functionally related genes will be co-ordi-
nately over- or under-expressed as a whole system)
[16,19].

Differential gene expression in human diabetes samples

We have used a study of gene expression in a case-control
study in human diabetes [16] where two categories of
experiments (17 controls with normal tolerance to glu-
cose versus 26 cases composed by 8 with impaired toler-
ance and 18 with type 2 diabetes mellitus, DM2) were
defined. A comparison between both categories did not
detect even a single differentially expressed gene.

We ordered the genes according to their differential
expression between cases and controls. A t-test, as imple-
mented in the T-Rex tool from the GEPAS package [28,34-
36] was used for this purpose. The value of the statistic,
which accounts for the differential expression of individ-
ual genes among cases and controls, was used as the rank-
ing criteria for ordering the list. As in the original analysis
[16] we were unable of finding individual genes with a
significant differential expression (differentially expressed
genes with an adjusted p-value lower than 0.05).

Nevertheless, our aim was not to test individual genes but
functional classes. To this end, a total of 50 partitions of
the ranked list were analysed with the FatiScan algorithm
for over- or under-expression of KEGG pathways and GO
terms. The following KEGG pathways were found to be
significantly over-expressed in healthy controls versus dis-
eased cases: oxidative phosphorylation, ATP synthesis and
Ribosome. Contrarily, Insulin signalling pathway was signifi-
cantly up-regulated in diseased cases. When GO terms
were analysed we have found as significantly up-regulated
in healthy controls:oxidative phosphorylation
(GO:0006119), nucleotide biosynthesis (GO:0009165)
(biological process ontology), NADH dehydrogenase (ubig-
uinone)  acivity  (GO:0008137), nuclease  activity
(GO:0004518) (molecular function ontology) and mito-
chondrion (GO:0005739) (cellular component ontology).
Some of the terms were redundant with the KEGG path-
ways, although here we have also found the ubiquinone
class, which does not appear in KEGG. Since FatiScan
implements more functional terms we have also analysed
Swissprot keywords and we have found Ubiquinone, Ribos-
omal protein, Ribonucleoprotein, Mitochondrion and Transit
peptide as over-expressed in healthy controls versus disease
cases.

As an example, Figure 4 (bottom) shows the distribution
of the GO terms oxidative phosphorylation and nucleotide
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biosynthesis compared to the background distribution of
GO terms. A clear trend to the over-expression of the com-
plete pathway in high values of the t statistic, correspond-
ing to genes over-expressed in healthy controls, can be
clearly observed.

Other alternative methods raised similar results. Oxidative
phosphorylation and mitochondrion is found by GSEA [16],
PAGE [24] and other statistics [22]. Nucleotide biosynthesis
can be assimilated to other functional classes, based on a
set of functional categories developed by [17] and found
by these three methods [16,22,24]. The rest of functional
classes were only found by FatiScan.

Beyond the categorical classes: study of the relationship between
functional blocks of genes and survival, a continuous variable
There are experimental designs which do not involve dis-
crete variables (e.g. categories such as cases and controls)
but where instead, each experiment is associated to a con-
tinuous variable such as the level of a metabolite, time,
etc. Survival is a special case of continuous variable of
high relevance in clinics that can easily be studied with
FatiScan. Other methods based on models need to specif-
ically model each type of variable differently. For example
Goeman et al., proposed two different models, one for
discrete [21] variables and another one for survival [20].
We have used a series of microarray experiments with
detailed survival information on patients of hypopharyn-
geal cancer [48] to show how Fatiscan can easily be used
in the context of survival analysis.

The dataset used (GEO [49] record GDS1070) contains 34
hybridisations from tumours. The samples were taken
from patients before undergoing surgery for hypopharyn-
geal cancer. Information about the overall survival time of
patients as well as their follow up status after surgery is
available [48].

Our aim was to determine the functional basis of survival
at molecular level. This involves finding the functional
classes with an overall expression related to the survival
times of patients. Consequently, we had to create a list of
genes arranged by this criterion.

To achieve this we used a Cox Proportional-Hazards
model to study how the expression of each gene across
patients is related to their survival times. This methodol-
ogy models the logarithm of the population hazard func-
tion as a linear function of gene expression. It can handle
censored data, i.e. samples for which the exact survival
time is unknown, but for which it is only known that the
patient is still alive at a certain time. [50]. As the hazard
function assesses the instantaneous risk of dying, positive
slope coefficients in the linear part of the model corre-
spond to genes for which an increase in expression is
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related to shorter survival times. Reciprocally, genes with
negative slope coefficients are those in which expression
decreases as the survival time of the patient increases. We
can use these linear coefficients (divided by their standard
error i.e. we use the Wald statistic to test for the null
hypothesis that the coefficient is zero) to rank our genes
from those in which an increased expression is more asso-
ciated with early death (higher positive statistic) to those
in which an increased expression is associated to longer
survival times (lower negative statistic)

Once the list of genes ordered according their relationship
with survival time was obtained, the Fatiscan program was
used to search for functional classes significantly associ-
ated to the genes on the top of the ranking. Such func-
tional classes will be those with overall up-regulated
expression in the patients with lower survival values. In
the same way, the functional classes associated to the bot-
tom of the ranking will be those with down-regulated
expression in the patients with lower survival (or up-regu-
lated in the patients with a larger life expectancy).

In this example, the following GO terms corresponding to
the biological process ontology were found as significantly
associated to low survival: M phase of mitotic cell cycle
(GO:0000087) and regulation of cell cycle (GO:0051726),
clearly related to proliferation; cellular localization
(GO:0051641), defined as transport and/or location
related to construction of new cellular structures, which is
obviously related to proliferation as well; and macromole-
cule metabolism (GO:0043170) and primary metabolism
(GO:0044238), which also correspond to the generation
of new cellular components. As in many cancers we have
also found antigen processing (GO:0030333) and antigen
presentation (GO:0019882), which are not related to can-
cer cells themselves but to the surrounding cells sampled
in the biopsies. Actually, almost a 30% of the cells sam-
pled in the biopsies in this work were normal cells [48],
which is a quite common scenario in many similar stud-
ies. Conversely, we have found terms related to long life
expectancy, associated to the normal functioning of tis-
sues where the cancer arises, as well as the formation of
complex structures (such as nervous system or epidermis)
within it. These are: nervous system development
(GO:0007399) muscle development (GO:0007517) regula-
tion of organismal physiological process (GO:0051239), mus-
cle contraction (GO:0006936), epidermis development
(GO:0008544). The example clearly shows how this
method detects functional blocks of genes activated in the
opposite satiations, long and short life expectancy, when
genes are arranged based on these criteria.
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Functional analysis of selective pressures in the human
genome

Positive selection and non-synonymous rate acceleration in human
Evolution has been carrying out knock-out experiments
for more that 3,500 million years and the results can be
read in the DNA, its laboratory notebook. Therefore, the
signs of selection can give a great deal of information on
the functional molecular modules that have shaped
present day organisms. Threshold-free tests for functional
classes can also be successfully applied to the formulation
and contrast of genome-scale hypothesis in the evolution-
ary context. As an example we will study one of the major
challenges in evolutionary biology: what are the func-
tional basis of humanness at the molecular level and how
evolution has shaped them. Recent efforts at a genomic
scale have been conducted to elucidate the intricacies of
human evolution by means of comparing rate differences
and positive selection in human genes against their
homologues in other fully sequenced species [51-54].
Nevertheless, beyond some conjectures, few significant
conclusions about the functional roles fulfilled by the
genes under different types of selective pressures could be
derived from these studies. One main reason that account
for the failure in finding a functional interpretation to the
human evolution comes, most probably, from the fact
that these studies followed an inefficient threshold-based,
two-steps approach.

The hypothesis we aim to test in this study is not about
individual genes, but about functional classes. Mutations
occur on single genes but natural selection acts on pheno-
types by operating on whole sub-cellular systems. Muta-
tions in genes either remain finally fixed or disappear
because of their beneficial or disadvantageous effect,
respectively. This effect on the function of individual pro-
teins can only be understood in the context of the system
(e.g. a pathway, GO functional roles, etc.) in which the
proteins are involved. If a list of genes arranged by some
parameter that accounts for their evolutionary rates is
examined, it is expectable that genes belonging to path-
ways or functional classes favoured or disfavoured by
selection will tend to appear towards the extremes.

Ranking genes by selective pressures

A powerful approach to detect molecular evolution by
positive selection is based on the comparison of the rela-
tive rates of synonymous (Ks) and non-synonymous (Ka)
substitutions [55]. The ratio of these values, the (@ = Ka/
Ks) is a widely accepted measure of the selective pressure.
If non-synonymous mutations are deleterious, purifying
selection will reduce their fixation rate and ® will be lower
than one, whereas if non-synonymous mutations are
advantageous, they will be fixed at a higher rate than syn-
onymous mutations, and ® will be greater than one. Con-
trarily, an o ratio equal to one is consistent with neutral
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evolution. A whole-genome analysis of selection allows
ranking the genes according the value of their ® parame-
ter.

Maximum likelihood estimations of Ka and Ks were com-
puted for each ortholog in the human lineage under a free
branch model using CodeML in the PAML program [56].

Ortholog annotations for the subset of 20,469 "known"
Ensembl human protein-coding genes from the Ensembl
v.30.35h H. sapiens database [57] were retrieved from the
Ensembl-Compara database v.30 [37]. Coding sequences
for the proteins represented by the largest transcript of
each ortholog were retrieved from the Ensembl databases
(Human: v.30.35¢, Chimp: v.30.2, Mouse: v.30.33f, Rat:
v.30.34, Dog: v.30.1b). DNA coding sequences were
aligned using ClustalW [58] using the translated protein
sequences as templates. Codons containing gaps were
removed. Alignments smaller than 50 bp were excluded
from the analysis. Thus, a total of 11,102 genes where
used for the computation of the normalized non-synony-
mous rate of evolution, ®, in the human lineage. From
this list, genes with ® < 0.0001 were excluded, leaving a
final set of 5,648 genes. The value of ® was used to rank
the list of genes.

Systems biology meets evolution: selective pressure over sets of
functionally related genes

The ordered list was log-transformed to produce a linear
scale, and 50 partitions were taken for the analysis. When
the FatiScan test is applied we have found the following
GO terms significantly cumulated at the extreme of the
distribution corresponding to the highest ® values: sensory
perception of smell (GO:0007608), sensory perception of
chemical stimulus (GO:0007606) and G-protein coupled
receptor protein signalling pathway (GO:0007186). The
FDR-adjusted p-values corresponding to the most signifi-
cant partitions were 1.3 x 10>, 0.0014 and 0.0095, respec-
tively. Figure 6 shows the distribution of the genes
belonging to the GO class sensory perception of smell
(GO:0007608) across the range of genes. Clearly the GO
class is shifted towards high o values.

Different authors [51,52] using a threshold-based, two-
steps approach, claimed to have found these GO catego-
ries significantly over-represented among positively
selected genes in humans. Nevertheless, if the associated
p-values were properly adjusted for multiple testing, the
GO categories previously found become non-significant.
We show here how the application of the FatiScan thresh-
old-free test circumvents the problems of significance
found by other authors and report as significant the
classes suggested (but not statistically supported) by pre-
vious analyses.
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Functional analysis of a network of protein-protein
interactions

Correlation between functional properties and connectivity (as
measured by degree) in the human interactome

Recently, two genome-scale analysis of protein interac-
tions have provided for the first time an extensive vision
of the human interactome [1,2]. Protein interactions are
on the basis of many cooperative functional processes
and, consequently, some properties of networks are
expected to be correlated with particular functions [59].

The first obvious property to be studied in a network is the
connectivity. Many functions must occur through the for-
mation of protein complexes [60] or via signalling path-
ways. Therefore, a correlation between connectivity and
some molecular processes can be expected for a significant
number of cases. Here we have used the interactions
among human proteins stored in the DIP database [61]
plus interactions predicted from sequence/structure dis-
tant patterns [62], which sum up to a total of 75,437 inter-
actions in which 3,430 proteins are involved. The degree
of interaction was estimated for each protein using the
program PIANA [63,64] simply by counting the number
of edge-ends in the interactome at each node. Proteins
were then ranked according to the number of interactions
displayed in the inferred interactome.

Functional terms significantly associated to connectivity in the human
interactome

The analysis of the distribution of GO terms across the list
of genes ordered by their connectivity (degree) provides
an idea of which biological processes operate through
protein complexes or transient aggregations of proteins
and which ones operate through a few interactions such as
some steps of signalling cascades or similar. The list
ordered by the number of observed and predicted interac-
tions was divided into ranks corresponding to: more than
500 interactions, between 500 and 400, and so on until
100. Then, the list was divided in chunks of ten interac-
tions (between 100 and 90, between 90 and 80, etc). After
the application of the FatiScan method to the 14 parti-
tions so defined, the following terms significantly associ-
ated to a high number of interactions were found:
Disassembly  of  cell  structures  during  apoptosis
(GO:0006921), cAMP biosynthesis (GO:0006171), cGMP
biosynthesis (GO:0006182), regulation of embryonic develop-
ment (GO:0045995), fibrinolysis (GO:0042730), cytolysis
(GO:0019835), complement activation, classical pathway
(GO:0006958), digestion (GO:0007586), proteolysis
(GO:0006508), neuropeptide signalling pathway
(GO:0007218). Many of them clearly operate though
complexes or, alternatively, involve aggregations of a large
number of proteins (even for disaggregation, like in the
case of the first term). The case of neuropeptide signalling
pathway is defined as: "The series of molecular signals gen-
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Figure 6

FatiScan analysis of the comparison between the background distribution of GO terms (black and blue bars) and the distribu-
tion of sensory perception of smell GO term (grey and red bars). The last distribution is clearly shifted towards highest values of
o (horizontal axis). The colours black/blue and grey/red make reference to the ® values for which the partitions were found to

be significant.

erated as a consequence of a peptide neurotransmitter
binding to a cell surface receptor" making reference to
connectivity at the receptor level.

On the other hand, there were GO terms significantly
associated to low number of interactions: cell-cell signaling
(GO:0007267), cell cycle (GO:0007049), protein amino
acid phosphorylation (GO:0001932), transcription from RNA
polymerase Il promoter (GO:0006366), DNA repair
(GO:0006281), chemotaxis (GO:0006935) and positive
regulation of cell proliferation (GO:0008284). General proc-
esses of cell signalling appeared here. Despite that these
processes can involve many proteins, their interaction
occurs through a sequence of steps. For example, cascades
of successive contacts in contrast to the case of protein
complexes where each protein binds to many others
simultaneously. Phosphorylation, transcription, and
DNA repair would fall in a similar class of poorly con-
nected processes.

We have shown how a simple property of a network of
interactions can be associated to functional processes
through a systems biology inspired procedure such as
FatiScan.

An approximation to the relative performances of
different Threshold-free methods

In order to check whether the findings of FatiScan were
similar or not to other alternative threshold-free methods
we used the case-control study on diabetes presented
above in the section "Differential gene expression in
human diabetes samples".

All the methods checked produced comparable results
(see Table 1). Oxidative phosphorylation and mitochondrion
are found by GSEA [16,17], PAGE [24] and Tian's [22]
methods. Nucleotide biosynthesis can be assimilated to
other, equivalent functional classes based on a set of func-
tional categories developed by the authors of the GSEA
[17], and both were found by all of the methods.
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Table I: Significant functional classes across a case-control study of diabetes.

Repository Method
Healthy vs diabetic Functional class GO KEGG Swissprot  Definedin FatiScan GSEA PAGE Tian etal.
keyword GSEA

Up-regulated Oxidative phosphorylation . . . yes yes yes yes
ATP synthesis . yes - - -
Ribosome . yes - - -
Ubiquinone . yes - - -
Ribosomal protein . yes - - -
Ribonucleoprotein . yes - - -

Mitochondrion . . . yes yes yes yes
Transit peptide . yes - - -

Nucleotide biosynthesis . . yes yes yes yes
NADH dehidrogenase (ubiquinone) activity — « yes - - -
Nuclease activity . yes - - -
Dow-regulated Insulin signalling pathway . yes - - -

Different functional classes, making reference to distinct functional terms, found as over-represented at the extremes of the list of genes ordered by
differential expression between healthy controls versus diabetic cases (see text) by distinct threshold-free methods. Some of the functional classes
refer to similar functional concepts and contain essentially the same genes, but have been defined in different repositories (GO, KEGG, etc.)
FatiScan uses functional classes defined through GO, KEGG and Swissprot keywords (among other), while GSEA, PAGE and Tian et al. use the

functional classes defined in GSEA [17].

The example showed how different methods efficiently
detected similar functional classes that made reference to
common functional properties of genes. And this detec-
tion was achieved even for the case of some of the func-
tional classes that have been defined in different
repositories and different contexts (and obviously with
some differences in the composition of the genes). This
agreement in the results is in bold contrast if compared to
the poor overlap reported by different studies where the
aim was the selection of genes (Bammler et al., 2005)
instead of blocks of functionally related genes.

Nevertheless a more extensive and rigorous comparative
study is still necessary to decide which is most efficient.
Our aim was not to perform exhaustive benchmarking but
just to show the basic agreement in the results obtained
through different alternative threshold-free approaches.

From a practical point of view, the preferred methods
would be those which can use more biological terms and
software packages, such as FatiScan or GSEA [17]. Actually
we have also implemented the GSEA in our Babelomics
suite [29].

Conclusion

Threshold-free approaches to the functional interpreta-
tion of genome-scale experiments are far more efficient
than the "classical" threshold-based, two-step approaches.
Following this philosophy, different tests that focus on
blocks of functionally-related genes, instead on individual
genes, have been proposed in the context of microarray
data [16,17,19-24,65]. These tests study the over- or
under-expression of blocks of functionally related genes

by studying their relative position across a lists of genes
ranked by differential expression. Nevertheless, such tests
have hardly been implemented in user-friendly programs
and have never been used outside of the context of gene
expression.

The program presented here, FatiScan, implements a seg-
mentation test [19] which does not require the original
data to estimate the significance of the results found. The
advantage of this test is that it is data-independent and
consequently can be applied to any type of list generated
in any genome-scale experiment of any nature.

Within the context of microarray data analysis FatiScan
can be used to test different types of data given that the
test is not based on assumptions based on the way in
which the list is ordered. Thus either categorical variables
(e.g. case-control experiments) of continuous variables
(the level of a metabolite or survival) can be used to build
up a list of genes ordered according their relationship to
the variables studied. This property constitutes an advan-
tage over some model-based approaches that need to dis-
tinguish between discrete [21] and continuous variables
such as survival [20].

Actually, the combined use of biological information and
experimental results is a possible solution to several recur-
rent problems in the field of microarray data analysis,
such as the difficulties in extrapolating results across dif-
ferent platforms. A recent study in which the same exper-
iment was performed in different laboratories using
different platforms [15] has demonstrated that, in spite of
the low concordance in the individual genes, the biologi-
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cal themes found were always the same. The application
of approaches such as FatiScan or similar methods will
overcome the classical problems derived from the two-
step approaches.

In other fields, such as evolution, we have shown how the
application of the FatiScan program circumvents the
problems of lack of significance encountered by other
authors. The test implemented in Fatiscan reported the
functional classes and pathways suggested (but not statis-
tically supported) by previous analyses as significant. The
possibility of its application to fields other than microar-
rays is a completely original feature from FatiScan.

Summarising, FatiScan provides a convenient web-based
environment for the functional analysis and interpreta-
tion of genome-scale experiments. FatiScan is part of the
Babelomics suite [29,30] where many other related tools
can be found. Moreover, the Babelomics is integrated in
the GEPAS [28,34-36] suite for microarray data analysis,
so if the genome-scale experiment is being made in the
context of microarrays, many other tools including nor-
malisation, data pre-processing, clustering, gene selection,
predictors, array-CGH support, etc. are immediately avail-
able.

Availability and requirements
Project name: FatiScan

Project home page: http://fatiscan.bioinfo.cipf.es and
within http://www.babelomics.org

Operating system: Platform independent web server
Programming language: Perl and R
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