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Abstract
Background: Most methods for predicting functional sites in protein 3D structures, rely on
information on related proteins and cannot be applied to proteins with no known relatives.
Another limitation of these methods is the lack of a well annotated set of functional sites to use as
benchmark for validating their predictions. Experimental findings and theoretical considerations
suggest that residues involved in function often contribute unfavorably to the native state stability.
We examine the possibility of systematically exploiting this intrinsic property to identify functional
sites using an original procedure that detects destabilizing regions in protein structures. In addition,
to relate destabilizing regions to known functional sites, a novel benchmark consisting of a diverse
set of hand-curated protein functional sites is derived.

Results: A procedure for detecting clusters of destabilizing residues in protein structures is
presented. Individual residue contributions to protein stability are evaluated using detailed atomic
models and a force-field successfully applied in computational protein design. The most destabilizing
residues, and some of their closest neighbours, are clustered into destabilizing regions following a
rigorous protocol. Our procedure is applied to high quality apo-structures of 63 unrelated proteins.
The biologically relevant binding sites of these proteins were annotated using all available
information, including structural data and literature curation, resulting in the largest hand-curated
dataset of binding sites in proteins available to date. Comparing the destabilizing regions with the
annotated binding sites in these proteins, we find that the overlap is on average limited, but
significantly better than random. Results depend on the type of bound ligand. Significant overlap is
obtained for most polysaccharide- and small ligand-binding sites, whereas no overlap is observed
for most nucleic acid binding sites. These differences are rationalised in terms of the geometry and
energetics of the binding site.

Conclusion: We find that although destabilizing regions as detected here can in general not be
used to predict binding sites in protein structures, they can provide useful information, particularly
on the location of functional sites that bind polysaccharides and small ligands. This information can
be exploited in methods for predicting function in protein structures with no known relatives. Our
publicly available benchmark of hand-curated functional sites in proteins should help other workers
derive and validate new prediction methods.
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Background
Available three-dimensional structures of proteins of
unknown biological role are rapidly increasing as a result
of structural genomics initiatives [1,2]. This prompted the
development of methods for annotating protein struc-
tures at the residue level and inferring binding sites using
information from related proteins [3-5]. A common
approach to detect functional sites in proteins has been to
identify evolutionarily conserved residues that are spa-
tially contiguous in the protein structure [6-9]. This
approach has lately been extended and integrated with
detailed analyses of structural features, related protein
structures and sequence information by several groups
[10-13]. But the lack of related proteins, a common occur-
rence with structural genomics targets, hinders the wide
applicability of many of these methods [14]. In addition,
there are now many examples where above-average
sequence variability rather than sequence conservation is
associated with functional regions [15,16].

For these reasons, methods capable of identifying func-
tional residues in absence of information on conserved
residues [17] have attracted considerable attention. Avail-
able methods of this type are based on the detection of
particular geometrical features in the protein structure,
such as clefts [18], proximity of residues to the protein
center [19], mutual spatial proximity of residues [20], or
spatial motifs such as the well-known catalytic triad in ser-
ine proteases [21,22]. More recently, methods using a
combination of evolutionary, geometrical and stability-
related information to identify functional residues have
also been proposed [23,24].

There are good indications that evolution often optimizes
functional properties at the expense of thermodynamic
stability. Site-directed mutagenesis of the catalytic resi-
dues in T4 lysozyme yields inactive mutant proteins that
are more stable than the wild-type [25], indicating that the
catalytic residues destabilize the wild-type enzyme. Simi-
lar conclusions were drawn from mutagenesis experi-
ments on other proteins [26-30]. In particular, the
catalytic power of enzymes is believed to result from the
presence of specific constellations of polar residues in the
active site, which can introduce either electrostatic [31] or
steric [32,33] strain into the folded protein conformation
in absence of the bound ligand [34]. Related to this obser-
vation is the recent finding that residues in left handed
helices, which occur rarely in proteins, are often impor-
tant for function [35].

Further evidence that protein sequences may not be opti-
mized for protein stability has been provided by studies
using computational protein design procedures. Those
procedures select sequences that optimize the stability of
a given protein three dimensional structure. They were

recently shown to generate native-like sequences in the
protein core but not on the surface, suggesting that surface
residues may be selected primarily for functional reasons
at the expense of stability [36].

Following this reasoning, several studies have shown that
functional sites in protein structures can be detected by
identifying residues positioned in unfavorable or unusual
energetic environments. This includes the analysis of ion-
isable groups with perturbed titration curves [37] and the
use of continuum electrostatics methods for the identifi-
cation of polar residues engaged in unfavorable electro-
static interactions [38] in enzyme active sites [38-40].
Binding sites in proteins were also shown to consist of
neighbouring regions of low and high stability [41].

A major challenge for functional site prediction methods
in proteins is their validation against a benchmark set of
known functional sites. Such benchmark must be large
and diverse enough so as to cover many types of func-
tional sites. These sites should furthermore be described
in a standard fashion and this description should be based
on all available information (structural, biochemical, site-
directed mutagenesis etc.). Unfortunately, such bench-
marks are still unavailable, although efforts are currently
in progress to address this issue. Resources like the Cata-
lytic Site Atlas [42] are very helpful, but are limited to cat-
alytic residues in enzymes. They hence lack information
on non-catalytic ligand-binding residues or other types of
functionally important residues. Resources such as Pdb-
Sum [43], Pdb SITE records [44] or SwissProt [45] also
provide useful information, but only for a subset of the
entries. The BIND database [46] provides annotations for
residues involved in ligand binding and different types of
function, but makes no distinction between biologically
relevant association modes and non-relevant ones. Other
structure-based binding site databases suffer from that
same limitation, and other issues that cannot be
addressed without manual verification, such as inclusion
of residues known to be important for function from non-
structural evidence [47,48].

Providing a comprehensive and relevant functional site
benchmark for proteins is not straightforward and reflects
the difficulty to define what a functional site is. Where
should one draw the limit? Should residues important for
maintaining the native 3D structure or for enabling con-
formational changes, both of which may be required for
function, also be considered as functional residues? Even
when focusing on ligand binding alone, important
choices need to be made in defining the ligand binding
residues. Are those the residues that are directly involved
in non-bonded interactions with the ligand in the holo-
protein, or should one include other residues in the
neighbourhood? One may choose to define ligand bind-
Page 2 of 22
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:141 http://www.biomedcentral.com/1471-2105/8/141
ing residues as those contributing significantly to the pro-
tein-ligand binding free energy. But this may likewise
require the consideration of residues remote from the
binding site, which might be involved in electrostatic
steering effects [49,50]. Waiting for these issues to be
addressed, functional site predictions are currently vali-
dated against information that is either approximate or
incomplete. Some methods have been validated against
sets of functional residues defined on the basis of thor-
ough literature curation, but those are generally restricted
to a very small numbers of proteins, and the definitions
used are somewhat ad-hoc (e.g. [7]).

This paper presents a procedure for detecting destabilizing
regions in protein three-dimensional structures solely on
the basis of objective energetic criteria. The correspond-
ence between these regions and known functional sites is
quantitatively evaluated in order to assess the effective-
ness of energetic criteria alone in functional site predic-
tion. Our analysis focuses entirely on ligand-binding sites.
To enable adequate validation we build a benchmark of
74 such binding sites from a non-redundant set (with
sequence identity of at most 25%) of 63 proteins having a
high quality crystal apo-structure, and at least one charac-
terised binding site. These are defined here using a set of
objective criteria and information extracted from the 3D
structures and from a comprehensive analysis of the asso-
ciated literature.

In our procedure the contribution of each residue to the
protein folding free energy (e.g. its stability) is evaluated
using an all-atom force-field developed previously for
protein design applications [36,51]. Residues providing
destabilizing free energy contributions are identified and
grouped together to yield the destabilizing regions in a
stepwise protocol, which takes into account their proxim-
ity in the 3D structure and the level of their destabilizing
contribution. This protocol is governed by 4 adjustable
parameters, which have straightforward physical mean-
ings. These parameters are adjusted so as to optimize the
overlap between the identified destabilizing regions and
known binding sites in a set of 7 proteins (the learning
set), which are unrelated (< 25% sequence identity) to the
set of 63 proteins used for the analysis (the test set).

A systematic comparison between the destabilizing
regions identified by our procedure in the 63 apo-protein
structures and the known ligand binding sites reveals that
their overlap is on average limited, but significantly better
than random. A statistically significant overlap between
the two types of regions (destabilizing and binding sites)
is obtained in 77% of the proteins in which destabilizing
regions are detected. Most interestingly, our study shows
that the extent of overlap largely depends on the type of
ligand whose binding site is being considered. Largest

overlaps are obtained for sites binding small ligands and
polysaccharides, while very poor overlap is almost system-
atically obtained with nucleic acid-binding sites. These
differences are rationalized in terms of the geometric and
energetic properties of the various binding sites, and the
potential of using energetic criteria such as those pro-
posed here for the prediction of functional sites in solved
protein structures with no known relatives is discussed.
The software DESITE for identifying destabilizing regions
in protein structure is available upon request.

Results
Functional sites in proteins
In order to evaluate the degree of overlap between the
destabilizing regions identified with our procedure and
the regions that actually mediate function in the proteins
of interest, an objective and unified description of the lat-
ter regions, termed here functional sites is required. To
derive such description a detailed analysis that combined
information from PDB entries and from biochemical and
mutagenesis data extracted from the literature (see Meth-
ods) was conducted on the 63 proteins of our test set (see
[52]).

A functional site was defined as a group of residues. In the
vast majority of the cases the defined groups represent res-
idues involved in ligand binding, where the ligands
encompass molecules of different types and sizes. The
defined sites are therefore strictly speaking ligand-binding
sites. Hence residues not directly involved in ligand bind-
ing, but required for maintaining the stability of the native
conformation or for enabling conformational changes
required for function are not explicitly considered as
being part of functional sites.

Table 1 summarizes the salient features of the character-
ized sites by protein and ligand type. Further details on
the properties of each binding site and the full list of resi-
dues in the sites can be found at [53]. For all homo-mul-
timers in the dataset, equivalent copies of the binding
sites occur in the different subunits, but only a single copy
is discussed here.

The 63 proteins of our dataset were found to contain a
total of 74 binding sites, with 9 proteins containing 2
binding sites, and one protein (CheY) with 3 binding
sites. The analyzed proteins contain 10 nucleic acid-bind-
ing sites, 11 polysaccharide binding sites, 17 interaction
sites with other proteins, 8 peptide binding sites, 3 for lip-
ids, 8 for metal ions, and 24 small ligand-binding sites.
Seven sites were found to bind multiple ligands. The size
of the binding sites, expressed in terms of the number of
residues per site copy, varies from 4 to 49 residues, with
an average of 17 residues. The fraction of the total number
of residues contained in individual binding sites ranges
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Table 1: Properties of known binding sites of the dataset proteins.

Pdb ida Holo-pdb idsb N resc F resd ASAe F ASAf Cleftg

Small
1e1a 13 4.2 272 2.1 T
1e3f 1bm7, 1e4h, 1e5a, 1eta, 1tha 8 6.9 193 1.0 T
1gu7 1guf, 1n9g 31 8.5 1158 3.7 T
1gud 1rpj 24 8.3 976 7.4 T
1gus 1gug, 1gun, 1guo 4 6.0 119 0.9 F
1gush 1gug, 1gun, 1guo 14 20.9 110 0.8 F
1gxy 1og1, 1og3, 1og4 24 10.8 947 8.7 T
1hf8 1hfa, 1hg2, 1hg5 4 1.5 329 1.4 F
1hhq 1hiy, 1b4s, 1b99, 1bux 17 11.3 1006 2.8 T
1is5 1is3, 1is4, 1is6 22 16.4 663 3.0 T
1jcf 1jcg 34 10.1 820 5.6 F
1odl 1odi, 1odj 25 10.7 339 0.8 T
1ofn 1oi6 15 7.4 669 4.0 T
1tm2 1tjy 19 6.1 437 3.2 T
1upq 1upr 12 11.2 783 11.9 T
1usg 1usk, 1usi 15 4.3 268 1.0 T
1usl 2bes, 2bet 18 11.5 505 3.9 T
1w1h 1w1d, 1w1g 10 6.6 560 6.2 T
1w2i 1w2i 8 8.9 450 5.0 F
1w37 1w3i, 1w3n, 1w3t 12 4.1 107 0.3 T
1y2t 1y2x, 1y2w 27 19.0 1191 5.6 F

Polysaccharide
1nof 12 3.1 471 3.2 T
1o88 15 4.2 472 3.5 T
1ob0 1e3z 41 8.5 1572 8.9 T
1ogb 1e6n, 1e6r, 1h0g, 1h0i, 1ogg 16 3.2 565 1.5 T
1qhz 1qi2, 8a3h, 4a3h, 1e5j, 1qi0 14 4.6 590 5.2 T
1qjv 10 2.9 265 1.8 T
1uuq 1uz4 16 3.9 256 1.7 T
1w0n 1ux7 8 6.7 642 11.2 T
1w6z 1sf7, 1sfb, 1sfg 20 15.5 891 13.6 T
1w9s 1w9t, 1w9w 12 9.0 376 5.9 F

Peptide
1c7k 9 6.8 275 4.2 T
1e5t 1e8m, 1e8n, 1o6g, 1qfs, 1uop 18 2.5 485 1.7 T
1ea7 7 2.3 97 0.9 T
1gt9 1gtj, 1gtl 21 5.9 450 3.4 F
1kl4 1hqq, 1kl3, 1kl5, 1rsu 17 14.2 854 4.2 T
1oes 1g1f, 1g1g, 1g1h, 1ptt, 1ptu 16 5.7 885 6.6 T
1r29 1r2b 29 23.8 1760 13.8 F

Protein
1e3f 1qab, 1rlb 15 13.0 971 5.0 F
1e6l 1bdj 10 7.9 775 11.7 F
1e6l 1a0o, 1eay, 1ffg, 1ffs, 1ffw 15 11.8 1212 18.4 T
1eao 1e50, 1h9d 26 22.8 1819 28.2 F
1f2x 12 9.5 604 5.2 F
1gcp 1gcq 21 31.3 1405 33.2 F
1gqv 2bex 36 26.7 2246 28.9 F
1obq 1gka 22 12.2 1023 6.1 T
1sif 1cmx, 1fxt, 1nbf, 1otr, 1q5w, 1s1q, 1uzx 14 19.7 937 21.7 T
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1tgr 1h59 15 28.8 1236 29.5 T
1uns 1jck 19 8.1 1620 13.5 F
1uns 1jwm 20 8.5 1386 11.6 F
1uol 1gzh, 1kzy 18 9.2 1301 13.1 F
1uq4 2aai 42 16.0 2796 21.6 F
1w53 12 14.3 770 8.8 T

Nucleic acid
1e7l 8 5.1 352 2.0 T
1eao 1h9d, 1hjb 18 15.8 1375 21.3 F
1gqv 1hi3, 1hi4, 1hi5 9 6.7 245 3.2 T
1gv2 1h88, 1h89, 1mse 30 29.1 2289 30.2 T
1o7i 5 4.3 497 7.4 F
1okb 1emh, 1emj, 1q3f, 1ssp, 2ssp, 4skn 30 13.5 1539 15.0 T
1uol 1tsr, 1tup 19 9.7 1229 12.4 F
1uq4 1apg, 1br5 17 6.5 364 2.8 T
1utx 10 15.2 691 9.0 F
1vyi 10 9.0 1009 15.0 F

Lipid
1obq 1h91, 1i4u, 1s2p, 1s44 21 11.6 350 2.1 T
1qmd 14 3.8 465 2.9 F

Metal
1e6l 1chn, 1ymv 7 5.5 350 5.3 T
1qmd 1kho 6 1.6 67 0.4 T
Peptide-Protein
1mix 1mk7, 1mk9 26 12.6 1526 11.9 F

Small-Metal
1h1y 19 8.6 365 2.2 T
1h6l 2poo, 1h6l 16 4.5 627 4.4 T
1oid 1ho5, 1hp1, 1hpu 19 3.6 872 3.9 F

Polysaccharide-Metal
1gkb 1bxh, 1cjp, 1c57, 1ces, 1dq1, 1gkb, 3cna, 3enr 19 8.0 586 1.8 F
Lipid-Metal
1umv 1pob, 1umv, 1c1j 17 13.9 492 3.8 T

Protein-Metal
1o6v 1o6s 49 10.6 2224 11.3 F

Properties of known binding sites of the dataset proteins. Binding sites are classified according to their type of ligand. The last 5 categories refer to 
binding sites where 2 types of ligand can bind.
a Pdb identifier of structure used for energy calculations.
b Pdb identifiers of the structures of the protein-ligand complex used to define the binding site.
c Number of residues in binding site.
d Fraction of protein residues in binding site (in %).
e Total ASA of binding site residues.
f Fraction of protein ASA in binding site (in %).
g True (T) if binding site sits in a cleft, False (F) otherwise.
h 1gus appears twice here because it has 2 distinct binding sites for small ligands. The same observation applies to 1e6l and 1uns that have 2 distinct 
binding sites for different proteins.

Table 1: Properties of known binding sites of the dataset proteins. (Continued)
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between 1.5% and 31.3% (with an average of ~10%). But
most binding sites (67/74) have a small relative size of
less than 2% of the total number of residues in the pro-
tein.

The average amino acid composition found in binding
sites is illustrated in Fig. 1. In comparison to the amino
acid composition of the complete proteins of our set (Fig.
1), binding sites are enriched in aromatic residues (W, Y),
H, R, and N, and to a lesser extent in M and D. On the
other hand these sites are depleted in P, K, E and the
aliphatic residues (A, V, L, I). The lower occurrence of
lysine residues in binding sites, as compared with other
polar residues, thus follows the trend observed previously
for protein-protein interfaces [54] and catalytic sites [55].
The enrichment in aromatic and polar residues such as H,
T, R, and N most probably reflects the hydrogen bonding
potential of the corresponding side chains, with the aro-
matics mostly occuring in sugar-binding sites. The fre-
quent occurrence of Arg residues has previously been
reported in interfaces of protein complexes [56].

Binding sites have been reported to often occur in large
clefts at the protein surface [18]. This is particularly fre-
quent for sites that bind small ligands as it enables the
protein to surround such ligands almost completely in
order to minimize contact with the solvent [57]. To inves-
tigate the extent to which this was also the case for the
binding sites identified here, we checked whether the sites
were located in one of the 4 largest clefts identified by
SURFNET [18], following a set of recent rules used in con-
junction with this program [58]. We consider a binding
site to be part of one of these clefts if at least 75% of its res-
idues are cleft residues as well. Residues lining SURFNET
clefts are defined with the MASK program (provided with
SURFNET) using default values [59]. Inspection of Table
1 reveals that out of the 74 binding sites in our dataset, 45
are located in such clefts, including the majority of the
sites that bind small ligands (17/24) and polysaccharides
(9/11). The frequency is lower for other ligand types, par-
ticularly for peptide and protein binding sites (5/17). As a
consequence of their preferred location in clefts, residues
belonging to functional sites generally have lower solvent
accessibilities (25.2 ± 25.5%) than non-functional surface
residues (40.3 ± 25.8%), with about 25% of residues in
these sites being completely buried. It should also be
noted that the largest cleft identified by SURFNET is usu-
ally much larger than any of the functional sites defined
here (which comprise 17 residues on average), with the
largest clefts containing at least 20 residues and often as
many as several hundreds (see [60]). The probability that
the overlap of such large clefts with the much smaller
functional sites might occur by chance can therefore be
quite high (see discussion below on the predictive power
of destabilizing regions).

Destabilizing regions
Salient features
Destabilizing regions are defined as groups of spatially
neighbouring residues whose contribution to the free
energy of the native state is unfavorable (destabilizing).
Such groups are identified by first computing the contri-
butions of individual residues to the protein folding free
energy, selecting the residues with the most unfavorable
contributions and delimiting regions in the protein that
contain a high density of such residues, as described in
Methods.

Table 2 summarizes the salient features of the destabiliz-
ing regions identified in the 63 proteins of our dataset.
They include the number of residues in each region, the
fraction of the total number of protein residues found in
the region, and whether the region maps into a large cleft.
Further details for each site, including the identity of indi-
vidual residues are given at [61].

In homo-multimeric assemblies the described destabiliz-
ing regions represent the smallest of the equivalent desta-
bilizing regions identified in different subunits, and can
be considered as the common core of these regions. A sim-
ilar procedure was applied to define the common core of
intersecting regions between binding sites and destabiliz-
ing regions, in multimeric proteins (see below).

A total of 121 destabilizing regions are detected in the
dataset, but none are found in 11 proteins (pdb ids 1utx,
1gv2, 1eao, 1e7l, 1vyi, 1w9s, 1upq, 1w53, 1tgr, 1r29,
1sif). The number of destabilizing regions per protein
ranges between zero in these 11 cases and 6 in one pro-
tein. Their size varies from 4 to 33 residues, averaging
around 10 residues, and most destabilizing regions (101/
121) contain less than 15 residues. Residues in a single
destabilizing region represent between <1% and ~15% of
the total number of residues in the protein, with an aver-
age of ~4%. Less than half (59/121) of the destabilizing
regions map into one of the 4 largest clefts in the protein.

The average amino acid composition of destabilizing
regions is illustrated in Fig. 1, alongside of the composi-
tion in binding sites and in the full proteins of our dataset.
Relative to the amino acid composition of the full protein,
these regions are highly enriched in S and D, and to a
lesser extent in E, R, T and H, and are largely depleted in
the aliphatic residues (A, V, I, L), as well as in K, W, G, M
and C. The amino acid composition of the destabilizing
regions thus displays some similarities to the composition
of the binding sites (low representation of lysines and
aliphatic residues) but also differs from it, most notably
by the lower content of aromatics, and much higher con-
tent of S, T, D and E. Overall, polar and charged residues
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account for more than 75% of the residues in the destabi-
lizing regions.

Origins of the unfavorable energetic contributions
To gain insight into the origins of the unfavorable energy
contributions of the so-called destabilizing residues, the
contribution of individual residues to the folding free
energy of the protein ΔGf is decomposed into individual
terms as follows:

ΔGf = ΔGvdw + ΔGelec + ΔGsolvation (1)

Where ΔGvdw, ΔGelec and ΔGsolvation are respectively the dif-
ferences in Van der Waals, electrostatic and solvation free
energies between the folded state and the reference state
for a given residue (see Methods). Figure 2 shows the aver-
age values and standard deviations for the different terms

in Eq. 1 and the total free energy difference, computed for
the 20 amino acid types, of all the residues of our dataset
(Fig. 2a) and of the residues identified as destabilizing by
our analysis (Fig. 2b) (see Methods).

The polar residues in our dataset generally exhibit an
unfavorable contribution to the solvation free energy dif-
ference (Fig. 2a) because their polar groups are often par-
tially buried in the folded protein. However, with those
groups often engaged in hydrogen bonds with neighbour-
ing residues in the protein, the unfavorable effect of des-
olvation tends to be at least partially compensated by
more favorable electrostatic and Van der Waals interac-
tions made in the folded protein than in water. For K, N,
Q and Y residues these compensatory effects roughly bal-
ance each other, yielding a net contribution to the folding
free energy that is near zero (Fig. 2a). In R, D, E, H, S and

Amino acid composition in proteins of our dataset, functional sites and destabilizing regionsFigure 1
Amino acid composition in proteins of our dataset, functional sites and destabilizing regions. Mean proportions 
of residue types for all residues in the dataset, binding sites residues and destabilizing regions residues. Residues are sorted 
with increasing hydrophobicity according to Kyte-Doolittle scale [76].
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Table 2: Properties of destabilizing regions detected in the dataset proteins.

Pdb ida N Regb N resc F resd ASAe F ASAf Cleftg

1c7k 1 7 5.3 196 3.0 F
1e1a 1 9 2.9 331 2.5 T

1 10 3.2 290 2.2 F
1 19 6.1 256 1.9 F

1e3f 1 18 3.9 170 0.9 T
1e5t 1 18 2.5 450 1.6 T

1 11 1.5 405 1.4 T
1 4 0.6 143 0.5 T

1e6l 1 6 4.7 410 6.2 T
1ea7 1 4 1.3 207 1.9 T

1 17 5.5 495 4.5 F
1 7 2.3 546 4.9 F
1 9 2.9 82 0.7 F
1 4 1.3 196 1.8 T

1f2x 1 4 1.6 230 2.0 F
1gcp 1 10 14.9 644 15.2 F
1gkb 4 22 9.3 152 2.0 F
1gqv 1 8 5.9 573 7.4 F
1gt9 1 8 2.2 309 2.3 F

1 10 2.8 114 0.9 F
1 10 2.8 534 4.0 F

1gu7 2 6 1.6 434 2.8 T
2 11 3.0 465 3.0 T

1gud 1 6 2.1 422 3.2 F
1 20 6.9 571 4.4 T
1 4 1.4 289 2.2 T
1 6 2.1 234 1.8 F

1gus 4 13 12.9 262 7.6 T
1gxy 1 12 5.4 107 1.0 T

1 6 2.7 386 3.5 T
1h1y 1 12 2.7 546 3.3 T

2 9 4.1 179 2.2 T
1h6l 1 21 5.9 493 3.5 F

1 4 1.1 195 1.4 T
1hf8 2 5 1.9 425 3.6 F

2 18 6.8 816 6.8 T
1hhq 6 7 4.7 114 1.8 F

6 13 8.7 748 12.6 T
1is5 4 4 3.0 185 3.2 T
1jcf 1 14 4.2 553 3.8 T

1 5 1.5 256 1.7 F
1 19 5.7 316 2.2 F
1 8 2.4 662 4.5 T

1kl4 4 5 4.2 429 8.4 T
1mix 1 11 5.3 705 5.5 T

1 6 2.9 408 3.2 F
1 4 1.9 304 2.4 T

1nof 1 25 6.5 587 4.0 F
1 6 1.6 255 1.7 F
1 6 1.6 415 2.8 F
1 6 1.6 144 1.0 F

1o6v 1 11 2.4 376 1.9 F
1 11 2.4 679 3.5 F
1 13 2.8 608 3.1 F
1 5 1.1 315 1.6 F

1o7i 1 4 3.5 346 5.1 T
1o88 1 7 2.0 198 1.5 T

1 5 1.4 296 2.2 F
1 7 2.0 313 2.3 F
1 4 1.1 211 1.6 F
1 4 1.1 248 1.8 F
1 7 2.0 190 1.4 T

1ob0 1 6 1.2 314 1.8 F
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1 7 1.5 226 1.3 T
1 4 0.8 138 0.8 F
1 7 1.5 93 0.5 T

1obq 1 4 1.1 217 1.3 T
1 15 4.2 318 1.9 T

1odl 3 10 2.1 547 3.6 F
6 12 5.1 276 3.6 T
3 23 4.9 54 0.3 T

1oes 1 6 2.1 97 0.7 F
1 5 1.8 105 0.8 T
1 7 2.5 377 2.8 T
1 9 3.2 423 3.1 F

1ofn 2 11 5.4 395 4.8 T
2 9 4.4 324 3.8 T

1ogb 1 11 1.1 455 1.2 F
1 15 1.5 149 0.4 F
2 14 2.8 765 4.0 F
2 4 0.8 236 1.2 F

1oid 1 4 0.8 291 1.3 F
1 17 3.3 438 2.0 F
1 14 2.7 641 2.9 F
1 20 3.8 504 2.3 T
1 5 1.0 325 1.5 F

1okb 1 4 1.8 300 2.9 F
1 14 6.3 704 6.9 T
1 6 2.7 329 3.2 T

1qhz 1 24 7.9 328 2.9 T
1 5 1.7 170 1.5 F

1qjv 1 5 1.5 359 2.4 T
1 33 9.6 1164 7.9 F
1 7 2.0 165 1.1 T

1qmd 1 6 1.6 129 0.8 T
1 4 1.1 319 2.0 T
1 6 1.6 417 2.6 F
1 21 5.7 828 5.2 T

1tm2 1 4 1.3 330 2.4 F
1 22 7.0 663 4.9 T

1umv 2 5 4.1 233 3.6 T
1uns 1 4 1.7 246 2.1 T

1 7 3.0 262 2.2 F
1uol 1 7 3.6 368 3.7 F
1uq4 1 5 1.9 251 1.9 T
1usg 1 30 4.3 715 2.7 T

2 13 3.8 340 2.6 T
1usl 2 8 5.1 304 4.8 F
1uuq 1 13 3.2 50 0.3 F

1 5 1.2 53 0.3 T
1 6 1.5 182 1.2 F
1 11 2.7 356 2.3 F

1w0n 1 10 8.3 455 7.9 F
1w1h 1 7 4.6 431 4.8 T
1w2i 2 13 14.4 750 16.6 T
1w37 8 7 4.8 131 2.4 F

8 8 5.5 83 1.6 F
1w6z 1 14 10.9 592 9.0 F
1y2t 1 8 1.4 274 1.3 T

2 8 2.8 1 0.0 F
4 10 7.0 415 7.6 T

a Pdb identifier of structure used for energy calculations.
b Number of equivalent destabilizing regions identified in the structure (relevant for multimers only).
c Number of residues in destabilizing region.
d Fraction of protein residues in destabilizing region (in %).
e Total ASA of destabilizing region residues.
f Fraction of protein ASA in destabilizing region (in %).
g True (T) if destabilizing region sits in a cleft, False (F) otherwise.

Table 2: Properties of destabilizing regions detected in the dataset proteins. (Continued)
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Average Van der Waals, electrostatics and solvation contributions, and total free energy difference, for each residue typeFigure 2
Average Van der Waals, electrostatics and solvation contributions, and total free energy difference, for each 
residue type. Average values of the Van der Waals, electrostatics and solvation terms, and of the total free energy difference, 
for each residue type, computed over (a) all residues in the dataset, and (b) destabilizing residues. Standard deviations are indi-
cated as error bars. Residues are sorted with increasing hydrophobicity according to Kyte-Doolittle scale [76].
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T the unfavorable contribution due to desolvation is less
effectively compensated by other terms, leading to a net
destabilizing contribution. It is thus not surprising that
these residues are significantly over-represented in desta-
bilizing regions. For the hydrophobic residues desolva-
tion generally results in a near zero or favorable
contribution, whereas the contribution from Van der
Waals interactions tends to be stabilizing, especially for F,
Y and W, reflecting their tight packing in the folded state
[62]. The values calculated for the electrostatic contribu-
tion are close to zero for most residue types, except for
arginines where they seem to be greatly stabilizing.

For destabilizing residues (Fig. 2b) the contribution from
desolvation is in general more destabilizing for all resi-
dues types, and the favorable contributions from the Van
der Waals and electrostatic terms is in general weaker,
leading to a net destabilizing effect overall. These trends
are most salient for polar residues, which represent the
major fraction of the destabilizing residues identified in
our dataset. When hydrophobic residues are identified as
destabilizing this is often due to the solvation and Van der
Waals terms being unfavorable. In comparison to the
hydrophobic residues in the full dataset whose contribu-
tion to the Van der Waals term is in general quite stabiliz-
ing, the absence of favorable Van der Waals contributions
in destabilizing hydrophobic residues is particularly strik-
ing (Fig. 2a,b).

Relation between destabilizing regions and known binding 
sites
In total, there are more destabilizing regions (121) than
known binding sites (74), but destabilizing regions tend
to be smaller, with ~10 residues on average vs. 17 in func-
tional sites. This results in similar average numbers of res-
idues in destabilizing regions and known binding sites,
per protein (19 and 20 residues, respectively). The average
fraction of protein residues located in binding sites (10%)
is however much larger than that located in destabilizing
regions (~4%) because several analyzed proteins with
known binding sites do not contain destabilizing regions.
We also see that known binding sites are more frequently
located in large clefts than destabilizing regions (45/74 vs.
59/121).

Intersection of functional sites and destabilizing regions
Detected destabilizing regions and known binding sites
show overlap in 45 out of the total of 63 proteins in our
dataset. Residues shared by a known binding site and a
destabilizing region constitute what we call here the Inter-
section Region (IR).

Table 3 lists the details of the overlaps, including the
number of residues in the known binding site, in the
destabilizing region, and in the IR. In the case of mul-

timeric proteins, the listed numbers were computed con-
sidering all the subunits. In total, 60 IR's are identified
and more than one IR's are found in 16 proteins. Several
destabilizing regions overlap with the same known func-
tional site in 14 proteins. In pectate lyase C ([PDB:lo88]),
the polysaccharide-binding site overlaps with 3 different
destabilizing regions. In crustacyanin ([PDB:1obq]) and
phospholipase C ([PDB:1qmd]), 2 different binding sites
overlap with a single destabilizing region. Twenty-six
overlapping regions are located in small ligand-binding
sites, 14 in polysaccharide-binding sites, 10 in protein-
binding sites, 7 in peptide-binding sites, 6 in metal-bind-
ing sites, 2 in lipid-binding sites, and 1 in a nucleic acid-
binding site.

The majority of the IR's (78%) are located in one of the
four largest clefts of each protein. The number of residues
per IR varies from 1 to 12, with an average of 5. Most con-
tain less than 8 residues.

Can destabilizing regions be used to predict functional sites?
Using the results on the overlap between destabilizing
regions and known functional sites listed in Table 3, we
now evaluate the extent to which destabilizing regions, as
identified here, can be used to predict functional sites in a
protein structure in absence of prior knowledge.

To that end the sensitivity S and positive predictive value
(PPV) of the destabilizing regions were computed. For a
given protein, Sobs is the fraction of residues in known
binding sites that are also part of destabilizing regions;
and PPVobs is the fraction of residues in destabilizing
regions that is intersecting with known binding sites (see
Methods). Since our procedure was not trained on our
dataset but on a different group of 7 proteins, this dataset
can be used to compute these quantities. The average val-
ues of Sobs and PPVobsin the dataset are respectively 25.7%
and 27.0%. This means that, on average, about one fourth
of the residues in a given binding site are also part of
destabilizing regions, and that a little more than one
fourth of the residues in destabilizing regions are also part
of binding sites. The observed S and PPV values for each
protein in which destabilizing regions were identified are
listed in Table 3.

Although this overlap is modest and would not allow to
identify functional sites in a quantitative fashion, it is sta-
tistically significant. The number of overlapping residues
expected by chance for each binding site-destabilizing
region pair is computed using the hypergeometric distri-
bution (see Methods). These expected numbers of inter-
secting residues were used to calculate the expected
sensitivity (Sexp) and PPV (PPVexp) values for each protein.
The average Sexp and PPVexp are 7.9% and 9.3%, respec-
tively. A one-tailed Wilcoxon signed-rank test [63] was
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Table 3: Details of the intersection between binding sites and destabilizing regionsa.

Pdb idb N sitec N des.d N IRe Sens.f PPVg Exp N IRh P-value

Small

1e1a 13 38 7 53.8 18.4 1.6 0.00023

1e3f 32 18 8 25.0 44.4 1.2 5.9e-06

1gu7 62 53 10 16.1 18.9 4.5 0.00999

1gud 24 36 14 58.3 38.9 3.0 1.5e-08

1gus 24 73 0 0.0 0.0 4.4 1.0

1gusi 84 73 41 48.8 56.2 15.2 6.2e-14

1gxy 24 18 7 29.2 38.9 1.9 0.00100

1hf8 8 46 0 0.0 0.0 0.7 1.0

1hhq 102 126 30 29.4 23.8 14.3 1.2e-05

1is5 88 16 16 18.2 100.0 2.6 8.2e-14

1jcf 34 46 12 35.3 26.1 4.7 0.00061

1odl 150 190 60 40.0 31.6 20.3 3.3e-18

1ofn 30 46 13 43.3 28.3 3.4 2.9e-06

1tm2 19 26 6 31.6 23.1 1.6 0.00232

1usg 30 56 14 46.7 25.0 2.4 5.6e-09

1usl 36 28 15 41.7 53.6 3.2 5.5e-09

1w1h 10 7 6 60.0 85.7 0.5 9.6e-08

1w2i 16 24 0 0.0 0.0 2.1 1.0

1w37 48 101 16 33.3 15.8 4.1 6.5e-07

1y2t 108 66 0 0.0 0.0 12.6 1.0

Polysaccharide

1nof 12 43 7 58.3 16.3 1.4 7.3e-05

1o88 15 34 12 80.0 35.3 1.4 3.2e-11

1ob0 41 24 8 19.5 33.3 2.0 0.00037

1ogb 32 53 4 12.5 7.5 1.7 0.08496

1qhz 14 29 10 71.4 34.5 1.3 1e-08

1qjv 10 45 4 40.0 8.9 1.3 0.03039

1uuq 16 35 10 62.5 28.6 1.4 3.1e-08

1w0n 8 10 0 0.0 0.0 0.7 1.0

1w6z 20 14 6 30.0 42.9 2.2 0.00887

Peptide

1c7k 9 7 0 0.0 0.0 0.5 1.0

1e5t 18 33 4 22.2 12.1 0.8 0.00748

1ea7 7 41 0 0.0 0.0 0.9 1.0

1gt9 21 28 4 19.0 14.3 1.6 0.07134

1kl4 68 22 12 17.6 54.5 3.1 5.6e-06

1oes 16 27 5 31.2 18.5 1.5 0.01154

Protein

1e3f 60 18 0 0.0 0.0 2.3 1.0

1e6l 10 6 3 30.0 50.0 0.5 0.00632

1e6l 15 6 0 0.0 0.0 0.7 1.0

1f2x 24 4 0 0.0 0.0 0.4 1.0

1gcp 21 10 2 9.5 20.0 3.1 0.89027

1gqv 36 8 6 16.7 75.0 2.1 0.00465

1obq 44 19 11 25.0 57.9 2.3 9.6e-07

1uns 19 4 0 0.0 0.0 0.9 1.0

1uns 20 4 4 20.0 100.0 0.9 0.00852
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1uol 18 7 2 11.1 28.6 0.7 0.12811

1uq4 42 5 4 9.5 80.0 0.8 0.00254

Nucleic acid

1o7i 5 4 0 0.0 0.0 0.2 1.0

1okb 30 24 12 40.0 50.0 3.2 3.7e-06

1uol 19 7 0 0.0 0.0 0.7 1.0

1gqv 9 8 0 0.0 0.0 0.5 1.0

1uq4 17 5 0 0.0 0.0 0.3 1.0

Lipid

1obq 42 19 7 16.7 36.8 2.2 0.00305

1qmd 14 37 4 28.6 10.8 1.4 0.04088

Metal

1e6l 7 6 0 0.0 0.0 0.3 1.0

1qmd 6 37 1 16.7 2.7 0.6 0.47097

Peptide-Protein

1mix 26 21 6 23.1 28.6 2.6 0.03234

Small-Metal

1h1y 38 33 17 44.7 51.5 2.9 8.6e-12

2poo 16 25 10 62.5 40.0 1.1 2.8e-09

1oid 19 60 14 73.7 23.3 2.2 1.2e-10

Polysaccharide-Metal

1gkb 76 88 48 63.2 54.5 7.0 1.4e-36

Lipid-Metal

1umv 34 19 0 0.0 0.0 2.6 1.0

Protein-Metal

1o6v 49 40 12 24.5 30.0 4.2 0.00032

Small 34.4 (21.4)j 32.3 (25.5)k

Polysaccharide 43.7 (27.3) 26.2 (17.4)

Peptide 18.3 (14.0) 16.6 (16.7)

Protein 13.0 (10.9) 36.2 (33.9)

Nucleic acid 8.0 (17.9) 10.0 (22.4)

Lipid 15.1 (14.4) 15.9 (18.9)

Metal 35.7 (29.4) 25.3 (22.6)

a No destabilizing regions were detected in 11 entries of the dataset (1utx, 1gv2, 1eao, 1e7l, 1vyi, 1w9s, 1upq, 1w53, 1tgr, 1r29, 1sif) and these 
entries are not listed in this table.
b Pdb identifier of structure used for energy calculations.
c Number of residues in binding site.
d Number of residues in destabilising region.
e Number of residues in intersection region.
f Sensitivity (in %).
g Positive predictive value (in %).
h Expected number of residues in intersection region (see text).
i 1gus appears twice here because it has 2 distinct binding sites for small ligands. The same observation applies to 1e6l and 1uns that have 2 distinct 
binding sites for different proteins.
j Average sensitivity (and standard deviation) for the given ligand type.
k Average PPV (and standard deviation) for the given ligand type.

Table 3: Details of the intersection between binding sites and destabilizing regionsa. (Continued)
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then applied to the full set of observed and expected sen-
sitivity and PPV values, and indicates that Sobs are signifi-
cantly larger than Sexp(p = 3.305e - 08) and that PPVobsare
significantly larger than PPVexp(p = 4.091e - 07).

Taking a P-value threshold of 0.05 in considering an over-
lap as statistically significant, yielded statistically signifi-
cant overlaps in 40 of the 52 proteins in which at least one
destabilizing region has been identified. In other words, if
destabilizing regions are identified in a protein, there is
77% (40/52) probability that at least one of these regions
will display a significant overlap with at least one known
binding site. In the following we describe how these sig-
nificant overlaps are distributed amongst the functional
sites associated with different types of bound ligands.

Overlap with destabilizing regions as a function of ligand types
Figure 3 illustrates the comparison of binding sites with
destabilizing regions as detected using our procedure.
Results are shown for proteins that bind different types of
ligands (polysaccharides, small ligands, nucleic acids and
proteins).

The extent of overlap between destabilizing regions and
functional sites varies significantly with the type of ligand
binding to these sites (Fisher exact test [63]: contingency
table is Table 4, p = 0.005). This is not too surprising given
that the shape and composition of the functional site is in
principle optimized to fit the type of ligand that binds to
it, and that occurrence of destabilizing regions depends
on shape and amino acid composition. The average sensi-
tivity is highest (43.7%) for sites that bind polysaccha-
rides and lowest (8%) for nucleic acid binding sites,
whereas the average PPV ranges from 36.2% for protein
binding sites to 10% for nucleic-acid binding sites (see
Table 3).

Destabilizing regions identified here are reasonable pre-
dictors of binding sites for polysaccharides and small lig-
ands, but very poor predictors of sites involved in nucleic
acid binding, with the prediction performance for other
types of sites being of intermediate reliability (see Tables
3 and 4). The better overlap with sites that bind small lig-
ands and polysaccharides can be explained by the fact that
many small ligands and polysaccharides bind to clefts
enriched in polar and/or charged residues [57]. The polar
residues in these sites therefore tend to be more buried
than average, thereby providing a destabilizing contribu-
tion to the folding free energy in absence of the ligand
[29]. The same applies to metal-binding sites located in
deep clefts, with some exceptions however, as in phos-
pholipase C ([PDB:1qmd]) where the zinc-binding site
undergoes very large conformational change upon bind-
ing [64]. In internalin A ([PDB:lo6v]), CheY ([PDB:le6l)
and endonuclease VII ([PDB:le7l), the metal ion binds in

shallow clefts or flat surfaces where the residues have free-
dom to move to adapt to the absence of the ion.

In contrast, nucleic acids generally bind to larger regions
with flat or convex surface shape. As a result, the binding
site residues can be well solvated in absence of the bound
ligand. Furthermore, nucleic acid binding regions usually
include a sizable fraction of aliphatic and aromatic resi-
dues [65], which are poorly represented in the destabiliz-
ing regions identified here.

The overlap with lipid-binding sites, which are often
located in deep clefts rich in hydrophobic residues, is in
general rather limited. Significant overlap is however
observed with sites in phospholipase C ([PDB:1qmd])
and crustacyanin C1 ([PDB:1obq]). These proteins bind
polar heads carrying phospholipids, and the correspond-
ing sites bury these heads inside polar clefts on the protein
surface. It is these polar clefts that tend to overlap with the
destabilizing regions identified in these proteins.

Protein and peptide binding sites are very diverse, and so
is their overlap with destabilizing regions. Some func-
tional sites or part of such sites are located in disordered
regions and cannot be identified by our method (see
Methods).

Discussion and conclusions
The basic assumption in this work has been that func-
tional sites in proteins are very likely to contain residues
that contribute unfavorably to the stability of the native
conformation, due to evolutionary selection pressure for
optimizing functional efficiency or specificity. This idea
has been formulated previously by several authors
[25,32,34,38,41], and illustrated in several proteins sys-
tems [25-30]. More recently, links have been established
between functional sites and unfavorable solvation effects
[66] or electrostatic interactions [39]. So far however, the
relation between protein residues providing destabilizing
contributions and functional sites has not been systemat-
ically investigated with rigorous statistical backing.

The present study attempted to fill this gap. It described a
procedure for identifying regions in protein structures,
containing residues that contribute unfavorably to the
thermodynamic stability of the folded state. This stability
was assessed from the experimentally determined atomic
coordinates on the basis of a classical empirical energy
function and standard parameters available in the
CHARMM package, augmented with a surface area
dependent solvation term. Contributions of individual
residues were computed using a thermodynamic cycle
that incorporates a simplified model for the unfolded
state. Clusters of the most destabilizing residues were
identified and extended to include their immediate spatial
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Examples of known binding sites and destabilizing regions identified in 3 proteinsFigure 3
Examples of known binding sites and destabilizing regions identified in 3 proteins. Each protein is represented 
twice: its binding sites (residues colored green) and ligands (displayed and colored as cpk) are shown on the left panel, whereas 
destabilizing regions (residues colored orange or cyan) are shown on the right panel. Represented residues are all displayed as 
"balls-and-sticks". Ligands considered as biologically irrelevant are displayed on each panel as balls-and-sticks and colored cpk. 
Pdb ids used to reference subfigures are those used in the text and tables. (a) Endoglucanase B (Pdb id 1qi2  and 1qhz used for 
left and right panels, respectively), a protein with a polysaccharide-binding site. Backbone is displayed as coil and colored grey. 
PPV = 34.5%, Sensitivity = 71.4%. Two destabilizing regions are detected in this protein (one in orange and the other in cyan). 
(b) Phytase (Pdb id 1h6l and 2poo used for left and right panels, respectively), a protein with a small ligand-binding site. The 
backbone is displayed as cartoons and colored grey. PPV = 40.0%, Sensitivity = 62.5%. Two destabilizing regions are detected in 
this protein (one in orange and the other in cyan). (c) AML-1 (Pdb id 1h9d and 1eao used for left and right panels, respectively), 
a protein with a protein-binding site and a nucleic acid-binding site. The bound protein, CBF-β, is represented as cartoons and 
colored dark-red. AML-1 is displayed as coil and colored grey. No destabilizing region was detected in this protein. Figures 3 
and 5 were drawn with Molscript [77] and rendered with Raster3D [78].

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1qi2 
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1qhz
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1h6l 
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2poo
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1h9d 
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1eao
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neighbours, yielding the so-called destabilizing regions
defined in this study.

Applying our procedure to a set of 63 high resolution pro-
tein crystal structures with well annotated ligand binding
sites, but representing the apo-form of the protein, we
were able to measure the overlap between these annotated
sites and the identified destabilizing regions, assess its sta-
tistical significance and evaluate the effectiveness of using
destabilizing regions for the prediction of ligand binding
sites in proteins.

Although our results show that only about 25% of the res-
idues in destabilizing regions, as defined here, belong to
ligand binding sites and vice versa, this overlap is well
above what would be expected by chance (~8%). We find
furthermore, that when destabilizing regions are detected,
they display statistically significant overlap with at least
one known binding site in 77% of proteins examined
here.

Another important finding of our analysis is that the
extent of overlap between destabilizing regions and bind-
ing sites is highly dependent on the type of ligand bound
to these sites. More extensive overlap is observed with
binding sites for small ligands and polysaccharides
whereas the overlap with nucleic acid binding sites is
extremely poor. These differences are rationalized by the
observation that the binding sites for small ligands and
polysaccharides occur mostly in clefts lined with polar res-
idues. Those become partially desolvated, as a result, lead-
ing to unfavorable contributions. In contrast, the nucleic
acid-binding sites often consist of convex surfaces that are
particularly rich in positively charged and polar residues.
The latter are hence optimally solvated in absence of the
bound nucleotides and therefore provide a favorable ener-
getic contribution. But the relationship between destabi-
lizing regions and functional sites cannot be reduced to
geometric features or amino acid composition. For
instance, polysaccharide-binding sites are rich in residue
types that are rare in destabilizing regions but overlap well

with the latter. Likewise, some clefts are not detected as
destabilizing (e.g. in sphericase) whereas flat and convex
regions are occasionally detected as such.

There is little doubt that the occurrence of ligand binding
sites in clefts often makes physical and chemical sense.
Using the definition of clefts in a protein structure to pre-
dict functional sites is however far more challenging. SUR-
FNET is a program that identifies clefts in protein
structures. It was claimed by the authors that the largest
cleft identified by SURFNET contains the protein binding
site in a large majority of cases [18]. Applying SURFNET
to our 63 structures and checking the overlap of the largest
cleft identified by this procedure with the functional sites
defined in our dataset, shows that SURFNET is 'better' at
predicting functional site (average sensitivity of 46% com-
pared to 26% with our approach). However SURFNET
clefts are usually much larger than the functional sites (see
[60]), and therefore tend to include these entirely in addi-
tion to including a large number of 'false positive' resi-
dues. The PPV of the SURFNET method is consequently
much lower (15%) compared to our method (27%). For
the same reason, the overlap noted here with destabilizing
regions may often not be statistically significant (large size
residue patches have a higher probability to overlap with
another patch by chance). It was recently shown [58] that
the poor specificity of SURFNET could be improved by
using it in combination with the conservation-based
method CONSURF [6]. Similarly, complementing SURF-
NET with functional site prediction approaches not based
on conservation, like the one presented here, may prove
useful for cases where not enough homologues are availa-
ble.

The energetic criteria used here to define destabilizing
regions would also need improvements. These criteria cur-
rently rely on standard force fields and approaches, that
suffer from many well documented limitations. The repre-
sentation of electrostatic and solvation effects is far from
optimal, although some of us have recently demonstrated
that the addition of the simple surface area terms to the

Table 4: Overlap between destabilizing regions and binding sites according to ligand type

Ligand type Nu Po Pr Pe Sm Me Li Total

Sig. Overlap 1 (5.7) 8 (6.2) 7 (9.6) 5 (5.7) 19 (13.6) 5 (4.5) 2 (1.7) 47
No. Overlap 9 (4.3) 3 (4.8) 10 (7.4) 5 (4.3) 5 (10.4) 3 (3.5) 1 (1.3) 36

Total 10 11 17 10 24 8 3 83

Contingency table used to perform a Fisher exact test of homogeneity, among different categories of binding sites (based on ligand types), of the 
fraction of statistically significant overlaps (i.e. P-value ≤ 0.05, see Methods for meaning of the P-value) between destabilizing regions and known 
binding sites. Abbreviations used: Nu, nucleic-acid; Po, polysaccharide; Pr, protein; Pe, peptide; Sm, small compound; Me, metal ion; Li, lipid; Sig. 
Overlap, statistically significant overlap; No. Overlap, statistically non-significant or absent overlap. Calculated expected numbers of statistically 
significant overlaps are given between brackets, below the corresponding observed numbers.
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CHARMM potential, as done here, is superior to many of
the more sophisticated continuum electrostatic models
[67]. More importantly, our analysis completely neglects
polypeptide chain entropy contributions to the free
energy in both the folded and unfolded states, and our
model for the unfolded state is extremely crude. Due in
part to these limitations we chose not to consider residues
with very high temperature factors in our calculations, as
the atomic coordinates of those residues are likely to be
inaccurate. However, it is well known that flexible regions
often tend to be involved in recognition. It is therefore not
surprising that our choice not to consider residues with
high temperature factors resulted in the elimination of
several destabilizing regions that show significant overlap
with functional sites (e.g. the TcR-binding site of staphylo-
coccal enterotoxin C2 ([PDB:1uns]).

A further factor that most certainly influenced the results
of our analysis is the incomplete knowledge that we cur-
rently have of the functional sites of proteins on the one
hand, and the lack of consistent annotations for the
known sites on the other. Even one of the best character-
ized proteins, such as hen egg white lysozyme, features a
myriad of binding and functional sites that have not been
annotated and archived in databases. The so-called
'moonlighting' proteins where new binding sites and
activities are discovered long after their first function was
characterised, illustrate well this point [68]. To compen-
sate at least in part for this shortcoming, the biologically
relevant binding sites in the 63 proteins used in our anal-
ysis were manually annotated using all available literature
evidence. The annotated binding sites are freely available
at [53]. Clearly though, much more work is needed in
order to produce both more consistent definitions of
functional sites and to proceed with their annotations.

Despite the current limitations in using energetic criteria
to identify functional sites in proteins, we believe that
methods such as those presented here and future
improved versions, will play an increasingly important
role. Indeed the fact that they do not rely on information
on related proteins, as most other methods presently do
[6,23], should make them particularly useful for assigning
function to proteins with no known relatives, of which a
growing number is being currently discovered (meta-
genomics projects [69]).

Since functional site prediction methods that use infor-
mation on sequences and structures of related proteins
may also suffer from limitations due to the lack of
sequence data, an approach in which such methods are
combined with energetic criteria should help improve
performance, as previously suggested [23]. Of particular
interest are methods that detect spatial clusters of con-
served residues, which were shown to greatly improve the

performance of functional site prediction [6-9]. Further
improvements may be obtained if those methods are
combined with the search of spatial clusters of destabiliz-
ing residues, as done in this study, instead of considering
only individual destabilizing residues [24].

Methods
Contributions of individual residues to protein stability
The contribution of residue i to the folding free energy of
the protein is computed as the difference (ΔΔGi) between
the folding free energy in presence and absence of the con-
sidered amino acid side chain in position i, using the ther-
modynamic cycle shown in Figure 4, as follows:

with  representing the folding free energy of the

protein in the presence of all the amino acids including

that at position i, and  (BB) representing the

folding free energy of the entire protein in absence of the

sidechain at position i. ΔΔGi hence takes into account the

total free energy cost of desolvating in part or in whole the
amino acid itself, as well as the cost of the partial desolva-
tion of neighbouring residues and the vacuum interaction
terms of the considered residue with all surrounding

atoms.  is computed as previously described

[51]:

ΔG folding = G folded - G reference (3)

Where G folded is the protein free energy in the folded state
and G reference the free energy in a reference state, which is
used as a model for the protein unfolded state. The free
energy of the folded state is then expressed as an effective
energy, which is the sum of the following terms [51]:

G folded = E conformation + G solvation (4)

Econformation is the classical conformational energy com-
puted using the CHARMM 22 force field [70] which is
expressed as a sum of pairwise contributions, and uses a
full atom representation. G solvationrepresents the solvation
free energy, computed using an empirical atomic solva-
tion model [71] (see references [36,51] for further
details). In these calculations the electrostatic term is com-
puted using a dielectric constant of 8 and a switching
function operating between 6–7 Å

The free energy of the reference state G reference is calculated
as the sum of the free energy contributions of isolated
amino acids:

ΔΔ Δ ΔG G BB Gi i
folding

i
folding= −( ) (2)

ΔGi
folding

ΔGi
folding

ΔGi
folding
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Where i are the isolated amino acids, modelled by a stand-
ard dipeptide unit with N-acetyl-N'-methylamide back-
bone, and the sum is performed over the sequence of the
protein. As for the folded state, Greference is expressed as a
sum of two terms:

where  and  are the contributions

from conformational and solvation energies, respectively.
Calculation of the two energy terms in Eq. 6 involves com-
puting the Boltzmann averages of the conformational and
solvation energies over all possible side chain conforma-

tions of amino acid i. The same force-field is used as for
the folded state calculations.

Prior to computing the energies in Eqs 4 and 6, hydrogen
positions are added using the HBUILD command in
charmm [72]. Histidine protonation is assigned on the
basis of distance to neighbouring residues. The resulting
structures are relaxed by applying 50 steps of steepest
descent energy minimisation. The biologically meaning-
ful quaternary structures are obtained with PQS [73], and
manually verified with information from the PDB file and
from the literature whenever available.

Defining clusters of destabilizing residues
The contribution of individual residues to the protein
folding free energy is computed as detailed above and the
values are ranked in ascending order starting with the
most unfavorable contribution. Destabilizing residues are
defined as the 28% residues with largest unfavorable con-
tributions to stability in each protein, over the total
ranked list of residues. A subset of "highly destabilizing"
residues is defined as the 5% of the residues with the most
destabilizing contributions. The precise values for these

G Greference
i
reference

i

= ∑ (5)

G E Gi
reference

i
conformation

i
solvation= + (6)

Ei
conformation Gi

solvation

Destabilizing regions detection procedureFigure 5
Destabilizing regions detection procedure. (a) cluster-
ing of highly destabilizing residues (red) that are less than 9.0 
Å apart. (b) addition of destabilizing residues (orange) that 
are within 6.0 Å of a destabilizing residue already present in a 
destabilizing region. (c) Final result. Only the destabilizing 
regions larger than 4 residues are considered. In (a) and (b) 
are represented residues (cyan), destabilizing or not, which 
are enclosed in a sphere centered on a pair of destabilizing 
residues and therefore added to the destabilizing region (see 
text for more details).

Thermodynamic cycle for calculating the contribution of a side-chain to the protein folding free energyFigure 4
Thermodynamic cycle for calculating the contribu-
tion of a side-chain to the protein folding free energy. 
ΔGfolding is the folding free energy of the protein in the pres-
ence of all amino acids including the one at position i. 

 (BB) is the folding free energy of the protein in the 

absence of the side chain at position i. ΔGw-solv(SC) is the free 
energy cost of introducing the side chain of residue i into the 
water solvent. ΔGfp(SC) is the free energy cost of introducing 
the same side chain into the folded protein structure. 
ΔGfp(SC) includes the energy of interaction of the side chain 
with the surrounding residues in the protein structure, as 
well as the cost of burying the atoms of both the side chain 
and the surrounding protein structure.

ΔGi
folding
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two thresholds were derived, as described in section on
parameter fitting (below).

Destabilizing regions are detected using a 2-steps dis-
tance-based spatial clustering procedure illustrated at Fig-
ure 5 with pdb entry 1c7k. Each highly destabilizing
residue is the seed of a destabilizing region. The highly
destabilizing residues are clustered if they are less than 9.0
Å apart. Then, any destabilizing residue is added to a clus-
ter if it is within 6.0 Å of a destabilizing residue already
present in the cluster. In addition, when destabilizing res-
idues are paired, a sphere, whose center is the center-of-
mass of the pair and whose diameter is 75% of the dis-
tance between the 2 residues, is considered; any residue
enclosed in that sphere, whether destabilizing or not, is
added to the corresponding destabilizing region. Finally,
destabilizing regions with less than 4 residues are dis-
carded. This represents the size of the smallest binding site
in the dataset.

The centre-of-mass of the residue side chain, excluding Cβ,
is used in the calculation of all distances, with the excep-
tion of Gly and Ala, where the Cα and Cβ coordinates are
used, respectively. This approach is inspired by a method
used to identify clusters of conserved residues [9].

The software DESITE for identifying destabilizing regions
from the atomic coordinates is available upon request
from the authors. A license to the CHARMM package is
required.

Parameter adjustments
Our procedure has a total of 4 adjustable parameters.
These are the fractions of residues with unfavorable con-
tributions to stability used to define the destabilizing and
highly destabilizing residues, and the distance thresholds
used to group highly destabilizing residues and destabiliz-
ing residues into the same destabilizing region.

The values of these parameters were obtained as follows.
We first defined "reasonable" ranges of values according
to the physical meaning of the parameters (e.g. distance
parameters cannot be too large or the destabilizing
regions would consist of the entire protein). We used the
following "acceptable" ranges: the proportion of destabi-
lizing residues is varied between 6 and 30%, whereas that
of highly destabilizing residues is varied between 1 and
10%, and the distance for grouping 2 highly destabilizing
residues is varied between 8 and 12 Å whereas that for
adding a destabilizing residue to a cluster is varied
between 5 and 10 Å. Values were changed in intervals of 1
(Å or %) within these ranges. Destabilizing regions
obtained with all possible values combinations (with log-
ical restrictions, i. e. the proportion of highly destabilizing
residues must be smaller than that of destabilizing resi-

dues) were compared with known binding sites in 7 pro-
teins selected as described in the section on Protein
datasets. The pdb identifiers of the apo-structures of these
proteins used for parametrisation are 1bn6, 1c5h, 1e5m,
1glo, 1hl4, 1ogh and 1ojx. We selected the combination
of values that yielded the best overall prediction accuracy
with regard to the known functional sites in these pro-
teins.

Filtering criteria
Not all identified clusters of destabilizing residues were
considered for further analysis. Positions of atoms having
high temperature factors (B factors) are considered as
inaccurate, and could yield destabilizing contributions
due their inaccuracies. Regions where more than half of
the destabilizing residues either have a high average B fac-
tor or are located within 5 Å of such residues are therefore
not analyzed. The average B factor of a residue is consid-
ered as "high" if it is larger than the average B factors taken
over all residues in the protein plus two standard devia-
tions. Regions where the majority of the residues have
alternate conformations are also discarded because they
may yield destabilizing contributions to be due to incom-
patible combinations of the alternate conformations. In
homo multimeric proteins a destabilizing region is dis-
carded if it is not detected in all subunits.

Protein datasets
From the February 2005 release of the PDB [44], we
selected the subset of x-ray structures released after
November 3rd 1999, with a resolution better than 2.4 Å,
a R-value better than 0.20, no residues with missing coor-
dinates except at the termini, and a SITE record in the pdb
file. To eliminate structures with bound ligands (potential
holo-forms), we filtered out entries with nucleic-acid
chains or small ligands (HET-groups), and those that were
neither protein monomers or homomultimers. Applying
these drastic filters, and removing redundancy, using PIS-
CES [74] with a 25% sequence identity cutoff, resulted in
a set of only 7 structures. Those were used as our learning
set to derive the values of the 4 adjustable parameters as
described above.

To build our test set of apo-structures, we relaxed the
above-mentioned filter on HET-groups to accept struc-
tures with HET-groups of 5 atoms or less, but verifying in
all cases that these were not the biologically relevant lig-
ands. To guarantee we could compare the predictions cal-
culated on these apo-structures with the true functional
sites for all proteins in the dataset, we excluded the pro-
teins for which we did not find information on function-
ally important residues from any of the sources described
in the section "definition of known binding sites" (see
below).
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Due to the SITE record filter, this dataset contained mostly
enzymes. In order to include non-enzymes as well, we
expanded the set by releasing the SITE record filter, while
allowing only non-enzymatic proteins to be added. These
structures were also filtered to remove entries with lig-
ands, but included those for which a holo-structure,
another structure of the same protein with its biologically
relevant ligand, was also available (this was done using
the RELATED record of the pdb file). The holo-structures
were used to aid the functional site definition.

Redundancy was removed with a 25% sequence identity
cutoff [74]. The final test set contains 63 proteins, com-
prising 35 enzymatic and 28 non-enzymatic proteins. In
contrast, the learning set contains 7 proteins, all of which
are enzymes.

Definition of known binding sites
Known binding sites are defined on the basis of structural
and biochemical information. When one or several holo-
structures of the protein are available, we define a residue
as ligand binding when at least two of its atoms are within
a 6 Å distance from a biologically relevant ligand in the
(ensemble of) holo-structures, ignoring hydrogens. To this
the contents of the SITE record is added, manually check-
ing that it contains biologically relevant information. The
binding site definition is complemented by site-directed
mutagenesis and chemical modification data, whenever
relevant for the function of the protein, obtained by man-
ually searching the available literature. If the structure of a
protein in complex with a biologically relevant ligand is
not available, the functional site is defined from literature
only. We consider information from close homologs
when there is evidence that the function is conserved. Out
of the 63 proteins in the validation dataset, 49 have a
binding site based on structural information only, i.e.,
where literature search did not add any residue, 10 have a
binding site derived from a combination of literature
searches and presence of close homolog complexes in the
pdb, and for 7 proteins the binding site definition is based
on literature search only. For these 7 proteins the known
binding site does not form a continuous surface patch.

Protein-bound metal ions can have no other function
than to stabilise the protein structure, or they can be
directly implicated in the molecular function, as is the
case for 8 proteins in the dataset. Metal-binding sites are
considered only if the metal is known to be important for
function, and if in addition it is absent from the apo-struc-
ture used in the energy calculations.

The descriptions of the known binding sites, with the lit-
erature citations are available at [53].

Evaluating the overlap between destabilizing regions and 
functional sites
To evaluate the overlap between destabilizing regions and
known binding sites, the residues in each site (and region)
are compared and the number of residues in common is
computed. The number of overlapping residues expected
by chance for each binding site – destabilizing region pair
is computed using the hypergeometric distribution and
from it a statistical significance value (P-value) is com-
puted for the observed overlap, as implemented in the
software Compare-Classes of the RSA-tools package [75].
When multiple destabilizing regions are detected in a
given protein, they are grouped together as a single one for
computing the P-value. For a destabilizing region and a
functional site containing a and b residues, respectively,
the probability of finding exactly c common residues
between them is

where  is the binomial coefficient. The probability of

observing at least c residues in common by chance is given
by

The quality of the overlap is also measured with the Sen-
sitivity and Positive Predictive Value (PPV) :

Where TP (true positives) is the number of residues cor-
rectly predicted as part of the binding site; FP (false posi-
tives) is the number of residues incorrectly predicted as
part of the binding site, and FN (false negatives) is the
number of residues incorrectly predicted as not part of the
binding site.

Sensitivity is the proportion of residues in a known bind-
ing site that are found in the predicted sites (i.e. the desta-
bilizing regions), and the PPV is the proportion of
predicted sites residues that are part of a known binding
site.
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