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Abstract
Background: We examine the accuracy of enzyme catalytic residue predictions from a network
representation of protein structure. In this model, amino acid α-carbons specify vertices within a
graph and edges connect vertices that are proximal in structure. Closeness centrality, which has
shown promise in previous investigations, is used to identify important positions within the
network. Closeness centrality, a global measure of network centrality, is calculated as the
reciprocal of the average distance between vertex i and all other vertices.

Results: We benchmark the approach against 283 structurally unique proteins within the Catalytic
Site Atlas. Our results, which are inline with previous investigations of smaller datasets, indicate
closeness centrality predictions are statistically significant. However, unlike previous approaches,
we specifically focus on residues with the very best scores. Over the top five closeness centrality
scores, we observe an average true to false positive rate ratio of 6.8 to 1. As demonstrated
previously, adding a solvent accessibility filter significantly improves predictive power; the average
ratio is increased to 15.3 to 1. We also demonstrate (for the first time) that filtering the predictions
by residue identity improves the results even more than accessibility filtering. Here, we simply
eliminate residues with physiochemical properties unlikely to be compatible with catalytic
requirements from consideration. Residue identity filtering improves the average true to false
positive rate ratio to 26.3 to 1. Combining the two filters together has little affect on the results.
Calculated p-values for the three prediction schemes range from 2.7E-9 to less than 8.8E-134.
Finally, the sensitivity of the predictions to structure choice and slight perturbations is examined.

Conclusion: Our results resolutely confirm that closeness centrality is a viable prediction scheme
whose predictions are statistically significant. Simple filtering schemes substantially improve the
method's predicted power. Moreover, no clear effect on performance is observed when comparing
ligated and unligated structures. Similarly, the CC prediction results are robust to slight structural
perturbations from molecular dynamics simulation.
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Background
The accurate and robust prediction of protein functional
sites from sequence and/or structure remains an open
problem in bioinformatics [1]. Despite the limitations of
current methodologies, several sequence and structure-
based approaches have recently become popular [2]. Most
of these approaches rely on an underlying multiple
sequence alignment and attempt to uncover some type of
feature conservation therein [3] (i.e. residues that are con-
served across the alignment [4-6]). Arguably, evolutionary
tracing has become the most widely used method for
computational prediction of protein functional sites [7].
The Evolutionary trace (ET) approach begins with an
alignment and corresponding phylogeny. The method
searches for all alignment positions that recapitulate the
overall phylogeny. While ET is fundamentally a sequence-
based scheme, the standard application of the approach
uses structural clusters of trace residues to identify func-
tional regions [8-10]. Several other related methods that
rely on an underlying alignment plus representative struc-
ture have proven useful as well [11-14]. Conversely, we
have introduced a phylogenetic motif-based method that
is similar in spirit to ET, although it is specifically designed
to rely solely on sequence information [15-17].

The literature also contains a host of functional site pre-
diction strategies that are explicitly designed to not rely on
a phylogeny [18]. These approaches are useful when too
few sequences are available to generate a representative
description of familial diversity. While their theoretical
foundations vary considerably, most rely solely on struc-
ture or a structure + alignment combination. For example,
Gutteridge et al. recently developed a neural network
approach to predict catalytic sites [19]. Catalytic sites are
defined by residues directly involved in the enzyme-medi-
ated reaction mechanism, which generally constitute a
subset of all functional residues. The neural network input
of Gutteridge et al. includes both structural and alignment
descriptors, and is able to correctly predict the active site
in >69% of the cases examined. The ability to rigorously
benchmark the approach is based on comprehensive data-
basing and exhaustive manual curation of catalytic resi-
dues from the literature [20] by the same group. This tour
de force has led to the Catalytic Site Atlas (CSA) [21],
which contains approximately 600 different proteins with
experimentally validated catalytic residues.

Other common catalytic site prediction methods are
based on Poisson-Boltzmann continuum electrostatic
theory [22]. Elcock has observed that functional residues
tend to have increased electrostatic strain energy [23],
meaning that stabilization occurs on mutation. While the
approach utilizes sophisticated Poisson-Boltzmann con-
tinuum theory, the underlying rationale is based on
straightforward evolutionary arguments. The naïve

description of protein evolution is that nature solely opti-
mizes structural stability at each residue. However, cata-
lytic and other important residues have functional
constraints imposed upon them, meaning that while
mutation might be stabilizing, it can occur at the expense
of functional proficiency. The detangling of stability and
functional evolutionary pressures is examined more thor-
oughly by Cheng et al. using all-atom protein design [24].
Analogous to the electrostatic strain energy approach, the
THEMATICS approach uses Poisson-Boltzmann-based
pKa calculations to look for residue titration curves that
do not follow Henderson-Hasselbalch [25]. The method
looks for titration curves of partially charged residues that
are flat over a wide pH range. Similarly, we have demon-
strated that a large pKa shift from the null model (aque-
ous) value can be indicative of catalytic residues [26,27].
However, the prediction accuracy of this approach is less-
ened because many structurally important residues (i.e.
residues involved in a salt bridge) also have significant
pKa shifts.

Network models have also been used with success in pre-
dicting protein functional and/or catalytic residues.
Instead of representing protein structures as a Cartesian
collection of atoms, network models recast protein struc-
tures as topological graphs [28-31]. The most common of
these methods are based on protein structure contact
maps, where each vertex of the graph represents an α-car-
bon and edges connect vertices within some distance cut-
off (generally 6–9 Å). Once the graph is complete, a
variety of topological metrics can be used to predict func-
tional residues from it, including: centrality [32,33],
valency [32] and sub-graph conservation [34]. Despite
growing consensus concerning the utility of these meth-
ods, a robust assessment of their prediction accuracy
remains to be completed. Amitai et al. [32], Thibert et al.
[33] and del Sol et al. [35] examine the ability of residue
centrality to predict catalytic and/or functional sites
within datasets of 178, 128 and 46 proteins, respectively.
The results from these studies are encouraging. Moreover,
they show that combining centrality within other metrics
improves predictive power. For example, Amitai et al.
demonstrates that combining centrality with solvent
accessibility substantially improves accuracy, whereas
both Amitai et al. and Thibert et al. demonstrate that
including residue conservation improves results.

In this report, we investigate the accuracy and statistical
significance of closeness centrality (CC) functional resi-
due predictions, which has previously been shown to be
the best of several different network centrality scores (i.e.
valency, betweenness, etc.) [32,33]. Primarily, our investi-
gation is based on SCOP [36] superfamily-filtered protein
chains (which represents 283 unique SCOP super-
families) from the CSA. Based on observed accuracies, CC
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is demonstrated to be a viable prediction scheme. Our
results are inline with previous investigations, but are
more significant due to dataset size and composition
since we control for structural redundancy. A second dis-
tinction of this work is that instead of focusing on the
entire range of true to false positive rates, as done by pre-
vious investigations, we concentrate on the very best CC
scores. By focusing only on the top five scoring residues,
we are able to evaluate the ability of the model to provide
insight that provides a reasonable number of experimen-
tally testable predictions. In all cases, our predictions cor-
respond to false positive rates below 1.6%. The
performance of the method is improved substantially by
considering only residues that are not completely inacces-
sible to solvent. We further demonstrate that filtering the
predictions based solely on amino acid identity substan-
tially improves predictive power even more than filtering
by solvent accessibility.

Theoretical background
Throughout this report, the vertices within each graph cor-
respond to α-carbons. Edges connect two α-carbons
within 8.5 Å of each other. While slightly less complicated
than methods based on all-atom pair distances, the sim-
pler model results in a noticeable computational speedup
that significant when analyzing a dataset the size of ours.
A cursory comparison of the two networks indicates that
the resultant predictions are qualitatively similar (results
not shown). The common threshold of 8.5 Å is used
because it best approximates the average sidechain size.
Closeness centrality (CC), a global centrality metric, is
used to determine how critical each vertex (residue) is in
maintaining the small-world behavior of the graph. CC is
calculated by:

where Np is the total number of vertices in the graph and
Lij is the shortest path (geodesic distance) between vertices
i and j. The shortest path is simply the minimum of all
possible paths between residues i and j. As normally done
in protein structure networks, edges are not weighted,
making the shortest path simply an integer count of the
number of edges separating i and j. It should be noted that
Np (a constant within each protein) has no effect on our
observed results since we are only using CC to rank the
residues, meaning the inverse of shortest path sum solely
establishes which residues are ultimately predicted. Nev-
ertheless, we employ CC here to be consistent with previ-
ous investigations.

Results and discussion
Probability density functions
Mapping CC to structure clearly indicates that residues
with high centralities are most likely to occur within the
protein core. As is the case in the three examples shown in
Fig. 1, catalytic residues frequently do not correspond to
the most central residues. Nevertheless, Fig. 2a indicates
that there is clear discrimination between the CC proba-
bility density functions (PDFs) of catalytic and noncata-
lytic residues. The data plotted within in Fig. 2 is taken
from 283 structurally unique protein chains; meaning no
two proteins from a single SCOP superfamily are
included. This translates to 96,280 noncatalytic residues
and 844 catalytic residues. The PDFs describing datasets
parsed by SCOP family (423 proteins) and 80% pairwise
sequence identity (568 proteins) are virtually identical to
those shown. The average CC values for the catalytic and
noncatalytic residues are 0.19 and 0.16, respectively.
While Fig. 2a suggests that the most extreme CC scores are
not likely to be catalytic, catalytic residues are, on average,
more central than noncatalytic residues. A two-sample t-
test resolutely confirms that the discrimination between
the means is statistically significant (t = 2.0; p = 1.6E-73;
sample size = 7,372). Nevertheless, there is appreciable
overlap (59.5%) between the two PDFs.

Going further, Fig. 2b compares the PDFs of residues from
three accessibility levels to the catalytic residue PDF. The
three accessibility levels roughly correspond to the third
most buried, middle third and third most exposed resi-
dues within the parsed dataset. At each accessibility level,
the catalytic residue PDF has a statistically significant
increase within its mean value (see Table 1). As discussed
above, this result is slightly counterintuitive because the
most buried (and thus, most central) residues frequently
are not catalytic. Rather, this result demonstrates that cat-
alytic residues are, on average, more central than the top
third most buried residues. Again, this result confirms the
earlier observations of Amitai. Yet, caution should be
exercised when drawing far-reaching conclusions based
on this analysis due to the considerable overlap between
the distributions. This is especially true in the case of the
buried residues, which has 85% overlap with the catalytic
PDF.

Assessing prediction accuracy of top closeness centrality 
scores
As stated above, several investigations have examined the
prediction accuracy of global centrality metrics; however,
none of the previous investigations are on the scale of this
report. Nor, have any rigorously controlled for structural
redundancy as we do here. Of the previous reports, the
largest dataset investigated is 178 proteins [32], which
(unlike ours) contained redundant structural folds. Previ-
ous investigations use Receiver Operating Characteristic

CCi =
∑
N

L
p

ij
j

(1)
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(ROC) plots to examine the balance between true and
false positive rates over the entire relationship continuum.
A false positive rate greater than 9% is commonly consid-
ered; Thibert et al. routinely consider false positive rates
~20%. In this report, we only consider the top N predic-
tions, where N equals 1–5. From a pure prediction point
of view, one wants to simultaneously balance sensitivity
and specificity. However, when considering experimental
realities, we believe our approach has the more relevance
because it is less likely to result in huge numbers of false
positives that are intractable to test within the lab. The
corresponding false positive rate of our predictions is
always below 1.6%. Over the entire curve, our ROC plots
are virtually superimposable to those within Thibert et al.

(results not shown). Unfortunately, a direct comparison
to the results within Amitai et al. is impossible since they
only provide ROC plots for an integrated sequence con-
servation/centrality approach. An example ROC plot is
provided in Additional file 1.

On average, there are ~5 catalytic residues per protein
within the CSA. We use this value as an appropriate upper
bound for the number of predictions per protein to con-
sider. The prediction number threshold, Tnp, is defined in
order to limit the number of catalytic predictions. At Tnp =
1, only the site with the top CC score is put forth as a pre-
diction; at Tnp = 2, the top two are put forth, and so on.
However, the actual number of predictions is routinely
greater than Tnp due to ties. Consequently, Tnp is scaled
between one and five, and the corresponding average
number of predictions per protein is 1.3, 2.4, 3.6, 4.6 and
5.7. The circles in Fig. 3a plot the accuracy (accuracy =
number of correct catalytic residue predictions/total
number of catalytic residue predictions) against the aver-
age number of predictions per protein for each of the
three datasets investigated here. The accuracy deviates very
little over the full range of Tnp; the average and standard
deviation are 5.7% and 0.4%, respectively. When using
the common definition of accuracy, (true positives + true
negatives)/total number residues, the accuracy corre-
sponds to 98.2%. However, the latter metric provides lit-
tle useful information as the number of true negatives
skews it so heavily. (Note: unless otherwise specified, all
reported statistics are from the SCOP superfamily parsed
dataset.)

The accuracies described above are from a collapsed data-
set of all residues contained within the dataset. Alter-
nately, one may wish to evaluate each protein
independently and then average the accuracy values over
the total number of proteins contained with the dataset.
In each case, only the top Tnp values per protein are con-
sidered, the sole difference is how the final average is
determined. Below, statistical significance of the methods
is demonstrated by calculating p-values from the bino-
mial distribution, which assume independence of trials.
However, the assumption of independence is clearly
incorrect as residues are connected via the protein chain.
Since this assumption is equally wrong in both cases, we
chose to primarily focus on the simpler method of averag-
ing across the collapsed dataset. Nevertheless, Table 2 also
lists accuracies calculated on the per protein basis. In all
cases, the two values are qualitatively similar; however,
per protein values are somewhat reduced. Nevertheless,
they are still better than the random expectation. Curi-
ously, there is a large variability across the per protein dis-
tribution; the standard deviation is ~10%. The two
accuracy calculations are statistically equivalent when
using the standard deviation of the per protein values as

Closeness centrality is mapped to structure for: (a) P. pur-purogenum Acetylxylan esterase (1BS9), (b) e. coli Endonucle-ase III (2ABK) and (c) C. papaya papain (9PAP)Figure 1
Closeness centrality is mapped to structure for: (a) P. pur-
purogenum Acetylxylan esterase (1BS9), (b) e. coli Endonucle-
ase III (2ABK) and (c) C. papaya papain (9PAP). In all three 
cases, the most central residues occur near the center of the 
structure, which do not correspond to the catalytic residues. 
In each column, red indicates the most central residues; 
whereas blue indicates the least. In the column on the left, 
catalytic residues are shown in spacefill. In the center col-
umn, all atoms are displayed; in the column on the right, the 
structure has been sliced in half to highlight the most central 
residues within the hydrophobic core.
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an error estimate; this result is maintained throughout
this report. Moreover, the ratio of the collapsed to per pro-
tein accuracies is also relatively consistent.

As stated above, p-values are calculated to test the statisti-
cal significance of the hypothesis that CC predictions are
better than random (Table 2a). The binomial distribution
is used since there are a finite number of trials and the out-
come of each is binary. Eq. 2 provides the formula for cal-
culating the p-values.

In Eq. 2, n is equal to the number of predictions put forth,
k (in the first iteration of the sum) is equal to the number
of correct predictions, and p represents the random (null)
probability. Each step of the sum is calculated from the
binomial distribution (binomdist) function within Micro-
soft Excel. Notice that the p-values decrease monotoni-
cally (see Additional file 2), despite that the fact that the
relative accuracies are not monotonic. In fact, as it is dem-
onstrated below, relative accuracies generally decrease as a
function of Tnp. Nevertheless, p-values indicate that the
results become more statistically significant at larger Tnp
values. This apparent contradiction highlights the true
meaning of a p-value. A p-value is the statistical likelihood
of the null hypothesis being true. It is not an accuracy of
the method. The smaller the p-value is, the more signifi-
cant the observed results are. However, statistical signifi-
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(a) Probability density function of the closeness centrality scores for all catalytic (red) and all noncatalytic (blue) residuesFigure 2
(a) Probability density function of the closeness centrality scores for all catalytic (red) and all noncatalytic (blue) residues. The 
distributions are scaled such that the integral of each is equal to one. The solid line trend line is simply a running average meant 
to help guide the eye. The average values for the two distributions are 0.16 and 0.19, which is a statistically significant distinc-
tion (for a two-sample t-test: t = 2.0; p = 1.6E-73; sample size = 7,373). The overlap of the two distributions across the histo-
gram of sampled data is 59.5%. (b) Probability density functions for all catalytic sites (red line) compared to the distributions of 
all at three different solvent accessibility levels. Each distribution is scaled such that its integral is one. Statistics describing the 
distribution comparisons are provided in Table 1.

Table 1: Comparison of accessibility to catalytic residue distributions.

Distribution1 Average Std. Dev. Number residues t-value2 p-value Percent overlap3

Catalytic 0.19 0.03 844 --- --- ---
Buried 0.18 0.05 6,310 2.0 1.5E-21 84.9

Intermediate 0.16 0.05 5,818 2.0 5.6E-58 70.4
Exposed 0.15 0.05 6,000 2.0 1.2E-101 58.7

1 Accessibility is coarse-grained into three levels, which roughly correspond to the third most buried, middle third and third least buried (exposed) 
residues. 2 Comparison of each accessibility-filtered PDF to the catalytic PDF; t-value and p-values are from a two-sample T-test comparing each of 
the accessibility PDFs to the catalytic residue PDF. 3 Percent overlap compares each accessibility level distribution to the catalytic residue 
distribution, which is calculated over the histogram of sampled data.
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cance is intimately related to the number of observations.
The more observations of a given difference between an
observed and null probability, the more significant it is.
The number of predictions put forth put forth at each level
increases substantially, whereas the accuracy is only
slightly diminished, which is why p-values monotonically
decrease as a function Tnp.

The improvement is plotted in Fig. 3b in order to normal-
ize the observed percentages by the random expectation.
Improvement is defined as the ratio of observed accuracy
to random expectation. The random expectation is simply
calculated as the percentage of catalytic to all sites within
the dataset, meaning each site has an equal chance of
being catalytic. While not overwhelming, the observed
accuracies (~6%) are substantially greater than the null
model (0.9%). The average improvement over Tnp = 1–5 is
6.4% (standard deviation = 0.4%). The false positive
range in Fig. 3a–b is 0.4–1.6%. The false positive rate is
calculated as the number of incorrect predictions divided
by the total number of noncatalytic residues. True positive
rates (number correct divided by the total number of cat-
alytic residues) range from 2.1–11.0%.

While the circles in Fig 3a correspond to overall accura-
cies, the squares describe the number of proteins with at
least one correct prediction per protein. The near linear
increase is trivially expected since the number of proteins
with at least one correct should increase with the total
number of predictions. However, after normalizing for
the random expectation in Fig. 3b, the improvement indi-
cates that the rate of new proteins with at least one correct

prediction generally decreases as a function of Tnp. Here,
the random expectation describes the percentage of pro-
teins with at least one correct again assuming that all sites
are equally probable to be catalytic.

Fig. 4a tabulates the number of proteins observed with a
specific number of correct catalytic residue predictions at
Tnp = 5. By far, the most common incidence is zero correct
(76%), which corresponds to every prediction within a
given protein being incorrect. Approximately 17% of the
predictions from the SCOP superfamily parsed dataset
have one correct and 7% have two correct. Less than 1%
has three correct, and none have four or five correct.
Again, there is good agreement between the three datasets,
yet (as before) there is a slight accuracy reduction within
the smaller datasets.

Throughout this report, we use citrate synthase as an
example to discuss the context of the CC results. Citrate
synthase is chosen because it nicely demonstrates how the
two filters discussed below improve prediction accuracy.
Moreover, citrate synthase is an important enzyme in aer-
obic metabolism; it regulates the pace of the Krebs cycle.
The enzyme catalyzes the condensation between the two
acetyl carbons from acetyl-CoA and oxaloacetate to form
citrate [38]. The reaction is energetically driven by hydrol-
ysis of the thioester bond, which is strongly exothermic,
within acetyl-CoA. None of the predictions at Tnp = 5 cor-
respond to catalytic residues. While we are only narrowly
using catalytic residues to benchmark the approach, this
lack of sensitivity should not be interpreted as a complete
failure to provide useful information. Similar to the exam-

(a) The accuracy for all predictions (circles) and the percentage of PDBs with one correct prediction (squares) is plotted for the three datasets investigatedFigure 3
(a) The accuracy for all predictions (circles) and the percentage of PDBs with one correct prediction (squares) is plotted for 
the three datasets investigated. (b) Improvement normalizes the observed accuracies in (a) by the random expectation.
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ples shown in Fig. 1, the five most central residues
(Tyr185, Ala186, Phe333, Met335 and Gly336, using
1AJ8 numbering) are all buried deep with the core of the
protein; in fact, four are completely inaccessible to sol-
vent. Despite their location within the core, Tyr185 and
Phe333 are both clearly important as they structurally
contact the catalytic Asp312. Moreover, Phe333 is also
contacting the citrate substrate. While all non-protein
(HETERO) groups have been stripped from our inputs to
make this large-scale analysis tractable, it is evocative that
the model is picking residues directly interacting with the
substrate, even if they are not catalytic per se. Below it is
demonstrated that filtering CC predictions by residue
accessibility and/or residue identity substantially
improves citrate synthase catalytic residue prediction
accuracy.

Improving prediction accuracy by excluding the most 
buried residues
Straightforward physical intuition suggests that the most
buried residues within the protein are likely to have the
highest CC values. Fig. 1 clearly demonstrates this expec-
tation to be correct. However, conventional wisdom also

states that most catalytic residues are (at least partially)
exposed to solvent [20]. For example, it is very common
to find catalytic residues at the bottom of an active residue
cleft where they are partially obscured from solvent. This is
because some exposure to solvent is important for recog-
nition by the incoming substrate. Moreover, water mole-
cules are frequently utilized along the reaction coordinate.
As such, it makes sense to filter residue completely inac-
cessible from solvent from further consideration.

As a first step toward improving CC catalytic residue pre-
dictions using solvent accessibility, we begin by asking the
question, "Are the solvent accessibility distributions of cata-
lytic and noncatalytic residues significantly different?" Addi-
tional file 3 clearly shows that the two distributions are
very similar. This result justifies the approach because it
demonstrates that CC does not simply recapitulate sol-
vent accessibility. Put in other words, CC provides infor-
mation orthogonal to accessibility. This point is further
demonstrated in Additional file 4 that plots accessibility
vs. CC for catalytic and noncatalytic residues. Similar to
the value reported within Amitai et al. [32], the overall
correlation between solvent accessibility and CC is low (R

Table 2: Evaluation of catalytic site predictions.1

Avg.#/PDB Total accuracy2 Per PDB accuracy3 p-value4 TP & FP rate5 TP:FP ratio 1 correct per PDB6 1 correct 
expect7

(a.) Raw CC values (no filter)
1.3 6.0 2.7 (10.8) 2.7E-09 2.1/0.4 6.0 7.6 1.1
2.4 6.8 4.2 (11.6) 2.8E-22 4.9/0.7 7.2 15.0 2.0
3.6 6.5 4.5 (10.6) 2.4E-30 7.0/1.0 6.9 19.9 3.1
4.6 6.3 4.7 (10.0) 2.4E-37 8.8/1.3 6.9 23.4 3.9
5.7 6.3 4.9 (9.6) 9.4E-47 11.0/1.6 6.9 27.6 4.8

(b.) Solvent accessibility filter
1.1 14.2 7.5 (17.4) 2.8E-42 5.3/0.3 18.7 15.9 1.0
2.2 13.0 9.2 (16.8) 7.5E-72 9.7/0.6 16.9 25.4 1.9
3.3 11.1 8.7 (14.7) 6.8E-82 12.2/0.9 14.2 29.3 2.9
4.4 10.8 8.9 (13.2) 4.5E-103 15.8/1.2 13.7 36.7 3.9
5.4 10.4 8.9 (12.4) 2.7E-120 4 18.8/1.4 13.2 41.3 4.8

(c.) Residue identify filter
1.1 22.4 11.3 (21.0) 3.8E-83 8.3/0.3 32.6 23.0 1.0
2.2 19.6 13.5 (19.8) 8.8E-134 14.5/0.5 27.6 35.7 1.9
3.2 17.9 13.8 (18.2) 0.0 19.2/0.8 24.7 42.8 2.8
4.3 17.6 14.3 (17.0) 0.0 25.0/1.0 24.1 50.5 3.7
5.2 16.5 13.9 (156.3) 0.0 29.3/1.3 22.4 56.2 4.7

(d.) Combination filter (solvent accessibility + resodue identify)
1.1 25.2 12.9 (21.8) 0.0 18.6/0.5 39.0 26.1 1.0
2.1 20.7 14.4 (20.7) 0.0 31.0/1.0 30.8 36.7 1.9
3.1 17.9 13.5 (17.1) 0.0 39.9/1.5 26.2 44.2 2.7
4.1 15.9 12.8 (14.6) 0.0 45.4/2.1 21.8 49.8 3.6
5.2 13.9 11.7 (13.1) 0.0 50.0/2.7 18.7 53.0 4.6

1 Statistics describing the accuracy of the accessibility-filtered prediction on the SCOP superfamily dataset. 2 Accuracy is defined as the percentage of 
correct catalytic residue predictions out of the total number of predictions for the entire collapsed dataset. In all cases, the random expectation is 
0.9%. 3 Average value (and standard deviation) of accuracy calculated on a per protein basis. 4 The probability that the null hypothesis is correct 
calculated from the binomial distribution. 5 The true positive rate is the percent correct of the total number of catalytic residues within the CSA; 
similarly, the false positive rate is the percent incorrect predictions of the total number of noncatalytic residues. 6 The percent of proteins with at 
least one correct prediction. 7 The expected percent of proteins with at least one correct assuming a random model.
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= -0.28). Finally, we use mutual information (MI) to
quantify the amount of (in)dependence between the two
metrics. The MI between solvent accessibility and CC is
0.011; a value of zero indicates complete independence.
Consequently, it makes physical sense to combine the two
metrics. This would not be the case if closeness centrality
simply reflected solvent accessibility.

We introduce the solvent accessibility threshold, Tsa, to fil-
ter out residues with low solvent accessibilities. All resi-
dues with residue solvent accessibility < Tsa are a priori
excluded as catalytic residue predictions. Additional file 5
shows two example plots of how accessibility filtering
improves prediction accuracy. In all cases, any amount of
accessibility filtering significantly increases the prediction
accuracies. In the Tnp = 2 example, the maximal relative
accuracy occurs at Tsa = 8 Å2, which corresponds to a pre-
diction accuracy of 13.1%. The associated false and true
positive rates are 0.6% and 9.8%, respectively. When Tnp =
5, the maximal accuracy (10.4%) occurs at Tsa = 9 Å2. The
corresponding false positive rate is 1.4%, and the true pos-
itive rate is 18.8%. One might argue that the performance
improvement shown here is simply a matter of opening a
free parameter with no transferability. In order to test
parameter transferability, the parsed dataset was ran-
domly divided into two halves, and the same analysis was
performed on each. The resulting ideal thresholds are very
close (± 1.0 Å2) to each other and to the values for whole
dataset. This result confirms the transferability of the iden-
tified Tsa values. Using a fixed Tsa = 9.0 Å2, which is the
most common best value observed, Table 2b tabulates the

accuracy of the approach at each Tnp. In all cases, the val-
ues are greater than the corresponding unfiltered results.
Once more, the values from the collapsed and per protein
datasets are similar, especially when considering the
standard deviation within the per protein values as an
error estimate.

Fig. 4b plots the percentage of PDBs with 0–5 correct pre-
dictions (Tsa = 8 Å2), which further demonstrates that the
solvent accessibility filter improves accuracy. Compared
to the unfiltered predictions, there are fewer proteins with
zero correct predictions, and more with one or two cor-
rect. In the parsed dataset, the improvement for one, two,
three and four correct is 12.4%, 3.5%, 0.4% and 0.7%,
respectively. In all cases, the p-value for the accessibility-
filtered predictions is lower than the corresponding unfil-
tered results (Additional file 2). In fact, in spite of a global
reduction in the number of predictions, the p-value of the
accessibility-filtered results is lowered by 33 to 73 orders
of magnitude.

As before, we briefly discuss the context of the predictions
within the citrate synthase example. Here, the improve-
ment within the catalytic residue predictions is stark. Cit-
rate synthase has three catalytic residues annotated within
the CSA. These residues (His223, His262 and Asp312) are
structurally proximal to each other and reside within the
active residue cleft. Each directly interacts with a carboxyl
group of the enzyme's citrate substrate. Recall that the pre-
dictions based solely on CC are inaccessible to solvent.
On the other hand, all three of the enzyme's catalytic res-

(a) For Tnp = 5, the percentage of PDBs with 0–5 correct predictions are tabulated for each of the three datasets investigatedFigure 4
(a) For Tnp = 5, the percentage of PDBs with 0–5 correct predictions are tabulated for each of the three datasets investigated. 
(b) The same data is plotted for each of the three filtering schemes investigated for the SCOP superfamily parsed dataset. 
Note: the dark blue series in (a) is exactly the same as in (b).
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idues are partially exposed to solvent in both the func-
tional dimer and the constituent monomers that are our
predictions are based. The monomer exposure of His223,
His262 and Asp312 is 34, 52 and 10 Å2, respectively. The
accessibilities of His223 and His262 within the dimer are
slightly reduced, whereas the Asp312 value is unaffected.
Based solely on CC (i.e. no filtering), the network model
fails to predict either of the catalytic residues; in fact, they
only rank order 27th, 43rd and 172nd (of 371 residues).
Nevertheless, after filtering all residues solvent accessibil-
ities less than 9 Å2, His223 and Asp312 are correctly pre-
dicted to be catalytic.

As suggested above, sites other than the catalytic residues
can also be critical to function [38-40]. Additionally, it is
possible that sites not annotated within the CSA might
also be catalytic, or at the very least, directly related to
functional efficiency. In fact, Russell et al. define ten addi-
tional active site residues as being critical to function [37].
In spite of this more liberal definition, none of the
remaining three accessibility-filtered predictions (Glu189,
Lys219 and Glu228) correspond to sites within the
expanded benchmark. Nevertheless, these residues are
clearly important, as they are structurally proximal to both
catalytic sites. This result is trivially expected due to their
sequence proximity to His218; however, the fact that CC,
which treats considers each vertex without regard to pri-
mary structure, is promising.

Filtering based on residue identity
While we explicitly avoid alignment and phylogeny data
here, it might be possible to improve prediction accuracy
by simply filtering out residues that are unlikely to be cat-
alytic based on their innate physiochemical properties.
For example, in the neural networkbased prediction
approach of Gutteridge et al. [19], it is demonstrated that
the single most import element of the input is whether or
not the residue being considered is histidine. The second
most important element is residue conservation, which is
followed closely by whether or not the residue in question
is lysine, cysteine, aspartate, glutamate and arginine (in
that order). These sequencebased input elements are all
more important than a variety of commonsense structural
characteristics (i.e. depth, solvent accessibility, cleft infor-
mation and secondary structure). Consequently, we
implement a simple filter based on residue identity here.
Any residue that is not histidine, lysine, cysteine, aspar-
tate, glutamate or arginine is excluded from further con-
sideration. We have tried other combinations of residue
exclusion, but this provides the best overall results. A
comparison of per residue CC values for catalytic and
noncatalytic residues is provided in Additional file 6.

The accuracy of the residue identity filtered predictions
ranges from 16.5 to 22.4%, which is a substantial

improvement over the random expectation of 0.9%
(Table 2c). Predicting catalytic residues by residue identity
alone provides a second baseline to compare to. In this
approach, a prediction is put forth each time one of the six
residue types listed above occurs. Using only residue iden-
tity results in an accuracy of 2.1%, which is only slightly
better than random expectation of 0.9%. Moreover, it is
substantially less than the residue identity filtered results,
meaning CC substantially improves predictive power over
residue identity alone. Like before, the per protein accu-
racy range is significantly less (11.3 to 14.3%) than the
collapsed results. Nevertheless, the main result that the
method significantly improves upon the solvent accessi-
bility filtered predictions is clearly conserved.

Fig. 5a plots the improvement of the three prediction
schemes against Tnp. In all cases, the improvement of the
residue identity filtered predictions perform substantially
better than the other two schemes. Moreover, an improve-
ment is observed both when considering total prediction
accuracy (circles) and the percentage of proteins with at
least one correct prediction (squares). As expected, the res-
idue identity filtered p-values are also smaller than the
accessibility-filtered ones, despite the fact that there are
fewer overall residue filtered predictions. In fact, over the
first two values of Tnp, the improvement is 41 and 62
orders of magnitude, respectively. Due to a lack of floating
point precision, p-values for the last three are calculated to
be exactly zero. Fig. 4b also tabulates the number of PDBs
with 0–5 correct residue identity filtered predictions.
Again, there is a greater increase in the nonzero bin com-
pared to the accessibility-filtered results. The increase in
the number of correctly identified proteins (compared to
the unfiltered results) with one, two, three and four cor-
rect is 16.6%, 8.8%, 5.3% and 1.1%, respectively. These
numbers correspond to an improvement over the accessi-
bility-filtered predictions of 4.2%, 5.3%, 4.9% and 0.4%,
respectively.

The residue identity filter decides whether to consider or
not consider a particular residue type based on an a priori
scheme. This is equivalent as saying that the six residues
that "pass through" the residue identity filter are equally
probable. However, Additional file 6 clearly indicates that
this is not reality. As such, it is natural to assume that
some sort of fuzzy logic scheme that allows residues to be
in the considered or excluded set based on the observed
catalytic residue propensities should improve model accu-
racy. An exhaustive number of schemes were tried using
various weighting schemes. For example, three possibili-
ties (from several different considerations) include: (i.)
weighting all twenty residues exactly proportional to their
catalytic propensity; (ii.) weighting the six from above as
equally probable, but scaling of the others; and (iii.)
weighting the six from above with exclusion of the
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remainder. However, no statistically significant improve-
ment over what is reported in Table 2c is found. In the first
two examples, the fuzzy model actually does worse since
catalytic residues make up such a tiny fraction of the total
number of residues. Meaning, any relaxed filtering criteria
allows many more noncatalytic (vs. catalytic) residues to
be considered; consequently, specificity is lost. Con-
versely, the best of the trials within the third scheme is sta-
tistically indistinguishable from Table 2c.

Filtering based on residue identity results in the following
set of predictions (Glu187, His188, Lys219, Asp312 and
Arg337) within citrate synthase at Tnp = 5. Asp312 and
Lys219 are discussed above, whereas Glu187, His188 and
Arg337 are noncatalytic residues within the active site
region. As with Phe333, both His188 and Arg337 are
directly interacting with the citrate substrate (see Fig. 6).
These residues are also interacting with several of the resi-
dues identified without filtering. This result, along with
those from above, highlights the fact that the three differ-
ent prediction schemes are identifying citrate synthase res-
idues structurally proximal to the catalytic residues. A

similar overall trend is observed when investigating other
proteins.

Combining solvent accessibility and residue identity
Combining both filters together results in slight improve-
ment over the residue identity filter at Tnp = 1–2 (Fig. 5b).
At Tnp = 4 and 5, the combination slightly underperforms
the residue identity filter, yet the values are still signifi-
cantly better than the accessibility-filtered results. (At Tnp
= 3 the results are virtually identical to the residue identity
filtered predictions.) The likely explanation for this result
is due to the fact that the filters eliminate similar informa-
tion. For example, it is trivially expected, due to their pro-
pensity to be within the core, that residues eliminated by
the accessibility filter will be nonpolar amino acids. Like-
wise, the residue identity filter always eliminates nonpolar
residues from further consideration. As done above with
the residue identity filtered results, a baseline without CC
is considered. In this instance, any time one of the six con-
sidered residue types occurs with a solvent accessibility
below 9 Å2, a prediction is put forth. This scheme results
in an accuracy of 2.5%, slightly better than the 2.1% of

(a) Improvement for all predictions and percent of proteins with at least one correct is plotted for: no filtering (blue), solvent accessibility filtering (green) and residue identity filtering (red)Figure 5
(a) Improvement for all predictions and percent of proteins with at least one correct is plotted for: no filtering (blue), solvent 
accessibility filtering (green) and residue identity filtering (red). The data presented is from the SCOP superfamily parsed data-
set. Symbols are the same as in Fig. 3. In (b), the combination (accessibility + residue identity) filter (magenta) is shown to per-
form very similar to the residue identity filter alone.
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residue identity alone, yet nowhere near the accuracies of
the combination-filtered CC scores.

Sensitivity to structural input
It is also important to assess the sensitivity of the CC
method to structural input variations. Specifically, liga-
tion state could have a pronounced affect on the observed
results. To explore the effects of bound substrate, thirteen
randomly chosen structure pairs (with and without lig-
and) are compared (Table 3). The chosen structures repre-
sent a diverse spectrum of protein sizes and SCOP classes.
Encouragingly, the average correlation coefficient
between CC values for each pair is very high (<R> = 0.970;
standard deviation = 0.049), meaning that CC is rather
robust to the structural differences. Surprisingly, there is
no correlation between CC correlation and pairwise struc-
tural RMSD calculated via combinatorial extension [40]
(see Table 3). It is also important to consider what is hap-
pening between specific catalytic pairs. Comparing the rel-
ative rank ordering within each catalytic residue pair
reveals that the rank within ligated structures increases
46.2% of the time. Conversely, the rank increases 41.0%
of the time within unligated structures; there is no change
in the rank 12.8% of the time. Accordingly, there is no sys-
tematic performance increase when choosing structures
based on the presence or absence of bound substrate.

Similarly, we also examined the sensitivity of the CC
method to slight structural perturbations. Here, we use
molecular dynamics simulations (MD) to "shake up" the
structure a small amount (we specifically focus on slight
structural perturbations) and compare the resultant CC
values. Additional file 7 plots the average CC value +
standard deviation for the citrate synthase conformers.
The plot clearly demonstrates that CC is fairly robust to
these slight structural rearrangements. More importantly,
the results concerning catalytic sites predicted after filter-
ing results are overall unchanged. Fig. 7 plots the CC
standard deviation vs. the CC rank for each residue within
citrate synthase. Residues at the extremes of the CC distri-
bution vary little across the simulation; whereas, residues
with CC values near the norm fluctuate much more. Sim-
ilar results are observed in three other MD simulations.
Since catalytic residue CC values are not exclusively at the
top end of the distribution, the potential for slight fluctu-
ations to affect prediction accuracy is present (even
though it is not observed here). Future work will explore
this result more thoroughly.

Conclusion
This report investigates the ability of CC to predict
enzyme catalytic residues from topological descriptions of
protein structure. While the most central residues gener-
ally correspond to positions within the core, the predic-
tions are substantially better than the random
expectation. This result is maintained whether one aver-
ages over the collapsed or per protein datasets. Filtering
the predictions by solvent accessibility and/or residue
identity improves the results considerably. Overall, these
results are comparable to those from previous reports
[32,33], but have better statistics due to database size and
composition. Additionally, we carefully examine the
effect of input structure on our predictions. Pairwise com-
parisons between ligated and unligated structures reveals
no clear trend regarding which input is a better choice.
Similarly, slight structural perturbations of four protein
examples via MD simulation have no observed effect on
the overall conclusions.

Methods
Dataset
Three different datasets extracted from the manually
annotated CSA entries are examined here. The first, which
contains 568 PDB files, represents a dataset randomly
culled such that no two sequences have greater than 80%
sequence identity. The second and third datasets use struc-
tural information to randomly distil to nonredundant
SCOP [36] families (423 proteins) and superfamilies (283
proteins). In each dataset, a single chain per protein struc-
ture is included; however, our analysis of all chains dem-
onstrates that the overall accuracies are generally robust to
chain differences (results not shown). All figures shown

All predictions within citrate synthase, as discussed in the text, are shown in spacefillFigure 6
All predictions within citrate synthase, as discussed in the 
text, are shown in spacefill. Note that they all cluster within 
the active site region. Coenzyme-A and the citrate substrate 
are shown in purple and magenta, respectively. The two cor-
rectly predicted catalytic residues are shown in red; the 
unpredicted catalytic residue (His262) is shown in orange. 
The image on the left, which is rotated 180 degrees from the 
one on the right, is centered on Asp312 whereas the image 
on the right is centered on His223. Unfiltered predictions are 
colored cyan. Except for Lys219, the remaining accessibility 
and residue identity filtered predictions are colored yellow 
and blue, respectively. Lys219, which is predicted by both fil-
tering schemes, is colored green (yellow + blue = green).
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herein are based on the dataset parsed by SCOP super-
family. However, results for the other two datasets are
always similar. This point is typified by Fig. 3 and Fig. 4a,
which include data for all three.

Solvent accessibility
We test the ability of solvent accessibility to improve pre-
diction accuracy by filtering out the most buried residues.
Solvent accessibility is calculated using DSSP [42], which
is an extremely fast approach. DSSP calculated solvent
accessibilities range between 0 to >250 Å2. No percent or
relative accessibility corrections, which are commonly
employed to normalize values by sidechain surface area

and to remove backbone considerations, are imple-
mented within DSSP. Nevertheless, the lack of these cor-
rections is not critical here as we are simply trying to
identify the residues most excluded from solvent. Theses
corrections are more important when quantifying solvent
exposure because the maximal accessibility of a large resi-
due (i.e. lysine) is so much greater than that of a small res-
idue (i.e. alanine). Conversely, in our problem, if both
residues are maximally buried, the accessibility (with or
without the correction) is simply zero in each case.

Molecular dynamics
Molecular dynamics simulations are employed to gener-
ate an ensemble of slightly perturbed structures. The pro-
tocol used here is the same as we reported previously in
our analysis of sensitivity within calculated pKa values
[43]. Canonical ensemble (fixed NVT) in vacuo molecular
dynamics simulations, as implemented in the Molecular
Operating Environment (Chemical Computing Group,
Montreal, Quebec, Canada), are used to generate the
ensemble of conformers. In each example, the timescale
of the simulations is 1 ns, and the timestep is 0.001 ps.
Structure sampling occurs every 500 ps. It is obvious that
this in vacuo simulation protocol is unacceptable to deter-
mine realistic aqueous phase dynamics. However, it is
adequate for the aims of this work since the simulation is
simply used to generate a conformational distribution.

Abbreviations
Evolutionary trace (ET); Catalytic site atlas (CSA); Close-
ness centrality (CC); Probability density function (PDF);
Receiver operating characteristic (ROC); Mutual informa-
tion (MI); Molecular dynamics (MD).

The standard deviation within the CC scores across the structural ensemble is plotted against the average rank ordering of each position for citrate synthaseFigure 7
The standard deviation within the CC scores across the 
structural ensemble is plotted against the average rank 
ordering of each position for citrate synthase. Residues at 
the extreme ends of the rank ordering are rather insensitive 
to the structural variations; however, residues nearer the 
norm vary significantly. Similar plots are observed in simula-
tions of acetate kinase, triosephosphate isomerase and 
malate dehydrogenase.

Table 3: Dataset used in comparison of ligated and unligated pairs

Enzyme1 Ligated vs. unligated2 Protein length SCOP class Correl3 RMSD (Å)4

4-oxalocrotonate tautomerase (1BJP, 4OTB) 1, 2, 0 59 α + β 0.985 0.4
Ribonuclease A (1RBN, 1RSM) 0, 2, 2 124 α + β 0.984 0.6
Xylanase II (1BVV, 1XNB) 1, 1, 0 185 β 0.997 0.2
Trpysin (1A0J, 1UTK) 1, 2, 0 245 β 0.983 1.1
Aminopeptidase (1IGB, 1AMP) 1, 0, 0 291 α/β 0.992 0.6
Phospholipase C (1AOD, 2PLC) 3, 0, 2 294 α/β 0.992 0.2
Deacetoxycephalosporin C synthase (1W2N, 1W28) 0, 1, 0 298 β 0.980 0.5
Chorismate mutase (3CSM, 2CSM) 2, 2, 0 300 α 0.955 1.9
Alginate lyase A1-III (1HV6, 1QAZ) 2, 0, 1 354 α 0.995 0.1
tRNA-guanine transglycosylase (1R5Y, 1PUD) 1, 0, 0 382 α/β 0.814 0.5
Nitric oxide synthase oxygenase (1M9R, 3NOS) 2, 2, 0 480 α + β 0.992 0.2
Luciferase (1BA3, 1LCI) 3, 1, 0 544 Multi. 0.948 0.5
Class I alpha-1;2-mannosidase (1G6I, 1DL2) 1, 3, 0 549 α 0.996 0.1

Average3 0.970 0.5
Standard deviation 0.049 0.5
Correlation (Correl vs. RMSD) -0.17

1 SCOP protein name for each pair examined. The ligated and unligated PDB id's, respectively, are provided in parentheses. 2 The three values 
(ligated, unligated, tie) tabulate the number of catalytic residues with higher rank ordering between the structural pair. 3 Linear correlation 
coefficient comparing the CC scores between each structural pair. 4 Pairwise RMSD comparing structure similarity within each pair. Surprisingly, 
there is no significant correlation between the last two columns.
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Supplementary figure 1. This file contains an example ROC curve.
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Additional file 2
Supplementary figure 2. The probability of the null hypothesis being cor-
rect at each Tnp value.
Click here for file
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2105-8-153-S2.pdf]

Additional file 3
Supplementary figure 3. Probability density functions of the solvent acces-
sibility scores for all catalytic and all noncatalytic sites.
Click here for file
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2105-8-153-S3.pdf]

Additional file 4
Supplementary figure 4. Scatter plot of residue solvent accessibility vs. 
closeness centrality.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-153-S4.pdf]

Additional file 5
Supplementary figure 5. The relative accuracy vs. solvent accessibility 
thresholds is plotted.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-153-S5.pdf]

Additional file 6
Supplementary figure 6. Histogram comparing the catalytic vs. noncata-
lytic average closeness centrality values for each residue type.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-153-S6.pdf]

Additional file 7
Supplementary figure 7. Average CC value vs. sequence position for citrate 
synthase.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-153-S7.pdf]
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