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Abstract
Background: The size and magnitude of the metabolome, the ratio between individual
metabolites and the response of metabolic networks is controlled by multiple cellular factors. A
tight control over metabolite ratios will be reflected by a linear relationship of pairs of metabolite
due to the flexibility of metabolic pathways. Hence, unbiased detection and validation of linear
metabolic variance can be interpreted in terms of biological control. For robust analyses, criteria
for rejecting or accepting linearities need to be developed despite technical measurement errors.
The entirety of all pair wise linear metabolic relationships then yields insights into the network of
cellular regulation.

Results: The Bayesian law was applied for detecting linearities that are validated by explaining the
residues by the degree of technical measurement errors. Test statistics were developed and the
algorithm was tested on simulated data using 3–150 samples and 0–100% technical error. Under
the null hypothesis of the existence of a linear relationship, type I errors remained below 5% for
data sets consisting of more than four samples, whereas the type II error rate quickly raised with
increasing technical errors. Conversely, a filter was developed to balance the error rates in the
opposite direction. A minimum of 20 biological replicates is recommended if technical errors
remain below 20% relative standard deviation and if thresholds for false error rates are acceptable
at less than 5%. The algorithm was proven to be robust against outliers, unlike Pearson's
correlations.

Conclusion: The algorithm facilitates finding linear relationships in complex datasets, which is
radically different from estimating linearity parameters from given linear relationships. Without
filter, it provides high sensitivity and fair specificity. If the filter is activated, high specificity but only
fair sensitivity is yielded. Total error rates are more favorable with deactivated filters, and hence,
metabolomic networks should be generated without the filter. In addition, Bayesian likelihoods
facilitate the detection of multiple linear dependencies between two variables. This property of the
algorithm enables its use as a discovery tool and to generate novel hypotheses of the existence of
otherwise hidden biological factors.
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Background
In recent years, time course analyses of metabolic pertur-
bations have become more important to understand met-
abolic networks based on experimental data [1,2]. One
way to analyze metabolic networks is by systematically
investigating linear relationships between all analyzed
metabolites (variables) followed by constructing net-
works from positively identified components, and eventu-
ally comparing network topologies [3] between different
physiological or genetic conditions [4,5]. Simulations of
metabolic reactions have shown that even stochastic
influences on metabolism may result in linear metabolic
co-regulation because initial metabolic perturbations can
be propagated and enhanced through the cellular bio-
chemical network [6]. Such linear co-regulation of pairs of
metabolites may point to changes in biochemical control
(chemical equilibrium, mass conservation, asymmetric
control distribution) as well to transcriptional regulation
[7]. Variance in metabolite levels can be caused by three
different factors:

(I) concentrations alter and hence increase variance due to
intentionally changing the experimental conditions, for
example by altering environmental parameters like exter-
nal nutrients or by using different genotypes [8],

(II) metabolite data will found to vary in a stochastic man-
ner caused by the imprecision of the analytical method [9]
used for acquiring metabolite data and

(III) interestingly, even under very controlled environ-
mental conditions, a high degree of biological variation is
found for metabolite levels due to stochastic biological
events that trickle through the biochemical network and
thus reflect the underlying control structure at this partic-
ular biological condition [6].

Therefore, if enough biological replicates are analyzed for
a given organism at a given physiological situation, the
metabolic phenotype can be investigated not only by its
corresponding average metabolic values, but also by a
snapshot of its corresponding metabolic network. How-
ever, biologists often do not know the inherent biological
variability in advance and hence tend to use just a few
independent biological replicates based on preliminary
power analysis. Resulting data may be sufficient to esti-
mate arithmetic means of metabolic levels but do not ena-
ble analyzing the linear control structure between
different biological conditions. One of the challenges for
calculating linearity networks is to compute the likeli-
hood or significance of the presence of a truly linear rela-
tionship, with the aim of excluding both false negative
and false positive detections of linearities.

Estimating optimal linearity parameters has been solved
decades ago for cases, for which linear dependence of var-
iables could be reasoned based on background knowl-
edge. However, in metabolic data sets, the control
structure of metabolites is unknown a priori. Therefore,
two fundamental questions need to be answered:

(a) For which pairs of variables can a linear relationship
be hypothesized?

(b) Are there sub sets of data that reflect differences in lin-
ear behavior of variables? For example, linearity may be
given for only a group of data but absent in another
group, or the linearity parameters between these groups
may be different.

An unbiased analysis of linear relationships between pairs
of variables needs to test whether there is one or more
valid linear hypotheses that could explain data in complex
data sets. This procedure defines a novel approach for test-
ing biological data: instead testing pre-defined hypotheses
[10], the likelihood of hypotheses is calculated that may
be used to explain complex process. This hypothesis-
building is fundamentally different from estimating the
best parameters of an assumed linear relationship by
regression equations [11-13] for which various software
packages exist, and solutions for estimating parameters
for multiple linear relationships[14]. However, regres-
sions do not test the probability of the presence of linear
relationships, especially in high-dimensional data sets.
Instead, regressions are founded on the presence of linear-
ity that is justified by background knowledge. In bio-
chemistry, the existence of linear relationships cannot
generally be assumed trivial but must receive thorough
statistical evaluations. In addition, regressions usually do
not account for technical errors [15] that are critical in
practice. All measurements comprise technical errors
which are due to inadequacy of the total chemical-analyt-
ical method, specifically the extraction, sample prepara-
tion and the instrumental data acquisition. Hence, the
degree of technical errors will vary between the chemical
nature of the metabolites, their absolute concentrations
and influences of different sample matrices. Furthermore,
outliers and missing data further obscure detection of lin-
ear hypotheses. For regressions, on the other hand, the
impact of outliers has been studied extensively, and mul-
tiple measures to assess and weigh the influence of out-
liers have been developed. Assumptions on the degree of
technical errors may further refine weighting factors in
regression analysis, and such factors can be optimized for
example using the EM-algorithm. Nevertheless, regression
is not an explorative tool for data analysis. Additionally,
metabolomic data do not distinguish between dependent
and independent variables. All variables are subject to var-
ying degree of noise (analytical-chemical measurement
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errors, i.e. technical errors). No controlled observations of
supposedly independent variables can be acquired
[16,17]. Consequently, the control structure of metabolic
linearity networks can only be assessed with a tool that
solves the following tasks:

(1) Linear relationships must be detected in an unbiased
and observer-independent manner.

(2) Sub sets of data need to be grouped according to pres-
ence of (multiple) linear relationships.

(3) Criteria have to be applied that verify linear hypothe-
ses based on test statistics.

(4) Technical errors: varying degree of analytical-chemical
measurement errors and missing data have to be
accounted for.

Especially, the potential presence of multiple linear rela-
tionships and independence of both variables poses prob-
lems for simple regression analyses. As a substitute for
regression, the degree of correlation has been used for
detecting linear relationships despite the fact that correla-
tion only relates the covariance to the total variance, but
does not verify genuine linearities. Moreover, Pearsons'
correlation coefficients lack robustness against outliers,
especially for multivariate datasets, and a number of dif-
ferent approaches have been suggested to link estimates to
better test statistics [18]. In practice, however, empirical or
heuristic thresholds are taken to distinguish strong or
weak correlations, but no mathematical basis exists on
which such thresholds can safely be founded. In some
cases, Student's statistics p-values have been taken in an
effort to validate Pearson's correlations [19]. Unfortu-
nately, such p-values only describe the significance of the
non-randomness of data pairs but do not test hypotheses
if data pairs can be described by a (single or multiple) lin-
ear functions. Consequently, correlation networks based
on Pearsons correlations may be strongly distorted [20].

A further approach has been taken using partial correla-
tions that deconvolute contributions by additional
parameters in order to reduce the list of correlations to
basic dependencies [21] which may present a link from
correlation to causality [22,23]. This method is valuable
to investigate the control structure within a given correla-
tion network but it does not remove the principle robust-
ness problem of correlation estimates. Simple correlations
coefficients always decline with increasing variance that is
introduced by method errors during data acquisition. In
contrary, partial correlation coefficients may be increas-
ing, decreasing or even change the algebraic signs with
increasing method errors [20]. In order to remedy this sit-
uation, scientists tend to select high Pearson's correlation

thresholds [24] which imply that the variance caused by
method errors is small in relation to the biological vari-
ance. The latter assumption is often true when comparing
widely different metabolic phenotypes such as certain
mutant genotypes, or severe stress conditions such as
acute (metabolic) diseases in comparison to healthy
states. However, metabolic theory predicts that even incre-
mental changes in enzymatic properties can have large
effects on metabolic control, especially when multiple
enzymes are affected [25]. Such changes might be too sub-
tle to cause large differences in average concentrations but
would still effect the pathway control structure and hence,
linearities in pairs of metabolite data. Consequently, the
metabolic control structure can only be assessed with a
robust tool for linearity detection.

We here present a different approach. Using the Bayesian
law [26], a likelihood formula is derived that is based on
information about the measurement error using a specific
technical method. This formula is then transformed in
way that allows searching for local maxima of linear
parameters within the total hypothesis space. Such likeli-
hood maxima are subsequently assessed for residuals of
the corresponding linearity parameters using simulated
test statistics. We demonstrate the power of this approach
using a synthetic data set with a given set of true linear
relationships which are subsequently subjected to both
increasing technical errors and increasing number of sam-
ples.

Results and Discussion
(1) A model for the technical error in metabolomic data

Let {xij } denote the entirety of n metabolite measure-

ments in a collection of m samples. The measurements
can be arranged in a matrix xij with rows i = 1, ..., n that

refer to the metabolites and columns j = 1, ..., m that refer
to the samples. Each measurement results from the sum of

the true metabolite content  and a technical error,

The technical errors eij include the chemical-analytical
error, but can also include a contribution from different
storage manners or times of the biomaterial after its
extraction. The technical variance of the jth measurement
can be derived by a probability density function ρj that
reflects knowledge about sample storage and data acquisi-
tion. For missing data, it is only known that these can be
expected in a defined range but with uniform probability
distribution. For non-missing data, the technical error is
modeled by a multivariate normal distribution that is cen-
tered around zero. More precisely, the probability density
for the technical error ej = (e1 j ,..., enj)t of the jth metabolic
profile is given by

′xij

x x eij ij ij= ′ + . (1)
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In principle, the variance matrices Σj can be estimated

from the covariance matrix of replicated measurements of
the same biomaterial. In practice, correlations between
the technical errors of different metabolites are often dis-
regarded, leading to a model with diagonal variance

matrices . Further one often works

with fixed absolute or fixed relative errors,

respectively.

(2) Maximum Likelihood (ML) function for a general linear 
problem
Using the Bayesian law, the likelihood for parameters of a
given linear hypothesis can be calculated. The Bayesian
law allows to interconvert the conditional probabilities of
cause (linear relationship) and effect (measured data
value) [27,28],

The general form of a linear relationship in the metabo-
lomics data is

In what follows we collect the coefficients of the above
equation in a vector α = (α1,..., αn)t and express the linear
relationship as αt x•j = β. By x•j we denote the metabolic
profile of the jth sample. The entirety of the parameters α
and β results in A. The probability p (A) is the a priori prob-
ability of the parameters α and β before the measurement
has been performed. Because no preference can be given,
the a priori probability is constant for all A. The same is
true for p (B) with B representing the measured metabolite
concentrations. Therefore, p (A | B) is the likelihood for
parameter A if the pair of variables B is given. We have
used an unbiased approach here assuming random and
unrelated technical errors, and we cannot know before-
hand if a certain metabolite will be detectable or not, and
how large the concentration of such metabolite could be.
These assumptions result in a constant probability for
p(A) and p(B), because otherwise certain values for A and
B would be more likely than others. From the Bayesian
law it can be concluded

p (A | B) = c · p (B | A). (6)

The constant value c can be neglected because the objec-
tive is to compare different linear hypotheses. Conse-
quently, a hypothetical metabolic profile has the same
probability at a given linear hypothesis as a hypothetical
linear hypothesis at a given metabolic profile. The expres-
sion p (B|A) is therefore the probability that the measured
metabolic profile B is determined at a given set of param-
eters A, which can be calculated using the function which
describes the probability distribution of the technical
error. We are now in position to state the following gen-
eral theorem:

Let x = (x1, ..., xn)t include the measurements of n metabolites
in a biological sample with technical errors that follow a Gaus-
sian distribution with covariance matrix Σ. Let a (n-N)-dimen-
sional surface in the n-dimensional metabolite space be defined
by the equations

αk1 x1 + ... + αkn xn = βk for k = 1, ..., N. (7)

The coefficients of these equations comprise a matrix α = (αki)
and a vector β = (β1, ..., βN)t. The matrix elements can also be
arranged in vectors αk :(αk1, ..., αkn)t. It is assumed the hyper-
planes defined by (8) are orthogonal in pairs with respect to the
covariance matrix, i.e.

αk 
tΣ αl = 0 for k, l = 1, ..., N and k ≠ l. (8)

Then, the likelihood for the metabolite concentrations to lie on
the (n-k)-dimensional surface is given by

The theorem is proven in Additional File 1. However, the
result for the likelihood has a simple interpretation: it is
proportional to the density of the normal distribution
taken at the distance of the measurement from the surface.
This distance has to be calculated by taking the covariance
matrix of the technical errors as metric of the metabolite
space. Next, let us illustrate the theorem by a special case
that is especially interesting for applications: Consider
two metabolite concentrations that are measured with
technical standard deviations σ1, σ2 and technical covari-
ance σ12. Then, the likelihood for the metabolite concen-
tration to lie on the straight line α1 x1 + α2 x2 = β is given by

ρj j j
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Returning to the general line of the text and the Bayesian
reasoning we obtain for the likelihood for a linear rela-
tionship described by A = {αki, βk} after measurement of
the metabolomic data B = {xij} the result

with

The corresponding likelihood function is a sum of contri-
butions from each of the biological samples,

Maximizing p (A|B) or L (A|B) gives the maximum likeli-
hood. The resulting estimator for the considered linear
relationship is called the simple ML-estimator. The likeli-
hood takes values between 0 and 1. Likelihoods are differ-
ent to probabilities [29] with respect to p (B|A) which is
maximized in order to find the most likely parameters for
a given hypothesis, here: a linear hypothesis.

(3) An adapted Maximum Likelihood estimator for robust 
verification of linear hypotheses
The product p (B|A) can never become larger than one of
its factors, and it comprises exactly one global maximum.
Consequently, just a single outlier may decrease p (B|A)
significantly. Unfortunately, outlier data are frequently
found in biological data sets due to both the multitude of
factors in biological cells and the complexity of data
acquisition methods that may result in false positive data
points. Furthermore, it is still unclear, how many linear
relationships exist for a given pair of variables. Both ques-
tions are reflected by introducing a decoupling term, the
constant c, to the likelihood function,

Additional File 2 gives the impact of the magnitude of the
constant c on the total likelihood. It is demonstrated in an
empirical way that the total likelihood is not decreased by
any c ≥ 1. In what follows we fix the constant at the value
c = 1 und consider an adapted ML-estimator that is con-
structed by maximization of L1(A | B).

The adapted likelihood function is a sum, to which every
data point adds a contribution between zero and a maxi-
mum value of ln 2 if it coincides with the linear hypo-
thesis that is under investigation. This step alters the
impact of the Bayesian law. It results in assessing each
individual variable pair by a likelihood of contribution to
a (linear) hypothesis, and not by assessing the entirety of
all variable pairs. Consequently, the contribution of out-
liers is evanescent as demonstrated in figure 1 and is lim-
ited to a reduction of L of ln 2 in the worst case. Figure 1
shows two plots, each representing 30 data pairs. In the
upper panels, the 30 data pairs shall follow a hypothetical
linear function with an additional modeled analytical
measurement error. The lower panels represent a data set
in which 15 of the 30 data points are transposed by a con-
stant value, so that two linear functionalities exist. For
each of the two examples, likelihood distributions are
given across a part of the hypothesis space for the simple
ML estimator (mid panels B) and the adapted ML estima-
tor (right hand panels C). For the case of a dataset that
comprised two likely linear functions, the simple ML esti-
mator only recognizes a shift in the local maximum but
fails to detect two local maxima according to the two lin-
earities. In contrary, the adapted ML estimator correctly
identifies both local maxima and is thus able to detect the
most likely parameters for both linear functions. In fact,
the local likelihood maximum of the original single linear
function does not shift for the adapted ML estimator
when 15 data points are shifted by a constant factor but it
just leads to a decrease of the maximal possible likeli-
hood. If all measured data are assigned to different linear
hypotheses according to their corresponding likelihoods,
the criterion (2) as given above in the section 'back-
ground' is fulfilled: Sub sets of data are now grouped
according to presence of (multiple) linear relationships.

Additional considerations are outlined for the case of
missing data (NANs, not-a-number) which are often
found in metabolomic data sets. In such cases, the proba-
bility function p (B|A) needs to be adapted. This function
then represents the information about the missing value:
for example, data could get lost due to measurement
instrument malfunctions or the variable (i.e. a metabolite
level) might be below the limit of detection in a given bio-
logical situation. In both cases, the probability density
function is uniform, i.e. the probability is constant in a
certain range. For the case of 'below detection limit', the
probability density is limited, for the case of 'instrument

p x x
x x

( , | , , ) exp1 2 1 2
1 1 2 2

2

1
2

1
2

12 1 2 2
2

2

1
2 2

α α β
α α β

σ α σ α α σ α
= −

+ −( )
+ + 22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.

(10)

p A B l xj j
j

m
( | ) ( , | )=

=
∏ α β i

1

(13)

l x p x
x

j j j
k
t

j k

k
t

j kk

N
( , | ) ( | , ) expα β α β

α β

α α
i i

i
= = −

−( )⎛

⎝

⎜
⎜
⎜ =

∑1
2

2

1 Σ

⎞⎞

⎠

⎟
⎟
⎟

(14)

L A B p A B l xj j
j

m
( | ) ln ( | ) ln ( , | )= =

=
∑ α β i

1

(15)

L A B p A B l x cc c j j
j

m
( | ) ln ( | ) ln( ( , | ) )= = +

=
∑ α β i

1

(16)
Page 5 of 12
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:162 http://www.biomedcentral.com/1471-2105/8/162
malfunction' the probability density is zero at all levels.
However, for both cases, the undefined integral is one (we
must assume a false negative metabolite detection). If we
knew the true cause of the missing value (i.e. either false
negative or true negative), the correct probability density
function could be modeled. For now, however, we need to
assume an infinite technical error which demands to add
the maximal likelihood of ln2 to these data points.
Accordingly, missing data do not have a diminishing
impact on L. An extreme case of data set that exclusively
comprises missing data would result in a maximal likeli-
hood for arbitrary linear hypotheses. This interpretation is

correct because all hypotheses would be equally probable
and could not be denied, which, however, results to an
interpretive power of zero. Consequently, for real cases a
maximal number of missing values needs to be defined in
order to deny any linear hypothesis that might be due to
missing explanatory power. The upper limit of the
number of such missing data has to be set by the user who
may call in further biological or analytical background
information for individual metabolite pairs.

Concluding, the following properties are observed for the
adapted ML-estimator:

Comparison between simple and adapted maximum likelihood estimationFigure 1
Comparison between simple and adapted maximum likelihood estimation. Graph A. The upper panel represents a set of 30 cov-
ariate pairs (‚samples‘) which can be described by a linear function. Deviation from this function is due to a simulated technical 
error. The lower panel comprises 30 samples for which half of the data were shifted for a constant value. Graph B Likelihood 
distribution for the hypotheses space using the simple maximum likelihood estimator using data from upper and lower panel 
from graph A. For any given linearity parameter (slope and intercept), the estimated likelihood is increasing from white to cyan, 
blue, gree, yellow, orange and red. Upper panel: For a single linearity, the global maximum (black circle) matches with the line-
arity parameters of the simulated function (green circle). Lower panel: The simple maximum likelihood estimator fails to detect 
and represent the presence of two linear functions. The global maximum is calculated for a single linearity which is depicted in 
graph A, lower panel. Graph C: Likelihood distribution for the hypotheses space using the simple maximum likelihood estimator 
using the same data set as in graphs A and B. A single linearity is correctly identified (upper panel). Importantly, data sets com-
prising more than one linear function are also correctly matched reporting both slope and intercept parameters.
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(i) The adapted ML-estimator considers technical errors.

(ii) The adapted ML-estimator detects linear patterns and
groups sub sets of data accordingly.

(iii) The adapted ML-estimator is robust against outliers.

(iv) The adapted ML-estimator relies on background
information on missing values and therefore does not dis-
tort interpretations.

Therefore, the adapted ML-estimator realizes a solution to
several of the challenges of unbiased and robust detection
of multiple linear hypotheses in complex data sets.

(4) Algorithm for the detection of linear relationships
In order to assign measured data to a hypothetical linear
relationship without contradictions, corresponding resi-
dues have to be analyzed. One condition is that these res-
idues are randomly distributed; otherwise, additional
systematic errors would have to be assumed. Secondly, the
residues have to be explainable by the technical errors in
a statistical manner. The adapted ML-estimator already
realizes a measure for agreement between (linear) model
and data under consideration of the corresponding tech-
nical errors. Thresholds can now be determined for reject-
ing specific linear hypotheses using the distribution of L,
resulting in false discovery rates for which limits can be
set. The core of the algorithm determines the local maxi-
mum of a likelihood distribution which is subsequently
compared to limits of a test statistics. It can be assumed
that this maximum will be the global maximum since all
measured data will be explained by the tested linear rela-
tionship. However, outliers will reduce the likelihood
drastically. Consequently, data are only considered if res-
idues are small to the hypothetical linearity. The 2 σ inter-
val was chosen to exclude outliers at 95% confidence. The
data inside the 2 σ confidence interval is denoted by
Breturn. The likelihood is subsequently normalized to the
number mreturn of this data. The parameter mreturn com-
prises the number of samples that were returned to belong
to a linear function despite deviation that is due to the
contribution of unrelated variance. Each data point con-
tributes a value of ln 2 to the likelihood function, result-
ing in the normalized likelihood

We now have two parameters, mreturn and Lreturn, for which
test statistics can be determined based on randomly
selected true linear relationships. Amax denotes the param-
eters for which the maximum likelihood is assumed. The
distributions of mreturn and Lreturn were assessed by Monte
Carlo simulations: For each sample size ranging from 3 to

150 data points we have generated 25,000 random data
sets, and test statistics were derived for each sample size m.
The data set were generated by selecting an arbitrary linear
function and a random selection of data points corre-
sponding to this linear function. Technical errors were
sampled from Gaussian distributions and added to the
data points. After localizing the maximum value of L1 one
determines all samples which belong to the correspond-
ing linear function. Based on L1 and mreturn, the value of
Lreturn is determined as given above. The frequency distri-
butions of Lreturn for different values of mreturn are shown
for the example of m = 20 samples (figure 2). Figure 2
demonstrates that the Lreturn distributions varied for differ-
ent mreturn values, and consequently, corresponding test
statistics were established that set the limits for rejecting
the null-hypotheses at a false negative error rate of ≤ 5%
for each of the mreturn values.

(5) Determination of false positive and false negative error 
rates
The degree of noise can be described in terms of the relia-
bility that is defined as ratio of biological variance and
total variance. The later is just the sum of biological and
technical variance if both variances are not correlated. In
that case the reliability of the measurement of metabolite
x is given as

The average reliability can easily be obtained from the
simulations, and hence, the degree of noise can well be
described as

We here assume that linear relationships between two
metabolites are only confused by technical errors, but not
by other biological factors, so the degree of noise here is
only induced by technical errors. In order to test the algo-
rithm described above, a data set was simulated that
closely describes the problem. This model data set com-
prised 200 variables which were grouped into 20 clusters
of equal size. All variables within a cluster were described
by a linear relationship y = ax + b, but between clusters, no
linearity was modeled apart from random relationships.
For each test, a different number of samples was taken to
assume experimental data from metabolomic snapshots,
with further and various levels of technical errors that
were added to the modeled measurements. Technical
errors were assumed to follow a Gaussian distribution. In
total, the total data set was investigated for 19,900 pair-
wise relationships of which 900 were modeled to be
described by linear relationships in order to assess false
positive and false negative error rates. The parameters
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were varied in an exhaustive permutation of the sample
size from 3–150 samples and relative technical errors
from 0.1–100%. Error rates were determined four times
for each combination of ,number of samples' and ,techni-
cal errors', and the average of these four determinations
was taken. Technical errors may be divided into the abso-
lute error and a relative error. The absolute error, for
example, is constituted by the resolution of an analytical
instrument or constant background through chemical
impurities of reagents and solvents. Such errors can be
carefully controlled in validated chemical procedures and
are usually less important than relative errors. In most
cases in metabolomics, the total technical error is domi-
nated by relative errors that relate to the true value, origi-
nating for example by sample storage, extraction and
sample preparation procedures, and by cross-contamina-
tion and carry over between samples. Technical errors can
be estimated by reproducing all sample preparation steps
multiple times from small aliquots of a larger homoge-
nized pool, and subsequent data acquisition. The magni-
tude of relative errors varies by the vulnerability of the

compounds to be altered during the sample preparation
and measurement process. However, for the sake of clar-
ity, identical technical errors were used in the simulations
for each pair of metabolites.

The error rate of the algorithm is exemplified for selected
sample numbers in figure 3 (upper panel), using the algo-
rithm described so far. The null hypothesis used here was
assuming the existence of a linear relationship between
any pair of metabolites. This is in opposite to classical use
of null-hypotheses, reversing the meaning of false posi-
tives and false negatives in our work. Therefore, in our
case rejecting the null hypothesis when it is actually true
means rejecting true linearities or generating false negative
errors. It is important to note that the count for false neg-
ative detections (type I errors) stays below 5% except for
sample numbers smaller than five. The minimal error rate
corresponds to the limits that resulted from constructing
the test statistics. For the false positive error rates (type II
errors), a different trend is observed. Except for very low
technical errors or large numbers of samples, the type II
errors quickly exceed the 5% error thresholds. Generally,
the sample size required to cope with higher technical
errors rapidly increases for maintaining acceptable false
positive rates. For high technical errors, the pattern
between any two variables resembles a scatter around a
constant value. In such cases, the number of false positive
linearity detections increases because any constant value
can be explained by a discretionary linear function. If
higher limits were used for the parameters Lreturn and mre-

turn, the 5% threshold for the false positive rates would be
reached at higher technical error rates. However, simulta-
neously, the minimal error rate for of false negatives
would increase. Consequently, type I and type II error
rates could in principle be balanced by adapting the
thresholds for Lreturn and mreturn in a qualitative manner.
Nevertheless, the total error rate can only be influenced by
decreasing the technical error or increasing the number of
samples taken into account.

As outlined above, increasing levels of technical errors
cause higher false positive error rates of detections of lin-
earities. However, the number of false positive detections
can be shifted towards false negative error rates, if desired
for a specific biological study. Therefore, a filter has been
developed that filters out all potential false positives
(Additional File 4). The filter has been tested on the same
simulated data as the algorithm before. Results are shown
in figure 3 (lower panel) for false negative and false posi-
tive linearity detections. Compared to figure 3 (upper
panel), a reverse order for false linearity discoveries was
observed. Technical errors in metabolomics are usually in
the range around 20–25%, although for certain com-
pound classes, these may be lower. For a given biological
situation, experimental biologists rarely use more than 10

Determination of the linearity rejection region by Monte Carlo simulationsFigure 2
Determination of the linearity rejection region by Monte 
Carlo simulations. 3–150 samples were used from linear 
functions which were imposed by additional Gaussian noise. 
The example for m = 20 is shown, for which in some cases, 
fewer than 20 samples were returned due to outliers that 
were caused by the imposed technical error. For each of 
these mreturn values, adapted maximum likelihood limits were 
determined for which the null hypothesis, the existence of a 
linearity, would need to be rejected.
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biological replicates ('samples'), often even less. With
other words, for such a combination of technical errors
and low number of replicates, the algorithm yields either

the accurate identification of all true linearities (without
filter), but for the price of a high number of false positives,
or the algorithm results in the full deletion of false posi-

False negative and false positive error rates of the algorithm tested on simulated data in relation to the number of samples and the assumed technical errors, in % of the total varianceFigure 3
False negative and false positive error rates of the algorithm tested on simulated data in relation to the number of samples and 
the assumed technical errors, in % of the total variance. 900 pair-wise linear relationships between 200 metabolites were 
defined that were tested against the total of 19,900 potential linearities. Upper panel: Error rates without filter. Lower panel: 
error rates with filter.
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tives (with filter), but for the price of not detecting a high
number of the true linearities. We therefore have com-
pared the results with and without filter in order to deter-
mine, how many samples would be needed to stay
reliably at a false error rate ≤ 0.05 (i.e. 5%) for both false
negatives and false positives. Figure 4 demonstrates that
false positive detections without activating the filter obey
a more favourable response to the combination of sample
size and technical errors than the false negative error rates
with active filter. Consequently, at technical errors of
20%, a minimum of about 20 samples is needed to stay
reliably below 5% error rates for both false positive and
false negative detections of linear metabolic relationships.
This is an important result for practical use of this algo-
rithm for robust generation of metabolomic networks. As
default, the filter is not needed to be applied unless
researches want to be very strict on the false positive error
rates. The simulation presented here demonstrates that it
is possible to remain at a total error rate of less than 5% if
more than 20 samples are analyzed at the 20% technical
error rate. The entirety of linear relationships of metabo-
lites may subsequently be visualized as network graphs.

Such graphs can be compared between different physio-
logical or genetic conditions, in order to generate novel
functional hypothesis on regulation of metabolic net-
works in a robust manner.

The robustness of the algorithm was tested on a model
dataset with 20 samples (figure 5). The thresholds for Lre-

turn and mreturn were adjusted to tolerate an outlier rate of
5% (one of 20 samples). Outliers were modelled with a
distance from 2 σ to 1000 σ away from the true linearity.
It was found that outliers were generally easier recognized
when these were very distant from the linearity. Despite
the additional outliers, false positive and false negative
error rates were found to almost identical as in figure 3.
The number of false negative linearity detections
remained below 5% without filter in all cases, and con-
versely, the false positive rate remained unchanged with
activated filter. Hence, the use of Bayesian likelihood esti-
mations enables robust detection and verification of lin-
ear relationships in an unbiased way and in complex

Number of samples required in relation to the assumed rela-tive technical errors, if both false positive and false negative error rates are to remain below 0.05 (i.e. 5%)Figure 4
Number of samples required in relation to the assumed rela-
tive technical errors, if both false positive and false negative 
error rates are to remain below 0.05 (i.e. 5%). 900 pair-wise 
linear relationships between 200 metabolites were defined 
that were tested against the total of 19,900 potential lineari-
ties.

0

20

40

60

80

100

120

140

0 25 50
technical error (% of total variance)

nu
m

be
r 

of
 s

am
pl

es

false positive rate ≤ 0.05 without filter

false negative rate ≤ 0.05 with filter

Influence of outliers on false negative and false positive error rates on a sample size of m = 20Figure 5
Influence of outliers on false negative and false positive error 
rates on a sample size of m = 20. In a similar manner to figure 
(3), simulated data were imposed by technical errors, but in 
addition, by the presence of outliers that were located in a 
2–1000 σ distance from the linear function. The algorithm 
proved to be robust against such outliers.
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datasets. If more outliers are present in a data set, these
may actually constitute several local likelihood maxima as
shown in figure 1C (lower panel) or in the figures in Addi-
tional File 2. Such additional linear relationships may be
revealed if several outliers follow a different linear func-
tion and hence yield unexpected hypotheses of cellular
regulation. Finding and validating such multiple lineari-
ties has so far been hard to accomplish with classical tools
but is now amenable with the algorithm presented here.
The algorithm has been implemented in a stand alone
software solution. For data sets of a size of 200 variables ×
150 samples, robust linearity networks are generated in
around 10 min computing time using a 512 MB RAM and
3.5 GHz personal computer. The actual computing time
will vary from 3.5–15 min, depending on the actual line-
arity structure of the data set. Improved implementations
of the algorithm, specifically for the search of global like-
lihood maxima, may certainly be worked out more effec-
tively with respect to computational run time. However,
acquiring metabolomic data of the size of 150 samples
(from growth of biological organisms, harvesting, sample
processing, data acquisition to data processing) will take
time on the order of weeks which surely justifies compu-
tational efforts on standard personal computers on the
order of minutes.

Conclusion
Use of the technical error concomitant with a maximum
likelihood assessment of linearity parameters and verifica-
tion by simulated test statistics enables a robust detection
and verification of liner relationships in complex data
sets. An implementation of this algorithm will enable
biologists to calculate and compare linearity networks in
metabolomic or other multivariate data sets, from which
biological hypotheses may be derived. The algorithm can
be modified with respect to the ratio of type I and type II
errors depending on the biological focus of a study. It is
highly advised to use more than 20 biological replicates
for each condition that is to be tested in a biological exper-
imental design of genotypes x environments (G x E), unless
advances in analytical chemistry and instrumentation
decrease the overall technical error to very low levels, i.e.
below 5%. Even the existence of more than one linear
relationship per pair of variables can be detected using the
maximum likelihood algorithm, which has so far been
hard to compute with classical approaches.
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