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Abstract
Background: Replication origins are considered important sites for understanding the molecular
mechanisms involved in DNA replication. Many computational methods have been developed for
predicting their locations in archaeal, bacterial and eukaryotic genomes. However, a prediction
method designed for a particular kind of genomes might not work well for another. In this paper,
we propose the AT excursion method, which is a score-based approach, to quantify local AT
abundance in genomic sequences and use the identified high scoring segments for predicting
replication origins. This method has the advantages of requiring no preset window size and having
rigorous criteria to evaluate statistical significance of high scoring segments.

Results: We have evaluated the AT excursion method by checking its predictions against known
replication origins in herpesviruses and comparing its performance with an existing base weighted
score method (BWS1). Out of 43 known origins, 39 are predicted by either one or the other
method and 26 origins are predicted by both. The excursion method identifies six origins not
predicted by BWS1, showing that the AT excursion method is a valuable complement to BWS1.
We have also applied the AT excursion method to two other families of double stranded DNA
viruses, the poxviruses and iridoviruses, of which very few replication origins are documented in
the public domain. The prediction results are made available as supplementary materials at [1].
Preliminary investigation shows that the proposed method works well on some larger genomes
too.

Conclusion: The AT excursion method will be a useful computational tool for identifying
replication origins in a variety of genomic sequences.

Background
Recent advances in biotechnology have rendered sequenc-
ing a complete genome routine. With the increasing avail-
ability of DNA sequences, computational methods to
predict likely locations of important functional sites
before experimental search are highly valuable because

the computational predictions can often help design
finely tuned experiments to find these functional sites in
shorter time with less labor and fewer resources. Replica-
tion origins, which are places on the DNA molecules
where replication processes are initiated, are considered
important sites for understanding the molecular mecha-
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nisms involved in DNA replication. For some viruses with
double stranded DNA (dsDNA) genomes in particular,
detailed knowledge of their replication processes have
had significant impact in developing effective strategies to
control the growth and spread of viruses (see, for example,
[2]).

A number of computational methods have been devel-
oped for predicting replication origins in bacterial,
archaeal, and eukaryotic genomes. All these algorithms
exploit certain characteristic sequence features found
around the replication origins. For example, Lobry [3]
employs the GC skew plot to predict replication origins
and terminus in bacterial genomes. The skew (G-C)/
(G+C), where G and C respectively stand for the percent-
ages of guanine and cytosine bases in a sliding window,
switches polarity in the vicinity of the replication origin
and terminus, with the leading strand manifesting a posi-
tive skew. Salzberg et al. [4] predict the replication origins
for a number of bacterial and archaeal genomes by identi-
fying some 7-mers and/or 8-mers whose orientation is
preferentially skewed around the replication origins.
Zhang and Zhang [5] use the Z-curve method successfully
to identify several replication origins in bacterial and
archaeal genomes. The Z-curve of any given DNA
sequence is a three-dimensional curve which uniquely
represents the sequence so that unusual sequence compo-
sitional features, such as those around a replication origin,
can sometimes be visually recognized. Mackiewicz et al.
[6] propose three methods, based on DNA asymmetry,
the distribution of DnaA boxes and dnaA gene location,
were applied to identify the putative replication origins in
112 bacterial chromosomes. They find that DNA asymme-
try is the most universal method of putative oriC identifi-
cation and better prediction can be achieved when the
method is applied together with others.

For eukaryotic DNA, Breier et al. [7] develop the Oriscan
algorithm to predict replication origins in the S. cerevisiae
genome by searching for sequences similar to a training
set of 26 known yeast origins pinpointed by site-directed
mutagenesis. Oriscan uses both the origin recognition
complex binding site and its flanking regions to identify
candidates, and then ranks potential origins by their like-
lihood of activity. More recently, wavelet based multi-
scale analysis of DNA strand asymmetries have also been
developed [8,9] for detecting mammalian DNA replica-
tion origins.

It is important to note that a prediction method designed
for one kind of genomes may not necessarily work well on
others because the differences in DNA replication mecha-
nisms in different organisms naturally lead to differences
in sequence features around their replication origins. One
would not expect that the prediction methods designed

for bacterial, archaeal, and eukaryotic genomes can be
applied directly to viral genomes and produce accurate
results. Indeed, when we attempted to use the above algo-
rithms on some herpesviruses genomes with known repli-
cation origins like those listed in Table 5 of [10], a variety
of difficulties were encountered. For instance, no clear cut
switches of polarity were observed in the GC skew plot.
No definitive peaks can be visually identified from the Z-
curves as potential replication origins of the viruses. When
we mined for DnaA boxes [6] in the herpesviruses, just
one cluster of DnaA boxes was observed, but it is not near
to any known replication origins. Information about ori-
gin recognition complex binding sites for herpesvirus
genomes, needed for applying Oriscan, are not readily
available. While the method based on oligomers skew [4]
is designed to work for genomes with single replication
origins, the herpesviruses and many other dsDNA viruses
contain multiple replication origins in their genomes. 

Computational prediction of replication origins, based on
the observation of a high concentration of palindromes
around the origins, for dsDNA viral genomes was first
attempted by Masse et al. [11] on the human cytomegalo-
virus. Leung et al. [10] formalize the procedure by laying
down the mathematical foundation to justify the use of
scan statistics for identifying statistically significant palin-
drome clusters. The location of such palindrome clusters
are then taken to be the likely locations of replication ori-
gins in herpesviruses. Viewing the scan statistics approach
as equivalent to counting the palindromes in sliding win-
dows, Chew et al. [12] offer two more refined schemes of
quantifying palindrome concentration to improve the
sensitivity of the prediction. One of these schemes,
namely the base weighted scheme (BWS1), which scores
each palindrome according to how rarely it is expected to
occur in a nucleotide sequence generated randomly as a
first order Markov chain, is found to be the most sensitive
for the herpesviruses.

Because of the lack of strong family-wide sequence simi-
larities around the origins, the above prediction methods
designed for relatively large and complex dsDNA viruses
like the herpesviruses with over 100,000 base pairs in the
genomes are based on various sequence statistics rather
than the actual nucleotide sequences around replication
origins.

Herpesviruses utilize two different types of replication ori-
gins during lytic and latent infections. For each type of ori-
gins, the count and locations in the genome vary from one
kind of herpesvirus to another. Most herpesviruses have
one to two copies of latent and lytic origins. It has been
documented in various studies (e.g. [11,13,14]) that the
nucleotide sequences around the replication origins are
specific to the individual viruses. Yet the presence of clus-
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ters of direct or inverted repetitive sequences, including
palindromes, is quite common in both types of origins in
many members of the herpesvirus family (see [12] and
references therein).

Lin et al [15] have observed that in some herpesvirus
genomes, the nucleotide sequences around replication
origins are richer in A and T bases. This is not surprising
because DNA replication typically requires the binding of
an assembly of enzymes (e.g., helicases) to locally unwind
the DNA helical structure, and pull apart the two comple-
mentary strands (see Chapter 1 in [16,17]). Higher AT
content around the origins makes the two complementary
DNA strands bond less strongly to each other. This facili-
tates the two strands to be pulled apart and initiate the
replication process. Indeed, Segurado et al. [18] have used
a sliding window approach to find "islands" within the
Schizosaccharomyces pombe genome that have high AT con-
tent. They measure base composition using sliding win-
dows of different sizes and find that AT content of
windows in regions containing replication origins are sig-
nificantly higher than those that do not. 

Chew et al. [12] have also reported using sliding windows
of AT percentages on herpesviruses. Using windows with
top AT percentages they are able to predict 65% of replica-
tion origins in their dataset.  Moreover, this method has
successfully identified four origins not predicted by BWS1,
suggesting that the AT percentages may be a useful
sequence feature to be incorporated into the set of replica-
tion origin prediction tools for dsDNA viruses. This moti-
vates us to seek a means to better quantify the AT content
variation in genome sequences. We find that the general
score based excursion approach first proposed by Karlin
and Altschul in [19] fits our purpose very well when it is
applied appropriately to quantify local AT abundance.
The excursion approach has the advantages of not requir-
ing a preset sliding window size and having rigorous crite-
ria to evaluate statistical significance of high scoring
segments [20-22].

There are three main objectives in this paper. First, we
shall develop the AT excursion method as a possible alter-
native to existing approaches for replication origin predic-
tion in DNA sequences. Second, we shall assess the
performance of AT excursion in comparison with the pre-
diction results of BWS1 on a data set of currently known
origins of the herpesviruses. The herpes family is chosen
as it is one of the bigger families of viruses with known
replication origins so that the performance of our predic-
tion method can be assessed. Our results demonstrate that
the AT excursion method not only can compare with but
can also complement the BWS1 predictions very well.
Having established that AT excursion method is a credible
prediction tool, our third objective is to use it for predict-

ing likely replication origin locations for two other fami-
lies of dsDNA viruses, namely the poxviruses and
iridoviruses of which very few replication origins are doc-
umented in the public domain. To demonstrate the gen-
erality of the AT excursion approach, we also apply it to
several larger genomes.

Methods
We adopt the score-based excursion approach [19] to
identify segments of a genome having high AT concentra-
tion. This, in turn, forms the basis of our proposed
method to predict replication origins for the herpesvi-
ruses. Table 1 presents the viruses to be analyzed. The data
set comprises all complete genome sequences of the her-
pesvirus family downloaded from GenBank at the NCBI
web site in March 2006. For each virus, we list its abbrevi-
ation, accession number, sequence length, and AT per-
centages.

Score-based sequence analysis
Score-based sequence analysis is a powerful and yet flexi-
ble tool to identify segments of a biological (DNA, RNA or
amino acids) sequence containing high concentration of
residues of interest according to the users' objectives. One
assigns high positive scores to residues of interest, high
negative scores to contrasting residues and low or zero
scores for the rest. Using various score schemes, Karlin
and his collaborators applied this approach with success
to gene finding, identification of transmembrane protein
segments, and DNA-binding domains. For details and
other applications, see, for example, [20-22] and the refer-
ences therein.

Our interest in this paper is to identify segments of
genomic sequences with high AT content. Towards this
end, we label bases C or G as "strongly bonding" base S;
and bases A or T as "weakly bonding" base W. Under this
label, S bases (i.e., C or G) are given a score of s and W
bases (i.e., A or T) a score of w. The scores s and w will be
specified below. We next model the genomic sequence as
a realization of a sequence of independent and identically
distributed random variables, X1, X2, ..., Xn (where n is the
genome length), taking values in {s, w}. If the ith base is
labeled as W, Xi is given a score w otherwise Xi = s. We let
p := P(Xi = s) and P (Xi = w) = 1 - p (denoted by q). The
parameter p is naturally estimated by the CG percentage in
the genome. An additional constraint needed to be
imposed on the choice of s and w is that the expected score
per base μ = ps + qw has to be negative. This condition pre-
vents favoring long segments to be high scoring segments.
A moment's reflection shows that we can always standard-
ize one of the scores to be 1. Here we let w = 1 and choose
s to be a negative integer (integer-value choice due to a
technical reason as pointed out after equation (3)) so that
the expected score per base, μ = ps + qw is close to the value
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Table 1: The list of herpesviruses to be analyzed.

Virus Abbrev. Accession Length AT%

Alcelaphine herpesvirus 1 alhv1 NC_002531 130608 53
Ateline herpesvirus 3 athv3 NC_001987 108409 63
Bovine herpesvirus 1 bohv1 NC_001847 135301 28
Bovine herpesvirus 4 bohv4 NC_002665 108873 59
Bovine herpesvirus 5 bohv5 NC_005261 138390 25
Callitrichine herpesvirus 3 calhv3 NC_004367 149696 51
Cercopithecine 
herpesvirus 1

cehv1 NC_004812 156789 26

Cercopithecine 
herpesvirus 2

cehv2 NC_006560 150715 24

Cercopithecine 
herpesvirus 8

cehv8 NC_006150 221454 51

Cercopithecine 
herpesvirus 9

cehv7 NC_002686 124138 59

Cercopithecine 
herpesvirus 15

cehv15 NC_006146 171096 38

Cercopithecine 
herpesvirus 16

cehv16 NC_007653 156487 24

Cercopithecine 
herpesvirus 17

mmrv NC_003401 133719 47

Equid herpesvirus 1 ehv1 NC_001491 150224 44
Equid herpesvirus 2 ehv2 NC_001650 184427 43
Equid herpesvirus 4 ehv4 NC_001844 145597 50
Gallid herpesvirus 1 gahv1 NC_006623 148687 52
Gallid herpesvirus 2 gahv2 NC_002229 174077 56
Gallid herpesvirus 3 gahv3 NC_002577 164270 46
Human herpesvirus 1 hsv1 NC_001806 152261 32
Human herpesvirus 2 hsv2 NC_001798 154746 30
Human herpesvirus 3 vzv NC_001348 124884 54
Human herpesvirus 4 ebv NC_007605 171823 41
Human herpesvirus 5 
(AD169)

hcmv NC_001347 230287 43

Human herpesvirus 5 
(Merlin)

hcmv-m NC_006273 235645 42

Human herpesvirus 6 hhv6 NC_001664 159321 58
Human herpesvirus 6B hhv6b NC_000898 162114 58
Human herpesvirus 7 hhv7 NC_001716 153080 63
Human herpesvirus 8 hhv8 NC_003409 137508 47
Ictalurid herpesvirus 1 ichv1 NC_001493 134226 43
Meleagrid herpesvirus 1 mehv1 NC_002641 159160 52
Murid herpesvirus 1 mcmv NC_004065 230278 41
Murid herpesvirus 2 rcmv NC_002512 230138 39
Murid herpesvirus 4 muhv4 NC_001826 119450 53
Macaca fuscata 
rhadinovirus

mfrv NC_007016 131217 48

Ostreid herpesvirus 1 oshv1 NC_005881 207439 61
Ovine herpesvirus 2 ohv2 NC_007646 135135 47
Pongine herpesvirus 4 ccmv NC_003521 241087 38
Psittacid herpesvirus 1 pshv1 NC_005264 163025 39
Saimiriine herpesvirus 2 sahv2 NC_001350 112930 65
Suid herpesvirus 1 shv1 NC_006151 143461 26
Tupaiid herpesvirus 1 thv NC_002794 195859 34

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002531
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001987
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001847
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002665
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_005261
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_004367
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_004812
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_006560
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_006150
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002686
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_006146
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_007653
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_003401
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001491
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001650
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001844
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_006623
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002229
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002577
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001806
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001798
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001348
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_007605
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001347
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_006273
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001664
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_000898
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001716
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_003409
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001493
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002641
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_004065
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002512
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001826
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_007016
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_005881
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_007646
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_003521
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_005264
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_001350
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_006151
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_002794
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of -0.5 (where we adopt Karlin's choice of expected value
as in [21]). In other words, w := 1 and

where μ = -0.5 and N·Q denotes the integer floor function.

Excursions and their values
We next compute the cumulative scores and seek to iden-
tify segments of the genome that have significantly high
scores. As we are only interested in segments with positive
additive scores, we reset our cumulative scores to zero
whenever it becomes negative.

The excursion scores Ei's are defined recursively as

E0 = 0, Ei = max{Ei-1 + Xi, 0}, for 1 ≤ i ≤ n.

Using this recursive definition, we are able to construct
"excursions" for each of the genomes. An excursion starts
at a point i where Ei is zero and ends at j > i where Ej  is the
very next zero. The score then stays at zero until it first
becomes positive again for the start of the next excursion.
The value of an excursion is defined to be the peak score
during the course of that particular excursion.

Distribution of the Maximal Aggregate Score
For each value of x, the maximal aggregate score

satisfies

where λ* is the unique positive solution to the equation

 = peλs + qeλw = 1 and K* is a parameter given by

an explicit series expansion (See [23]).

When X is an integer-valued variable of span δ, we have a
simpler expression for K* ([23]):

where

For the simple score scheme with values {-m, ..., -1, 0, 1}
occurring with probabilities {p-m, ..., p-1, p0, p1} we have,

K- = (e-λ* - e-2λ*) E (Xeλ*X).

We can set the left hand side of Equation (2) to some pre-
determined significance level, say P = 0.05 or 0.01, and

solve for x. A segment with score exceeding 

is then said to be significant at the 100P% level.

In this paper, we use K- in place of K* in Equation (2) for
a "conservative" estimate of the probability and K+ for a
"generous" one.

We use Equation (2) with P = 0.05 and P = 0.01 to get
M0.05 and M0.01 respectively. If the value of an excursion
exceeds the critical value M0.05 (or M0.01), then the seg-
ment from the beginning of the excursion up to the base
where the peak value is realized is said to be a high-scoring
segment (HSS) significant at the 5% (or 1%) level.

HSS Selection
For each of the genomic sequences listed in Table 1, we
obtain a set of HSS, significant at the 5% (or 1%) level. In
each set of HSS, it is common to find several of them
located close to one another. We thus apply a filtering pro-
cedure so that, if this happens, we shall only select one of
several neighboring excursions as a representative for that
part of the genome. In fact, we first sort all the HSS accord-
ing to their aggregate scores. Starting with the one with the
highest value, say segment A, we 'discard' neighboring
HSS that are within 2 map units of it. After that, we pick
among the rest (not including segment A and the dis-
carded HSS), the HSS with the next highest value, say seg-
ment B, and repeat the process. Only the representative
segments A, B, and so forth, will be used in replication ori-
gin prediction.

Results and Discussion
HSS Tables and Excursion Plots
Table 2 lists the HSS for each herpesvirus in Table 1. We
have also tried locating high-scoring segments by running
the excursions from the 3' end to 5' end of the genome.
The results obtained are not much different from the
"vanilla" version (i.e., from 5' to 3').

For visualizing the locations of the selected HSS relative to
the entire genome, the excursion plot is a convenient tool.
The excursion plot of the Human Herpesvirus 3 (vzv) is

s
qw

p
: ,= −⎢

⎣
⎢

⎥

⎦
⎥

μ (1)

M En
k n

k=
≤ ≤
max
1

P M
n

x K en
x> +⎛

⎝
⎜

⎞

⎠
⎟ ≈ − − −ln

exp{ },*

λ
λ

∗
∗1 (2)

E e Xλ 1( )

exp{ } liminf
ln

*

limsup
ln

− ≤ − <⎛
⎝⎜

⎞
⎠⎟

≤ −

+
− ∗

→∞

→∞

K e P M
n

x

P M

x

n
n

n
n

λ
λ

 

 
nn

x

K e x

λ
λ

*

exp{ },*

<⎛
⎝⎜

⎞
⎠⎟

≤ − −
−

K
e

K K
e

K− + −
=

−
=

−

λ δ λ δ
λ δ λ δ

*
*

*
*

* *
, .

1 1
 (3)

M
n

xP = +ln
*λ
Page 5 of 12
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:163 http://www.biomedcentral.com/1471-2105/8/163
Table 2: Herpesviruses : HSS at 5% level using the conservative bound.

HSS HSS
Virus Start Peak Value Virus Start Peak Value

alhv1 1204 1370 54 ebv 11854 11950 45
32478 32850 48 77111 77150 24
113630 113684 46 43158 43235 23
85923 85992 45 ehv1 20348 20431 47
72999 73115 44 134195 134276 36
125691 125726 31 65055 65126 35

athv3 8827 8892 40 99301 99374 34
bohv1 100410 100484 26 11034 11141 32

109702 109730 25 105796 105862 30
128487 128515 25 73653 73746 27
16593 16626 21 113818 113849 25
113720 113738 18 149310 149341 25
124479 124497 18 110314 110352 23

29 45 16 128924 128992 23
58542 58569 15 ehv2 160281 160518 102

bohv4 60687 60826 35 86522 86622 76
bohv5 68440 68507 49 53843 54012 61

113549 113583 28 140661 140826 57
129429 129463 28 4580 4655 51

592 616 21 171454 171529 51
86191 86215 21 95342 95440 50
102074 102106 17 10772 10820 48
92511 92535 15 39893 39977 48
120935 120959 15 177646 177694 48
59921 59938 14 113310 113399 47
17408 17433 13 134709 134772 45
41883 41899 13 166114 166207 42

calhv3 70131 70198 31 45831 45965 41
ccmv 50872 50973 50 15443 15482 39

158344 158701 45 19722 19845 39
95375 95603 39 182317 182356 39
3519 3602 35 153977 154145 36
24084 24156 33 123321 123362 35
182982 183136 31 147222 147341 35
14314 14370 23 34816 34884 29
177170 177247 23 76380 76454 29
189041 189075 22 103167 103223 29
147310 147384 20 64344 64402 25

cehv1 116723 116836 53 786 831 24
92092 92118 26 ehv4 109852 110086 60
61680 61700 20 19878 19943 50
132785 132805 20 132383 132462 49
149415 149435 20 105284 105365 48
52055 52075 17 23895 24016 43
42984 43006 16 3984 4110 42
11389 11407 15 73340 73509 37
24415 24441 14 98849 98930 33

cehv15 11965 12011 28 46612 46674 32
114927 114988 19 10630 10697 31

cehv16 92913 92940 23 58833 58906 31
62970 62991 21 82616 82701 31
133468 133489 21 127230 127351 31
149813 149834 21 112929 112967 29
8303 8331 20 145082 145120 29

118685 118713 20 gahv1 24852 24890 30
53056 53100 18 gahv2 106724 106811 35
25423 25473 16 gahv3 11168 11198 27
1717 1736 15 122384 122414 27
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114861 114890 15 134414 134461 26
125280 125299 15 162999 163046 26
30975 30991 14 58953 58999 25

cehv2 7681 7738 33 hcmv 3402 3542 41
115791 115848 33 186855 186995 41
61483 61503 20 16757 16915 35
129527 129547 20 96685 96824 34
144461 144481 20 11713 11808 32
90857 90884 19 198116 198171 31
51884 51910 14 173560 173599 30
93873 93887 14 210724 210781 30
112292 112320 14 26361 26475 27

cehv7 86167 86296 37 108222 108303 24
cehv8 149643 149720 33 159296 159380 24

15671 15733 30 71011 71055 23
29233 29278 29 226192 226230 23
163766 163806 28
177904 178092 28
89538 89589 27

hcmv-m 3798 3939 42 mfrv 128046 128640 114
181238 181334 33 23139 23374 109
97069 97206 32 2488 3068 106
173950 173994 32 32573 33752 84
216020 216077 30 64296 64454 62
203400 203456 29 111496 111624 44
17082 17297 26 72739 72809 43
12060 12145 25 53766 53825 32
157590 157726 25 69912 70061 32

hhv6 130410 130501 59 114828 114860 32
3605 3712 51 mmrv 2388 2967 111

154838 154945 51 23902 24187 108
137079 137210 43 33761 35136 103

hhv6b 132997 133163 62 130346 131085 97
139482 139569 51 65611 65853 56

3911 3988 37 74140 74204 37
157232 157309 37 71311 71462 31

hhv7 134169 134376 117 117507 117551 29
128589 128984 70 112930 113033 28

hhv8 136287 136704 93 muhv4 6000 6037 29
982 1125 44 ohv2 115365 115545 72

58833 58906 28 126823 127116 68
23547 23598 27 118943 118988 42
30712 30775 27 72630 72699 36
119416 119467 27 1269 1370 29
106412 106452 25 27589 27633 29

hsv1 62465 62485 20 76335 76370 26
35000 35034 19 79158 79265 26
115242 115303 19 oshv1 73292 73460 64
131990 132008 18 35416 35493 61
144115 144142 18 146021 146164 55
11705 11734 17 190174 190312 54
52753 52818 17 195928 196026 54
96047 96069 16 201648 201786 54
136146 136162 16 23065 23135 50

hsv2 5584 5628 35 161395 161505 50
121621 121665 35 2682 2735 49
52978 53003 19 180276 180329 49
91716 91747 19 108068 108173 45
146600 146631 19 171433 171549 44
95238 95256 18 67872 67975 43
48761 48778 17 114689 114763 42
62919 62939 17 pshv1 18751 18791 31
132691 132711 17 121452 121486 31

Table 2: Herpesviruses : HSS at 5% level using the conservative bound. (Continued)
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81195 81220 16 160685 160719 31
99337 99370 15 130332 130365 27

ichv1 6068 6290 81 151806 151839 27
121738 121960 81 23896 23942 22
104134 104399 70 134013 134049 21
17065 17333 58 78233 78256 20
132735 133003 58 rcmv 150923 151612 92

451 726 50 207600 207980 80
116121 116396 50 143617 144150 74
60752 60845 30 178241 178326 37
42919 43007 28 214638 214702 37
20109 20187 24 219069 219153 33
10016 10063 23 201767 201885 28
125686 125733 23 161797 161929 27

mcmv 155163 156341 125 171828 171870 27
24072 24108 21

161228 161391 40 sahv2 28533 28613 45
115543 115640 37 shv1 63862 63892 24
102865 102960 35 96251 96275 21
79497 79573 34 114686 114715 20
15628 15724 33 129607 129636 20
144170 144290 33 50382 50407 19
73525 73579 27 75955 75984 17
39209 39248 24 16151 16172 15
92997 93036 24 33045 33063 15
219239 219282 22 109083 109098 15

mehv1 NIL 135503 135518 15
8432 8455 14

thv 168842 168927 25
24153 24200 23
28257 28286 17

vzv 2574 2785 39
110195 110227 32
119669 119701 32

Entries in italics are significant at 1% too.

Table 2: Herpesviruses : HSS at 5% level using the conservative bound. (Continued)
presented in Figure 1, where the AT excursion values are
plotted against the bases along the genome. The general
appearance of Figure 1 is typical of the excursion plots for
all the herpesviruses analyzed. In the case of vzv, three
peaks with excursion values exceeding the 5% significance
level are observed. Two of these peaks are close to the
centers of the only two known replication origins of vzv
(see Table 3).

Prediction Performance
The high-scoring segments are checked against known
replication origins in herpesviruses to evaluate their per-
formance as a prediction tool. Table 3 lists all the known
replication origins for the herpesviruses in Table 1. These
origins are reported either in published literature or Gen-
Bank annotations. For each replication origin, we list the
HSS (at 5% level) closest to it. For this table we had used
the "conservative" estimate for the value of K* (See Equa-
tions (2) and (3)). When the peak of an HSS is less than 2
map units (one map unit is one percent of the genome
length) away from the center of a replication origin, we
say that our method has correctly predicted that particular

The Excursion Plot of the vzv virusFigure 1
The Excursion Plot of the vzv virus. The horizontal line 
corresponds to the 5% significant level. The two triangles 
denote the locations of known replication origins of the vzv.
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replication origin. From Table 3, we see that of the 43 rep-
lication origins known, compiled from literature or anno-
tations, 32 of them are close to HSS that have been
identified.

We had also tried using the "generous" estimate for K* at
the 5% and 1% level of significance. Table 4 gives a sum-
mary of the performance of our prediction scheme when
those bounds were used. The first two columns of the
table gives the sensitivity level and positive prediction value
of our scheme. Sensitivity refers to the percentage of repli-
cation origins predicted by our method, and PPV (positive
predictive value) the proportion of HSS that correctly pre-
dict replication origins. APD (average predictive distance),
given in map units (± one standard deviation), shows the
average of the distances (in map units) between the center
of each replication origin and the HSS that predicts it.
Note that the APD values say that on average, when a pre-
diction by an HSS is successful, the replication origin is
about 0.35 map units away from it. We have also done
some simple analysis of the location of the center of each
replication origin with respect to the HSS closest to it. We
count the number of times the center of replication origin
falls within the left, right or center of the HSS. The col-
umns %L, %R, and %C in Table 4 give these proportions.
Our results show that the origin falls within the center of
the HSS half the time.

Comparison with Other Approaches
How does the AT excursion method compare with the
sliding window approach using palindrome based scoring
schemes previously presented in [12]? Since the BWS1
scheme has been shown to perform best among the vari-
ous palindrome based schemes, we have examined the
numbers of replication origins correctly predicted by AT
excursion and by BWS1. The results are summarized in
Figure 2.

The majority of the 43 known origins in the herpesviruses
listed in Table 1 are predicted by both methods and most
of the remaining ones are predicted by one method or the
other. Only four of the origins fail to be predicted by
either method. This suggests that the AT excursion
method and the BWS1 scheme complement each other
very well.

There are certain advantages in the AT excursion approach
over BWS1. First, AT excursion does not require any
sequence specific parameters to be prescribed by the user.
It is window size free because it does not require any slid-
ing window to measure AT concentration. Moreover,
while the palindrome based methods require the specifi-
cation of a minimal palindrome length before the analysis
can be carried out, no such parameter is needed for AT
excursion. Second, the AT excursion method is statistically

Table 3: Prediction results at 5% level using the conservative 
bound.

Nearest HSS
Virus Ori Center Start Peak Value Prediction

bohv1 111190 109702 109730 25 Yes
bohv1 127028 128487 128515 25 Yes
bohv4 97996.5 60687 60826 35 No
bohv5 113312 113549 113583 28 Yes
bohv5 129701 129429 129463 28 Yes
cehv1 61690.5 61680 61700 20 Yes
cehv1 61893.5 61680 61700 20 Yes
cehv1 132795.5 132785 132805 20 Yes
cehv1 132998.5 132785 132805 20 Yes
cehv1 149425.5 149415 149435 20 Yes
cehv1 149628.5 149415 149435 20 Yes
cehv16 62981 62970 62991 21 Yes
cehv16 133479 133468 133489 21 Yes
cehv16 149824 149813 149834 21 Yes
cehv2 61493.5 61483 61503 20 Yes
cehv2 129537.5 129527 129547 20 Yes
cehv2 144471.5 144461 144481 20 Yes
cehv7 109636.5 86167 86296 37 No
cehv7 118622.5 86167 86296 37 No
ebv 8313.5 11854 11950 45 No
ebv 40797 43158 43235 23 Yes
ebv 143825.5 77111 77150 24 No
ehv1 126262.5 128924 128992 23 Yes
ehv4 73909.5 73340 73509 37 Yes
ehv4 119471.5 112929 112967 29 No
ehv4 138577.5 132383 132462 49 No
gahv1 24871.5 24852 24890 30 Yes
hcmv 93923.5 96685 96824 34 Yes
hhv6 67805 130410 130501 59 No
hhv6b 69160.5 132997 133163 62 No
hhv7 66991.5 128589 128984 70 No
hsv1 62475 62465 62485 20 Yes
hsv1 131999 131990 132008 18 Yes
hsv1 146235 144115 144142 18 Yes
hsv2 62930 62919 62939 17 Yes
hsv2 132760 132691 132711 17 Yes
hsv2 148981 146600 146631 19 Yes
rcmv 77318 24072 24108 21 No
shv1 63878 63862 63892 24 Yes
shv1 114701 114686 114715 20 Yes
shv1 129901 129607 129636 20 Yes
vzv 110218.5 110195 110227 32 Yes
vzv 119678.5 119669 119701 32 Yes

For each replication origin, we list the high-scoring segment (at 5% 
level) closest to it. When the peak of a high-scoring segment is less 
than 2 map units away from the center of a replication origin, we say 
that our method has correctly predicted that particular replication 
origin.
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based, as the probabilistic distribution has already been
established [20-22]. This allows the statistical significance
for HSS be evaluated easily.

We also note that the more elaborate AT excursion
approach performs better than the simpler procedure of
measuring the percentage of A and T bases on a sliding
window in terms of number of correct predictions and the
proximity of these predictions to the true origins. Out of
the 43 known replication origins for the herpesviruses in
Table 1, 32 are correctly predicted by AT excursion but
only 28 by AT sliding window plot. Furthermore, the box-
plots of the predictive distances (Figure 3) of the AT excur-
sion approach suggests that the predictions given by the
AT excursion approach are much closer to known replica-

tion origins as compared to those of the AT sliding win-
dow plot approach. (In fact, the predictive distances of the
AT excursion approach compared to that of the PLS and
BWS1 approaches mentioned in [12] are observably
shorter. See Figure 3.) This suggests that the excursion val-
ues might more correctly capture the essence of A/T abun-
dance variation along genomic sequences.

Herpesvirus Replication Origins Alignment and Motif 
Finding
One might ask whether or not the nucleotide sequences
around replication origins in various viruses of the same
family share sufficient similarities so that the origins can
be identified by sequence alignments and motif finding
techniques. We therefore extracted the nucleotide
sequences of the known herpesvirus origins according to
their documented locations for closer examination. These
sequences are available as supplementary materials on the
companion website. A multiple alignment using CLUS-
TAL W [24] and motif searches using MEME and MAST
[25,26] have been conducted for the herpesvirus origin
sequences. No significant sequence similarity or common

Predictive Distances for PLS, BWS1, AT-swp and AT excur-sionFigure 3
Predictive Distances for PLS, BWS1, AT-swp and AT 
excursion. These boxplots show the predictive distances 
for PLS, BWS1, AT-swp and AT excursion.
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Table 4: Prediction Performance Summary.

Significance Sensitivity PPV APD %L %R %C

5% (C) 74% 22% 0.34 ± 0.57 16% 31% 53%
5% (G) 86% 17% 0.35 ± 0.53 24% 30% 46%
1% (C) 67% 25% 0.31 ± 0.52 14% 34% 52%
1% (G) 74% 18% 0.34 ± 0.57 16% 31% 53%

(C) indicates that the "Conservative" bound is used while (G) indicates that the "Generous" bound is used. Sensitivity refers to the percentage of 
replication origins predicted by our method, and PPV (positive predictive value) the proportion of HSS that correctly predict replication origins. 
APD (average predictive distance), given in map units (± one standard deviation), shows the average of the distances between the center of each 
replication origin and a HSS that predicts it in map units. %L, %R and %C count the number of times the center of replication origin falls within the 
left, right or center of the HSS.

Predictions of AT excursion and BWS1Figure 2
Predictions of AT excursion and BWS1. In this figure, 
the set A consists of origin replications predicted by the AT 
excursion method and B consists of those predicted by the 
BWS1 method. A � BC = {cehv71, cehv72, ehv41, hsv21, hsv22, 
hsv23}, AC � B = {cehv162, cehv163, ebv1, ebv3, hhv6, hhv6b, 
rcmv}, (A ∫ B)C = {bohv4, ehv42, ehv43, hhv7}. The rest of 
the replication origins (26 of them) are predicted by both 
methods. Note that for viruses with several known replica-
tion origins, such as the hsv2, which has three (see Table 3), 
we denote the replication origins as hsv21, hsv22, hsv23, etc.
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motif pattern across all the origin sequences has been
found, agreeing with the findings of [11,13,14].

What if we first classify these nucleotide sequences accord-
ing to some classification schemes, will the members
within each class share noticeable sequence similarities?
We classified the origins according to (i) the sub-family of
the virus (herpesviruses are classified into the alpha, beta,
and gamma sub-families by their biological properties
[27]), (ii) the type of origin (i.e., whether the origin is a
oriL, oriLyt or oriS). We ran MEME and MAST separately
on the sequences in each sub-family/type of origins to
detect common motif patterns. From the outputs under
classification (i), we note that the origins from the alpha
sub-family can be further divided into two groups. Each
group has a common motif pattern across its members.
For the beta and gamma sub-families, no distinct patterns
can be found. However, the rcmv and ebv origins contain
many repeat patterns. For classification (ii), we find that
both the oriL and oriLyt origins contain sequence motifs
common to a number of their members. No motif was
found for oriS sequences. The results of our motif search
are made available in the supplementary materials.

Although our investigations are preliminary, the motifs
found in these subsets of herpesvirus genomes may sug-
gest new information that can be incorporated into the
replication origin prediction procedures.

Other Families of Viruses
Aside from the herpesviruses, we have also applied the AT
excursion method to search for HSS in the poxviruses and
iridoviruses. These two viral families are chosen because,
like the herpesviruses, they are large, complex dsDNA
viruses with no RNA stage. Their genome lengths are also
similar in magnitude to those of the herpesviruses.

Poxviruses infect a large variety of animal species that
gather in swarms and herds (e.g., mosquitoes, cows).
Smallpox is a major disease caused by the variola virus, a
member of the poxvirus family. Smallpox was eradicated
in 1977 by preventive inoculations with cowpox or vac-
cinia viruses through the dedicated efforts of the World
Health Organization and many individuals. In the recent
few years, as the threat of the variola virus being used as a
biological weapon is raised, there is growing interest in
further studying poxviruses for biodefense purposes
[28,29]. Iridoviruses are found in a variety of fish,
amphibians, and reptiles. Some iridoviruses have been
associated with serious diseases (e.g., viral erythrocytic
necrosis of salmonids), while others have only been
found in apparently healthy animals (e.g., goldfish irido-
virus). Iridovirus infection is considered a serious concern
in modern aquaculture, fish farming, and wildlife conser-
vation [30].

Amongst these two families, only one genome, namely
the Chilo iridescent virus, has documented replication
origin locations [31]. Our method has correctly predicted
one of these locations. Due to the lack of confirmed origin
locations, prediction accuracy cannot be tested on these
families. Nevertheless, our predictions may assist
researchers to investigate these viruses experimentally to
identify and confirm the exact locations of replication ori-
gins in their genomes. We have, therefore, made our pre-
diction results available at [1].

AT excursion applied to larger genomes
To gauge whether the AT excursion approach can poten-
tially be generalized to predict replication origins for non-
viral genomes, we apply it to several archaeal and bacterial
genomes which have been previously analyzed. From
[4,5,32] we are able to compile a list of 15 known or sug-
gested replication origins (11 known, 4 suggested). Using
the AT excursion method, we manage to correctly predict
9 of the replication origins (6 known, 3 suggested).
Although our studies are preliminary, the results show
that the AT excursion method can work reasonably well
even on larger genomes.

Conclusion
This paper introduces the AT excursion method to quan-
tify local AT abundance in genomic sequences. The simple
and intuitive idea of locating regions with high AT content
as potential replication origin sites proves to be effective
in identifying several replication origins not previously
predicted. This shows that the AT excursion approach is a
valuable addition to existing prediction tools. However,
we have also observed that quite a number of the statisti-
cally significant HSS found by AT excursions are not close
to replication origins. Whether these HSS correspond to
other important functional sites in the genomic sequences
remains an interesting question to be investigated.

The availability of statistical significance criteria and the
independence of ad hoc parameters like the minimal pal-
indrome length and sliding window size make the AT
excursion method particularly easy to apply to those viral
genomes where no replication origin information in sim-
ilar and related genomes is available. On the other hand,
if such information is available, the AT excursion method
is not capable of taking advantage of it. To address this
issue, machine learning approaches (e.g., neural networks
and support vector machines), which better allow us to
use knowledge in related genomes, are currently being
explored. We anticipate that a combination of score based
statistics with machine learning approaches will provide a
highly accurate prediction tool set for replication origins.
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