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Abstract

Background: There exist many segmentation techniques for genomic sequences, and the
segmentations can also be based on many different biological features. We show how to evaluate
and compare the quality of segmentations obtained by different techniques and alternative
biological features.

Results: We apply randomization techniques for evaluating the quality of a given segmentation.
Our example applications include isochore detection and the discovery of coding-noncoding
structure. We obtain segmentations of relevant sequences by applying different techniques, and use
alternative features to segment on. We show that some of the obtained segmentations are very
similar to the underlying true segmentations, and this similarity is statistically significant. For some
other segmentations, we show that equally good results are likely to appear by chance.

Conclusion: We introduce a framework for evaluating segmentation quality, and demonstrate its
use on two examples of segmental genomic structures. We transform the process of quality
evaluation from simply viewing the segmentations, to obtaining p-values denoting significance of
segmentation similarity.

Background

Segmental structure of various scales exists in genomic
sequences. Many evolutionary and genetic mechanisms
leading to variation in DNA operate on segments of the
genome (duplications and inversions of segments, recom-
binations). Furthermore, eukaryotic chromosomes con-
sist of alternating regions of gene-rich and gene-poor
regions. A gene-rich region can be further decomposed
into non-coding segments, segments that contain regula-
tory information, and genes, which in turn consist of
introns and exons. Also, remnants of viral or microbial
inserts in a genome form a type of segmental structure.

There are many types of features with which one can seg-
ment the sequences. For any given technique, there may
exist alternative biological features to segment on. For
example, if the goal is to identify coding and noncoding
segments in a sequence, one may study the distribution of
three-letter words (codons) along the sequence to deter-
mine where to set the segment boundaries. An alternative
would be, for example, to segment on the frequency of
nucleotides in each third position, as done in [1].

There are also many possible segmentation techniques for
discovering the segmental structure in DNA sequences.
The techniques include recursive segmentation methods
[1-7], Bayesian methods [8,9], hidden Markov models
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[10-13], and wavelet analysis [14], among others. For a
review of various approaches, see [15].

If a reliable annotation of the underlying segmental struc-
ture exists, it is of interest to find out which feature set and
segmentation method give a result closest to the true seg-
mental structure. This can give insight into the biological
process that is responsible for creating and maintaining
the segmental structure. Furthermore, the segmentation
technique and feature set that is the best on an annotated
sequence may also yield results close to true segmental
structure on unannotated data.

In order to find differences between segmentations one
has to define a notion of similarity or distance between
them. In this paper we describe the distance between two
segmentations P and Q by two numbers - conditional
entropy of P given Q, and vice versa. For a  similar
approach to comparing clusterings see Meild [26]. Condi-
tional entropy is an information theoretic measure that
quantifies the amount of information that one segmen-
tation gives about the other. The sum of these two con-
ditional entropies also defines the entropy distance
between the two segmentations. Ideally, we want both
terms in the sum to be small, instead of only requiring
their sum to be small. We give an example of how this
makes a difference when comparing segmentations. By
using this measure we can easily rank a set of segmenta-
tions with respect to their distance from the underlying
true segmentation, if one is known.

The sum of these two conditional entropies also defines
the entropy distance between the two segmentations. Ide-
ally, we want both terms in the sum to be small, instead
of only requiring their sum to be small. We give an exam-
ple of how this makes a difference when comparing seg-
mentations. By using this measure we can easily rank a set
of segmentations with respect to their distance from the
underlying true segmentation, if one is known.

Knowing the best segmentation technique and feature set
for a given sequence is still not enough. Namely, one can-
didate segmentation could be better than the other candi-
dates, but all could still be quite far from the true one.
That is, we want to find out if the best result is in some
sense significant. The problem of deciding segmentation
significance has been addressed before in the case where
the sequence data itself is known [9]. Our approach does
not rely on the sequence data, since it takes as input only
the set of segmentations we want to evaluate. Our tech-
nique is therefore more general, and also applies to cases
where the segmentations are obtained by using alternative
biological features. To our knowledge, the issue of signif-
icance of segmentation similarity has not been considered
before.

http://www.biomedcentral.com/1471-2105/8/171

We test the significance of segmentation similarity by gen-
erating random segmentations and computing the dis-
tances between the underlying true segmentation and the
randomized segmentations. If a random segmentation is
about as close to the true one as our candidate segmenta-
tion is, then the agreement between the true segmentation
and our candidate one is not very interesting. Note that in
our randomization approach we do not make any
assumptions regarding the properties of a good segmenta-
tion, but only consider the values of conditional entropies
summarizing the similarity between two segmentations.
To define a randomization procedure, we have to specify
the class of segmentations from which we sample random
elements. In this paper we use two classes of segmenta-
tion: (a) segmentations that have a given k number of seg-
ments, and (b) segmentations that have the same number
of segments and the same segment-length distribution as
the true segmentation.

We apply this randomization technique to examples on
coding-noncoding structure and to isochore detection.
The results show that the small distances obtained by
some segmentation techniques and biological features are
indeed significant, while for others, the obtained segmen-
tations are only as similar to the ground truth as a major-
ity of the randomly generated segmentations.

Results and discussion

In this section we show the results of our randomization
techniques for evaluating the discovered segmentations in
two examples of genomic sequences for which a segmen-
tal structure is already known.

Example I: Coding-noncoding structure

Discovering the locations of genes in a DNA sequence is
an important task to which computational methods give
different predictions. In this example, we evaluate the
closeness of different segmentation results to known gene
boundaries.

We used a dataset consisting of a 25 kb region of bacte-
rium Rickettsia prowazekii [16] (positions 535 - 560 kb),
containing 13 coding segments. The correct number of
segments in the data is 25 (13 genes separated by 12 non-
coding segments [GenBank:AJ]235269]). We denote the
correct underlying segmentation into coding and noncod-
ing regions by T.

We applied the encoding scheme described in [1] to trans-
form the DNA sequence into a 12-dimensional signal.
This encoding of the sequence captures the codon usage,
see [1] and references therein. The segmentation tech-
niques we applied are the entropic segmentation (E) by
Bernaola-Galvan et al. [1] and the least squares segmenta-
tion method (L). In the entropic segmentation the input
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is split recursively until no more significant splits can be
found. The optimal least squares segmentation with k seg-
ments is computed with a dynamic-programming algo-
rithm [17]. Note that the entropic segmentation decides
on the number of segments, while the least-squares
method takes the number of segments as input. The entro-
pic segmentation method found 19 segments (at 99% sig-
nificance level) for this dataset, outputting segmentation
E_;. The least squares method for k = 25 output segmenta-
tion L.

We additionally applied the least squares method on six
other features: frequencies of 2-letter words
(AAAC,... IT), 1-letter words (A,C,G,T), and each nucle-
otide separately (A;C;G;T). We denote these features by
{2,1, A, C, G, T} respectively. The sequences we con-
structed in such a way correspond to a 16-dimensional, a
4-dimensional and four 1-dimensional signals. Each
point in these sequences corresponds to the frequency of
a feature in an 10 bp window. We divided the sequence
into 2500 non-overlapping windows.

The obtained segmentations are shown in Figure 1, along
with the known boundaries T. We use E;and Ly to denote
the output of the entropic and the dynamic-programming
algorithm on a sequence obtained using feature f. From
the figure its hard to conclude which one of the output
segmentations is the closest to T and whether the same
measure of agreement could arise by chance.

To evaluate the significance of our findings we applied the
randomization tests described in the Methods section. We

generated random segmentations from classes Cy; and
CN 1¢ - The distributions of conditional entropies H (R|T)
and H (T|R) for R € Cyj, forand R € Cyp,, in 10,000

randomizations are shown in Figure 2. The conditional
entropies and the empirical p-values are given in Table 1.
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The values p€ and p,, correspond to the p-values obtained
by € and k-randomizations respectively. From the figure
and the table we see that segmentations L, E_; L,and L,
and Lyare all closer to the ground truth segmentation than
would be expected by chance. For any of the above seg-
mentations, the values of the two conditional entropies
(see Table 1) are much lower than those appearing in the
two randomization tests. On the other hand, segmenta-
tions L, and L. should not be considered similar to T.
Although H (L,|T) and H (L|T) are small, the values of H
(T|L,) and H (T|L) do occur often in the randomization.
Thus segmentations L, and L., fail one of the two rand-
omization tests and are not considered to be close to the

ground truth. In this example, the choice between Cy,
and Cpyp,, does not make a difference in deciding the sig-

nificance.

Example 2: Isochore structure

Isochores are large (>> 300 kb) DNA segments fairly
homogeneous in their guanine and cytosine (G+C) con-
tent. Exactly defining isochore borders in the human
genome remains an open problem, but different compu-
tational approaches exist. Isochores are discussed in bio-
logical literature already since [18]. In our experiments we
used a dataset consisting of the 100 Mb short arm telom-
eric region of human chromosome 1 ([19]). Unlike in the
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Figure |

Rickettsia prowazekii segmentations. Rickettsia prow-
azekii segmentations and true segmentation T. E_: entropic
segmentation method with codon frequencies [I]. L least-
squares segmentation with features f; f € {cd, 2, |, A, C, G, T}
indicate the codon feature, frequencies of 2-letter words, |-
letter words, and frequency of A, C, G, or T, respectively.

Figure 2

Randomization of Rickettsia prowazekii segmenta-
tions. Randomization of Rickettsia prowazekii segmentations:
conditional entropies. E_;: entropic segmentation method
with codon frequencies. L¢ least-squares segmentation with
features f; f € {cd, 2, |, A, C, G, T} indicate the codon feature,
frequencies of 2-letter words, |-letter words, and frequency
of A, C, G, or T, respectively.
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Table I: Conditional entropies and their significances for segmentations on coding-noncoding data

P H (TIP) pe H (PIT) pt Pr
Ly 0219 0 0.284 0 0
E, 0.286 0 0.143 0 0
L 0.473 0 0.353 0 0

L 0.566 0.0018 0.0005 0.364 0 0
Ly 0.879 0.1642 04219 0.466 0 0
L 1212 [ 0.9770 0512 0 0.0001
le 0.738 0.0522 0.0732 0.849 0.1195 0.0661
Ly 0.455 0 0.289 0 0

Conditional entropies and their significances for segmentations on coding-noncoding data. E_: entropic segmentation with codon features. Ly least-

squares segmentation with features f; f € {cd, 2, |, A, C, G, T} indicate the codon feature, frequencies of 2-letter words, |-letter words, and

frequency of A, C, G, or T, respectively, p{: the fraction of segmentations from Cp; j, o with a smaller value of the conditional entropy in 10,000

randomizations; p;: the fraction of segmentations from Cpy j, with a smaller value of the conditional entropy in 10,000 randomizations.

previous example, there is no well defined biological
annotation of the segmental (isochore) structure of this
genomic region. We consider as the ground truth segmen-
tation T results by Costantini et al. [20] and alternatively
results by IsoFinder [7]. These results differ considerably
in their segment number (k = 114 vs k = 1305), reflecting
genomic structures at different granularities. We also
study segmentations on the major histocompatibility
(MHC) region in chromosome 6, for which some biolog-
ically validated isochore boundaries are known. To gener-
ate candidate segmentations, we use the least squares
dynamic programming algorithm (L) described in the pre-
vious example, with the same number of segments as the
in respective T.

First, we consider the segmentation results by Costantini
et al. [20] as the ground truth segmentation T, in which
there are 114 segments. For generating candidate segmen-
tations, we aggregated the data into 100 kb windows
(obtaining 1000 data points). We use L, to denote the

output segmentation of the least squares method on the
signal summarizing the G+C content of the sequence.
Besides the G+C content we also applied the least-squares
method on the six features we considered in the previous
section. Therefore, we again constructed the sequences on
features {2, 1, A, C, G, T}, that correspond to the frequen-
cies of 2-letter words (AA,AC,...,TT), 1-letter words
(A,C,G/T), and each nucleotide separately (A;C;G;T). The
segmentations are shown in Figure 3, along with the cho-
sen reference segmentation T. Again, it is not immediately
clear which one of the segmentations is closest to T. The
conditional entropies and the corresponding p-values for
¢ and k-randomizations are shown in Table 2. Figure 4
shows the distributions of conditional entropies H (R|T)

and H (T|R) for R € Cyj, forand R € Cy ¢ in 10,000

randomizations. Segmentations L,
significantly close to T. This is somehow expected given
the importance of G and C concentration in the isochore

structure. Note that segmentation IF,,, as a high entropy

L, L, Lyand L are

segmentation, has a significantly small value of H (T|IF,,),
but the value of H (IF,|T) is by far larger that the entropy
of H (R|T) for any random segmentation R.

Next we consider IsoFinder [7] results as the ground truth
segmentation T, with k = 1305. We generated least squares
candidate segmentations Lf with this k and the same fea-
tures f as in the previous case, the only difference being
that here the sequence was aggregated into 10 kb windows
(obtaining 10,000 data points). The segmentations are
shown in Additional File 1, along with the chosen refer-
ence segmentation T. It is not clear from the figure which
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S T 1 T R | 1L TN T
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Figure 3
Isochore segmentations. Isochore segmentations of
Chromosome | 100 Mb region with k = | 14 and reference

segmentation T from [20]. L;: least-squares segmentation
with features f; f € {gc, 2, |, A, C, G, T} indicate frequencies of
G+C, 2-letter words, |-letter words, and frequency of A, C,
G, T, or G+C, respectively.
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Table 2: Conditional entropies and their significances for isochore segmentations with 114 segments

P H (TIP) pt Px H (PIT) pe P
L 0.740 0 0 0.683 0 0
L, 0.688 0 0 0.771 0 0
L, 0.750 0 0 0.778 0 0
L, 0.937 0.0352 0.0389 0.876 0.0010 0.0090
Lc 0.797 0 0 0.684 0 0
Le 0.836 0.0002 0.0004 0.821 0.0001 0.0005
Ly 0.984 0.1758 0.1748 0.840 0.0002 0.0010
Conditional entropies and entropy distances for segmentations on isochore structure, for the ground truth segmentation from [20] with k = 1 14. L¢

least-squares segmentation with features f; f € {gc, 2, |, A, C, G, T} indicate frequencies of G+C, 2-letter words, |-letter words, and frequency of A,

C, G, or T, respectively, p{: the fraction of segmentations from Clel[ with a smaller value of the conditional entropy in 10,000 randomizations;

p: the fraction of segmentations from Cj;j, with a smaller value of the conditional entropy in 10,000 randomizations.

of the segmentations, if any, are close to T. The distribu-
tions of conditional entropies H (R|T) and H (T|R) for R
€ Cyy forand R € Cy s in 10,000 randomizations are

also shown in the Additional File 1. In this case, the signif-
icance results depend on the choice of k-versus €-rand-
omization: if the former is chosen, all the candidate
segmentations are significantly close to T. This means that
the least squares segmentations are indeed significantly
closer to T than segmentations with randomly assigned k
boundaries. In the case of £-randomization, we find that
H (R|T) < H (Lf|T) for all our candidate segmentations Lf.
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Figure 4

Randomization of isochore segmentations. Randomi-
zation of Chromosome | isochore segmentations with k =

I 14: conditional entropies. L least-squares segmentation
with features f; f € {gc, 2, |, A, C, G, T} indicate frequencies of
G+C, 2-letter words, |-letter words, and frequency of A, C,
G, or T respectively.

Thus all segmentations Lf are far from T. The reason is that
the segment length distribution of T is far from the distri-
bution for any Lf, and this prevents the candidate segmen-
tations from being significantly close to T.

We also study the major histocompatibility (MHC) region
in chromosome 6 ([21]). The 3.67 Mb region contains
two experimentally validated isochore structures [22]. The
known MHC isochore boundaries are around 1.8 Mb, 2.5
Mb and 3.4 Mb. We studied predictions from wavelet
multiresolution analysis by Wen and Zhang [14] (k = 7),
results by Costantini et al. [20] (k = 6), and predictions by
the tool IsoFinder [23] (k = 8), choosing in turn each one
of these as the ground truth and thus performing three
randomization experiments. We used least squares seg-
mentations (with k = 7) as alternative candidate segmen-
tations (as discussed earlier, with window size 100 kb).
The segmentations and results from the randomization
tests are shown in Additional File 2. The randomization
tests show that all segmentations, except in some cases
those for features A and T, are significantly close to the
chosen ground truth segmentation. In particular, all the
ground truth segmentations are found to be significantly
close to each other.

Conclusion

In biological sequence analysis, there exist situations
where many alternative segmentations for the underlying
biological structure are proposed. We give a framework
for evaluating the quality of results produced by different
segmentation methods. Our approach also applies to
cases where the segmentations are obtained by using alter-
native biological features, as we base our analysis only on
the segment boundaries. Applicable segmentation dis-
tance measures and randomization tests are discussed,
and results are shown for two applications of segmenting
genomic data.
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Methods

Comparing segmentations

We first give some intuition for our segmentation-com-
parison method and provide some basic definitions. Con-
sider a sequence S with length |S| = N and a segmentation
P of S. The segmentation partitions the sequence into k
non-overlapping and contiguous intervals that span the
whole sequence and they are called segments. A segmenta-
tion P with k segments can be fully defined using (k + 1)
segment boundaries p,...,p,, where p; € S, p; <p;,, for every

i, and p,= 0 and p, = N. The i-th segment of P, denoted by
p; . is defined to be the interval p; = (p,;, p;]. Each seg-
ment p; consists of |p; | points that correspond to the

length of the segment.

Consider now segmentation P of consisting of k segments

P={p,,...0;} . If we randomly pick a point x on the

sequence, then the probability that x e p; is

()=

Since the segments cover the whole

sequence we have ZE-G PPr(f)i) =1. Therefore, we can

define the entropy of a segmentation P to be

k
H(P) = - Pr(p;)logPr(p;).
i1

The maximum value that the entropy of a segmentation
can have is log N.

Consider now a pair of segmentations P and Q of
sequence S. Assume that P and Q have k, and k, segments,

respectively, such that P = {;_71,...,13kp } and Q= {q, ...,ﬁkq }.

The conditional entropy [24] of P given Q is defined as fol-
lows.

kﬂ

. Pr(@)H(P| 7;)

j=1

k, b )

= =, Pr(q;). Pr(p; | 4;)logPr(p; | 4;)
j=1 i=1
k"i kl’ _ _

= =, > Pr(p;,q;)logPr(p; | ;).

j=1i=1

H(P|Q)

That is, the conditional entropy of segmentation P given
segmentation Q is the expected amount of information
we need to identify the segment of P a point belongs to,
given that we know the segment of this point in Q.

http://www.biomedcentral.com/1471-2105/8/171

The following lemma gives an efficient algorithm for com-
puting the conditional entropies between two segmenta-
tions. The algorithm runs in time O (k, + k).

Lemma 1. Let P and Q be two segmentations. Denote by U
their union, i.e., the segmentation defined by the segment
boundaries that appear in P or in Q. The conditional entropy of
P given Q, H (P|Q), can be computed using the following
closed formula

H (P|Q) = H (U) - H (Q).

Proof. Assume that segmentation P has k, segments

{1_71/-~-fl_7kp} and segmentation Q has k, segments

{9,, ...,ﬁkq } . Using Equation (1) we can obtain the desired

result. That is,

k/? kll
=33 Pe(p;, d;)log(Pr(p; | 4;))
i=1 j=1
kP kll
= =Y\ Pr(p;,;)log(Pr(p;.q;))
i=1 j=1
kp kq
+3 ' Pr(p;, 4;)log(Pr(7;))

i=1 j=1

H(P|Q)

kq kp
= H(U)+ Y log(Pr(q;)). Pr(p;.4;)
i=1

j=1
kﬂ

= H(U)+ Y log(Pr(q;))Pr(q;)
j=1

= H(U)-H(Q).

Intuitively, the entropy of P given Q tells us how much
information we obtain about P, if we know that that we
are in a specific segment of Q. The more information Q
reveals about the structure P, the more similar segmenta-
tions P and Q are, and the smaller the value of H (P|Q).

The single value H (P|Q) does not give the whole picture
of segmentation similarity, however. For example, con-
sider the case where segmentation Q consists of a single
segment. Then, using Lemma 1 we can verify our intuition
that knowledge about Q gives us no information about P,
i.e, H (P|Q) = H (P). However, notice that H (Q|P) = 0,
for any P.

Consider also the case where Q consists of N segments
where each segment has length 1. In this case, H (P|Q) =
0, that is, Q gives lots of information about P, irrespective
of the structure of P. As before, observe that H (Q|P) = log
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N - H (P). Thus, if P has low entropy, the value of H (Q|P)
is large.

The above examples show that the similarity of two seg-
mentations P and Q cannot be judged just by the single
value H (P|Q) or H (Q|P). Rather, we can conclude that
segmentations P and Q are similar only if both H (P|Q)
and H (Q|P) are small. Even when using the entropy dis-
tance between two segmentations (see [25]), defined as
Dy (P, Q) = H (P|Q) + H (Q|P), we can get small values to
segmentations that are quite different. We show in the
experimental section that considering the two conditional
entropies separately gives more accurate results than using
their sum.

Randomization techniques

Consider a segmentation algorithm that given as input
sequence S outputs a segmentation P. The plethora of seg-
mentation algorithms and segmentation criteria naturally
raises the question of how good and how informative seg-
mentation P is. Assume that we a priori know a ground-
truth segmentation T of S. Then, we can say that segmen-
tation P is good if P is similar to T. Thus, using the defini-
tions in the Methods section, P is a good segmentation if
H (P|T) and H (T|P) are small. However, a natural ques-
tion is how small is small enough? Or, is there a threshold
in the values of the conditional entropies below which we
can characterize segmentation P as being correct or inter-
esting? Finally, can we set this threshold universally for all
segmentations? In this section we describe a set of rand-
omization techniques that we devise in order to provide
an answer to these questions.

Our generic methodology is the following. Given a seg-
mentation P and a ground-truth segmentation T of the
same sequence, we first compute H (P|T) and H (T|P). We
compare the values of these conditional entropies with
the values of the conditional entropies H (R|T) and H
(T|R) for a random segmentation R. We conclude that P is
similar to T, and thus interesting, if the values of H (P|T)
(and H (T|P)) are small compared to the values of H (R|T)
(and H (T|R)) for a large majority of random segmenta-
tions R.

Consider a class Cp of segmentations for sequences of
length N. Then, the randomization test is conducted as
follows. Pick random segmentations R € Cp . For each
such R compute H (T|R), and compare H (T|P) against the
distribution of the values H (T|R). Similarly, compute the
values of H (R|T) for a large number of segmentations R
€ Cxn and compare these values with the value of H (P|T).

In general, if segmentations T and P have a very different
number of of segments, one of H (T|R) and H(R|T) will be

http://www.biomedcentral.com/1471-2105/8/171

large for any R from Cp;. The randomization method we

describe is best suited for the case when T and P have
about the same number of segments.

We still need to specify the class Cy of segmentations

from which the random segmentations are picked. We
define two classes of segmentations. Intuitively, the first
class is used for checking if the candidate segmentation P
is significantly closer to T than random segmentations R
with the same number of segments as in T. Imagine that
the segmentation procedure that generated P has knowl-
edge of the segment number in T. By using this class we
find out if it is enough to guess a segmentation as close to
T as P is, by just randomly assigning a correct number of
segment boundaries. The other class is used similarly, for
checking if the knowledge of T's segment length distribu-
tion is enough to generate segmentations as close to T as
P. An analog is found in classification problems, where
the true class labels in T are permuted to check if the can-
didate classification P offers more insight into T than we
would expect from guessing a random classification R.

In the first case, if T has k segments, then we restrict the
random segmentations to those that have k segments as

well. We denote by Cy, the class of all segmentations

with k segments that partition sequences of length N. We

h [ N n
ave [Cyl= ((k 1) (k1)

choose k - 1 segment boundaries from the N points of the
sequence (the first and the last boundary are always
fixed). We call the randomization test in which the ran-

), since there are [ ] ways to

dom segmentations R € Cy j, a k-randomization test.

We also introduce the €-randomization test, specified as fol-

lows. Consider a segmentation T with segments {,..., ,} -

Each segment t; has length | i; | and these lengths define

a distribution of the segment lengths of the segmentation.
There are a total of at most k! segmentations that have the
same segment lengths as T does (maximized when all seg-
ments in T have different lengths). For a given distribution

of segment lengths € we denote by Cy;;,, the class of seg-
mentations with &k segments and lengths €. Obviously,
CN k¢ © CNJ and Cy ¢ <k!, since the segmentations in
CN 1 - differ only in the order in which the segments with

different lengths appear. Note that for a random segmen-

tation R € Cyy, ¢, the conditional entropies w.r.t. segmen-
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tation T are equal, i.e., H (T|R) = H (R|T). This follows
from the fact that H (T) = H (R), since both segmentations
contain exactly the same segments. The €-randomization
restricts our attention to random segmentations with seg-
ment length distribution being the same as the segment-
length distribution of the ground-truth segmentation T.
That is, the significance of H (T|P) and H (P|T) for a can-
didate segmentation P are evaluated under the assump-
tion that the segment-length distribution is known. In the
special case where all segments in T have the same length,
the segment length distribution uniquely characterizes the
segmentations R € Cy ¢ . In this case H (T|R) = H (R|T)

= 0. Moreover, any segmentation P that does not have
equal-length segments has H (P|T) > 0 and H (T|P) > 0
and thus is considered far from the ground truth w.r.t. the
¢-randomization test.
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