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Abstract
Background: Detection of adaptive amino acid changes in proteins under recent short-term
selection is of great interest for researchers studying microevolutionary processes in microbial
pathogens or any other biological species. However, independent occurrence of such point
mutations within genetically diverse haplotypes makes it difficult to detect the selection footprint
by using traditional molecular evolutionary analyses. The recently developed Zonal Phylogeny (ZP)
has been shown to be a useful analytic tool for identifying the footprints of short-term positive
selection. ZP separates protein-encoding genes into evolutionarily long-term (with silent diversity)
and short-term (without silent diversity) categories, or zones, followed by statistical analysis to
detect signs of positive selection in the short-term zone. However, successful broad application of
ZP for analysis of large haplotype datasets requires automation of the relatively labor-intensive
computational process.

Results: Here we present Zonal Phylogeny Software (ZPS), an application that describes the
distribution of single nucleotide polymorphisms (SNPs) of synonymous (silent) and non-
synonymous (replacement) nature along branches of the DNA tree for any given protein-coding
gene locus. Based on this information, ZPS separates the protein variant haplotypes with silent
variability (Primary zone) from those that have recently evolved from the Primary zone variants by
amino acid changes (External zone). Further comparative analysis of mutational hot-spot
frequencies and haplotype diversity between the two zones allows determination of whether the
External zone haplotypes emerged under positive selection.

Conclusions: As a visualization tool, ZPS depicts the protein tree in a DNA tree, indicating the
most parsimonious numbers of synonymous and non-synonymous changes along the branches of a
maximum-likelihood based DNA tree, along with information on homoplasy, reversion and
structural mutation hot-spots. Through zonal differentiation, ZPS allows detection of recent
adaptive evolution via selection of advantageous structural mutations, even when the advantage
conferred by such mutations is relatively short-term (as in the case of "source-sink" evolutionary
dynamics, which may represent a major mode of virulence evolution in microbes).
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Background
Amino acid replacements in proteins may be advanta-
geous in the course of an organism's adaptation to chang-
ing conditions in an established habitat or upon its spread
into a novel habitat [1,2]. Such recently-acquired muta-
tions may occur independently in genetically distinct
allelic backgrounds, in small numbers per allele and in
different protein regions. This makes it difficult to detect
the signals of adaptive SNPs using traditional molecular
evolutionary analyses, such as Ka/Ks (DN/DS) ratio [3],
Tajima D [4] or Fu & Li D* [5] statistics, primarily due to
an overwhelming level of pre-existing neutral SNPs (both
synonymous and non-synonymous) in the loci under
selection [6]. Additionally, the adaptive mutations may
provide only short-term advantage to the organisms. This
occurs in the course of so-called 'source-sink' dynamics of
evolution, where species populations are continuously
spreading from established, evolutionarily-stable reser-
voir habitats (sources) into novel, evolutionarily-untested
habitats (sinks) that commonly are transient in nature [7].
In these cases, mutational adaptation to sink habitats may
constitute a liability upon the collapse of sink habitat, due
to functional trade-offs that these mutations generally
demonstrate in the reservoir source habitat. The source-
sink dynamic is characteristic, for example, of pathogenic-
ity-adaptive (pathoadaptive) evolution of microbial path-
ogens [6,8].

We have recently developed Zonal Phylogeny (ZP) analy-
sis, to detect adaptive amino acid changes in proteins
under selection during short-term habitat adaptation [6].
Along each branch in a DNA tree, we indicate the number
of synonymous and non-synonymous mutation informa-
tion. Then, the synonymous-only branches are collapsed
in the tree and the DNA tree is converted to a protein tree
where each node corresponds to a evolutionarily unique
structural variant. This minimizes the effect on the protein
tree of nucleotide homoplasy and reversion events that
obscure phylogenetic relationships of protein variants. ZP
then separates structural variants of the protein into two
categories, or zones: those encoded by multiple haplo-
types (i.e., differing from each other by only synonymous
SNPs) are assigned to the Primary zone, while each of the
variants encoded by a single unique haplotype is assigned
to the External zone. Accumulation of synonymous sub-
stitutions in genes that encode proteins from the Primary
zone indicates their circulation over extended evolution-
ary time, thereby suggesting evolutionary stability of the
protein variants. On the contrary, the External zone vari-
ants would have evolved relatively recently, because syn-
onymous variation is yet to accumulate within the
encoding genes.

The External zone variants are likely to be under positive
rather than neutral or purifying selection (i.e. with muta-

tions being of adaptive rather than of neutral or slightly
deleterious nature) when: (i) their number is higher than
expected relative to the frequency of Primary zone variants
[6]; (ii) the amino acid replacements are more commonly
occur in same positions (structural hot spots) [6]; (iii)
silent SNPs along the connecting branches are relatively
rare [6], and (iv) haplotype diversity (based on size and
frequency of haplotypes) of the External zone is signifi-
cantly higher than in neutrally-evolving genes [9]. Such
statistical comparisons of the two zones show the unam-
biguous signature of positive selection in, for example,
fimH and papG-II (encoding adhesin genes of mannose-
and digalactose-specific fimbriae of uropathogenic strains
of Escherichia coli respectively), but not in genes from the
same strains that are involved in either fimbrial biogenesis
or housekeeping functions [6,9].

Here, we present Zonal Phylogeny Software (ZPS) that
computerizes ZP. ZPS uses DNA tree topology and haplo-
type alignment of a gene under analysis to recreate the
DNA-based phylogeny, to demarcate the number of syn-
onymous (or silent) and non-synonymous (or structural)
changes along each branch, to separate haplotype nodes
into Primary and External zones, and then to provide
zone-wise information on amino acid substitutions, struc-
tural hot-spots and haplotype diversity.

Implementation
The ZPS program presented here can be downloaded as
zps.pl [see Additional file 1] to be run in command
prompt under Windows environment. The attempt is, at
one hand, to design a visualization tool to have insights
onto a gene phylogeny based on distribution of synony-
mous vs. non-synonymous SNPs, and on the other hand,
to incorporate quantitative statistical measures of recent
adaptive evolution based on ZP analysis [9].

Inputs
Two input files are used: (i) a DNA alignment in FASTA
format (e.g., <filename> .fasta) [see Additional files 2 and
3] using a DNA alignment software, such as ClustalX [10];
and (ii) a maximum-likelihood DNA tree topology (e.g.,
<filename> .ml.tre) [see Additional files 4 and 5] generated
by PAUP* [11]. In the representative haplotype name, the
user should only use alphanumeric characters (i.e. only
decimal digits and alphabets). To allow for haplotype
size/frequency-based analysis, duplicate haplotypes need
to be removed in the input files, but with the user marking
haplotypes with multiple representatives in the dataset by
n< no. of representatives> . For example, if seqA, seqB and
seqC haplotypes are identical, the user should use seqAn3
(or seqBn3 or seqCn3) as input. If there is a single repre-
sentative of a haplotype, the user can use the name as it is
and the program would be able to detect it as 'n1'.
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Outputs
There is one tree output – "zp_tree.dnd" where each node
name (for example, 'E4-seqA-n3-2S/1N-A77D' or 'P3-
seqE-n8-5S/0N') depicts (i) haplotype separation to either
the External ('E') or Primary ('P') zone, with intermediate
hypothetical (unresolved) nodes marked as 'H'; (ii) fol-
lowed by an arbitrary number assigned to a protein vari-
ant encoded by the haplotype (e.g. 'E4' or 'P3'); (iii)
original name of the representative haplotype and the
user defined number of haplotypes that are identical to it
in the dateset (e.g. 'seqA-n3' or 'seqE-n8'), with ZPS auto-
matically adding '-n1' to the haplotypes with single repre-
sentatives; (iv) number of synonymous(S)/non-
synonymous(N) SNPs along the connecting branch (e.g.
'2S/1N' or '5S/0N'), and (v) specification of amino acid
changes due to the non-synonymous SNPs (e.g. 'A77D').
The ZPS output tree can be viewed with tree-presenting
software, like TreeView [12] or HyperTree [13]. The latter

application also enables usage of color coding to visually
distinguish different type of haplotypes and branches.
Keeping HyperTree in mind, ZPS generates an additional
color-code file, for the output tree file, to color-code the
Primary and the External zone representatives. Two color-
codes have been used: blue for all the Primary zone hap-
lotypes that exhibit same-protein silent variability and red
for all the External zone representatives. To color-view
"zp_tree.dnd" in HyperTree, the user needs to 'import
colors' calling "color-zp_tree.txt" file.

There are two analytical outputs: "pairwise-variation.txt"
and "analysis-results.txt". The former file details the posi-
tions and specific changes along each branch in the tree,
while the latter presents (i) the Primary and External zone
representatives; (ii) haplotype ratio (as a ratio of the
number of External zone haplotypes to the total number
of haplotypes in the dataset); (iii) position-wise structural

Comparative view of ZPS-generated trees for fumC and fimH genes of E. coli [9]Figure 1
Comparative view of ZPS-generated trees for fumC and fimH genes of E. coli [9].
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mutation information, both overall and zone-based struc-
tural hot-spot frequency (as a ratio of the number of hot-
spot structural mutations to the total number of structural
mutations), and (iv) calculations of α and Simpson's
diversity statistics [9].

Results and Discussion
ZPS has been extensively tested with different genes from
Escherichia coli of diverse origin [6,9,14,15], Burkholderia
cenocepacia [16], Vibrio vulnificus and hepatitis C virus gen-
otype 1 [unpublished data].

Figure 1 shows the color-coded outputs (using HyperTree)
of the ZPS tree for two genes – fumC and fimH – of E. coli
that encode housekeeping enzyme fumarase C and man-
nose-specific surface adhesin FimH. Even at first glance,
one can see a relatively poorly developed External zone in
fumC that suggests the presence of strong purifying selec-
tion (as expected for a housekeeping gene). At the same
time, a massive External zone is quite evident in fimH that
indicates relatively extensive recent evolution via amino
acid changes.

The "analysis-results.txt" output includes the calculations
to compare the patterns of evolution for different genes
quantitatively, as shown in Table 1. The External zone fre-
quencies of strains, haplotypes and structural hot-spots
are significantly higher in fimH than in fumC. The diversity
measures (Simpson's index, λ, and the α index value)
show that the Primary zone λ and α values for the two
genes are comparable (p > 0.50), suggesting the presence
of long-circulated stable structural variants in the popula-
tion of both FumC and FimH. The haplotype diversity of
the Primary zone of fimH or fumC is significantly lower
than the haplotype diversity of fimH External zone, but
not of fumC External zone. In fimH, the low diversity of
the Primary zone compared to the corresponding External
zone could be hypothesized to be due to selective sweeps

or bottleneck effects. However, the increased diversity of
the fimH External zone can only be explained by positive
selection, as we found its diversity being significantly
higher than the diversity of both zones of fumC and, also,
of Primary and External zones of three other genes from
same strains – another housekeeping gene, adk, and type
1 fimbrial biogenesis genes, fimI and fimC [9]. At the same
time, relatively high diversity was shown for External zone
of papG-II gene encoding another, di-galactose-specific E.
coli adhesin, indicating that adhesin genes could be prone
to accumulation of adaptive amino acid changes under a
short-term positive selection [9].

It is noteworthy that an advantage of ZP analysis of the
haplotype diversity is that it considers both haplotype
richness (i.e. total number of unique haplotypes) as well
as frequency distribution (evenness) of these haplotypes
in a zone. The latter feature of the diversity index incorpo-
rates the idea of relative fitness of a particular haplotype
through the extent of its predominance in the sample set
(provided the set is large enough, and relatively random).

To compare performance of ZPS with other commonly
used methods for detecting signals of positive selection,
we analyzed our datasets for fumC and fimH with codeml
program implemented in the PAML package [17,18]. For
each gene, we initially used two different models: one-
ratio null model of neutral evolution (ω < 1) and one-
ratio selection model of adaptive evolution (ω > 1). For
fumC there is no difference (p = 1) between the log likeli-
hood values of neutral (lnL = -1082.13) and selection (lnL
= -1082.13) models. For fimH also, the neutral (lnL = -
2245.44) and selection (lnL = -2243.58) log likelihood
values are not statistically different (p = 0.16), though
unlike fumC, the p value shows a possible trend toward
selection. Thus, based on the entire tree, codeml was una-
ble to detect unambiguously the presence of positive
selection in fimH, demonstrating higher sensitivity of ZPS

Table 1: Comparison of ZPS statistics for two genes: fumC, expected to be under strong purifying selection against structural variation 
as a housekeeping gene, and fimH, evolving under strong positive selection through SNPs as shown for genes encoding surface adhesins 
of pathogenic bacteria. The sample includes identical datasets of 75 strains for the two genes [9]. The p-values for the diversity 
measures are based on differential zonal haplotype diversity [9], while the other significance values are derived using 2 × 2 χ 2 statistic. 
P and E denote Primary and External zones respectively

zone fumC fimH p-values

no. of strains P 69 27 < 0.0001
E 6 48

no. of haplotypes P 20 14 < 0.0001
E 3 29

zone-wise structural hot-spot frequency (no. of hot-spots/total no. of mutations) P 0.00(0/1) 0.00(0/3) 1.00
E 0.00 (0/3) 0.53 (19/36) 0.039

Simpson's index (λ) P 0.11 ± 0.01 0.12 ± 0.03 0.002
E 0.39 ± 0.10 0.07 ± 0.01

α index P 9.45 ± 1.80 11.71 ± 3.88 0.005
E 2.39 ± 1.66 31.00 ± 8.25
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in this type of analysis. Then we used branch-specific
selection model approach and assigned ω > 1 to clades
containing multiple External zone nodes. For some of
such clades on the fimH tree the log likelihood values for
the selection model either differed significantly from the
neutral model value (p < 0.0001), or differed considerably
suggesting a distinct direction of selection (p < 0.11). No
such difference was detected for the fumC clade that con-
tained two External zone nodes (p = 0.84). Thus, clade-
specific codeml analysis confirmed presence of positive
selection for non-synonymous mutations in fimH, but not
in fumC. However, unlike codeml, ZPS does not require
any preliminary knowledge about the clade composition
to detect the selection. At the same time, ZPS can be used
in combination with codeml to ease singling out of the
clades or branches on gene tree that were derived under
positive selection.

Conclusions
Synonymous mutations are generally considered to be
selectively neutral and to accumulate randomly at a con-
stant rate for a given gene. ZPS utilizes DNA trees to differ-
entiate haplotypes that have evolved with accumulation
of silent variations from those derived only through
amino acid replacements, enabling visualization of adap-
tive structural variations that have recently emerged under
positive selection. Information about the presence of
mutational hot-spots and comparative zonal statistics on
the size and frequency of various haplotypes provides
insights into the adaptive evolution of genomic loci in any
organism, from virus to human.

Availability and requirements
Project name: Zonal Phylogeny Software (ZPS)

Project home page: http://faculty.washington.edu/
sujayc/zps.shtml

Operating systems: Windows

Programming language: Perl

Other requirements: ClustalsX, PAUP* and any tree-
viewing software, e.g. TreeView or HyperTree

License: GPL https://sourceforge.net/projects/zps/
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