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Abstract

Background: ChIP-chip data, which indicate binding of transcription factors (TFs) to DNA regions
in vivo, are widely used to reconstruct transcriptional regulatory networks. However, the binding
of a TF to a gene does not necessarily imply regulation. Thus, it is important to develop methods
to identify regulatory targets of TFs from ChIP-chip data.

Results: We developed a method, called Temporal Relationship Identification Algorithm (TRIA),
which uses gene expression data to identify a TF's regulatory targets among its binding targets
inferred from ChIP-chip data. We applied TRIA to yeast cell cycle microarray data and identified
many plausible regulatory targets of cell cycle TFs. We validated our predictions by checking the
enrichments for functional annotation and known cell cycle genes. Moreover, we showed that TRIA
performs better than two published methods (MA-Network and MFA). It is known that co-
regulated genes may not be co-expressed. TRIA has the ability to identify subsets of highly co-
expressed genes among the regulatory targets of a TF. Different functional roles are found for
different subsets, indicating the diverse functions a TF could have. Finally, for a control, we showed
that TRIA also performs well for cell-cycle irrelevant TFs.

Conclusion: Finding the regulatory targets of TFs is important for understanding how cells change
their transcription program to adapt to environmental stimuli. Our algorithm TRIA is helpful for
achieving this purpose.

Background

By organizing the genes in a genome into transcriptional
regulatory modules (TRMs), a living cell can coordinate
the activities of many genes and carry out complex func-
tions. Therefore, identifying TRMs is useful for under-
standing cellular responses to internal and external
signals. Advances in high-throughput tools such as DNA
microarray [1,2] and chromatin immunoprecipitation-

chip (ChIP-chip) [3,4] have made the computational
reconstruction of TRMs of a eukaryotic cell possible.

Genome-wide gene expression analysis has been used to
investigate TRMs controlling a variety of cellular processes
in yeast [5-9]. Clustering and motif-discovering algo-
rithms have been applied to gene expression data to find
sets of co-regulated genes and have identified plausible
binding motifs of their TFs [7,10,11]. Such approaches
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have also been expanded to incorporate existing knowl-
edge about the genes, such as cellular functions [12] or
promoter sequence motifs [13]. Moreover, some research-
ers used model-based approaches such as random
Boolean networks [14] and Bayesian networks [15,16] to
infer regulatory network architectures. However, this
approach provides only indirect evidence of genetic regu-
latory interactions and does not identify the relevant TFs.

On the other hand, the ChIP-chip technique was devel-
oped to identify physical interactions between TFs and
DNA regions. Using ChIP-chip data, Simon et al. [17]
investigated how the yeast cell-cycle gene-expression pro-
gram is regulated by each of nine major transcriptional
activators. Lee et al. [18] constructed a network of TF-gene
interactions and Harbison et al. [19] constructed an initial
map of yeast's transcriptional regulatory code. However, a
weakness in the ChIP-chip technique is that the binding
of a TF to a gene does not necessarily imply regulation. A
TF may bind to a gene but has no regulatory effect on that
gene's expression. Even if a TF does regulate a specific
gene, the ChIP-chip data alone does not tell whether the
regulation is activation or repression. Hence, additional
information is required to solve this ambiguity inherent
in ChIP-chip data.

To overcome this problem, several algorithms have been
developed to combine gene expression and ChIP-chip
data to infer the regulatory targets of a TF. For instance,
NCA [20] and MA-Network [21] both use multivariate
regression analysis and MFA [22] uses modified factor
analysis of gene expression data to classify a TF's binding
targets inferred from ChIP-chip data into regulatory and
non-regulatory targets. In this paper, we use a different
approach to explore the different biological possibilities
for the same phenomenon. We develop a method, called
Temporal Relationship Identification Algorithm (TRIA),
which uses time-lagged correlation analysis between a TF
and its binding targets to identify its regulatory targets.
Our rationale is that a TF has a high time-lagged correla-
tion with its regulatory targets, but has a low time-lagged
correlation with its binding but non-regulatory targets.
Time-lagged correlation analysis has the ability to infer
causality and directional relationships between genes
[23,24]. It has also been used to reconstruct the reaction
network of central carbon metabolism [25] and the gene
interaction networks of Synechocystis sp [26]. Therefore,
time-lagged correlation analysis has the potential to be
used to identify a TF's regulatory targets from its binding
targets which may or may not be regulated by the TF.

Results

Identification of the plausible regulatory targets of a TF
Two previous papers [18,19] used a statistical error model
to assign a p-value to the binding relationship of a TF-gene
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pair. They found that if p-value < 0.001, the binding rela-
tionship of a TF-gene pair is of high confidence and can
usually be confirmed by gene-specific PCR. Therefore, we
include a gene in the set B+ if the TF-gene binding p-value
in the ChIP-chip data is < 0.001, i.e. B* consists of genes
that are significantly bound by a TF. Further, a gene in B+
is assigned into B*R+if it has a temporal relationship with
the TF but into B*R- otherwise. A TF-gene pair is said to
have a temporal relationship if the gene's expression pro-
file is significantly correlated with the TF's regulatory pro-
file possibly with time lags (see Methods). Our hypothesis
is that the genes in B*R* are more likely to be the regula-
tory targets of a TF than are the genes in B*R-. TRIA is
developed to classify B+into B*R*and B*R-.

Only a subset of the binding targets are plausible
regulatory targets of a TF

We considered nine cell cycle TFs that have both sizes of
B+*R*and B*R-> 25 (i.e. at least 25 genes in each group).
The number of genes in each group (B*R* and B*R") is
listed in Table 1. On average, 55% of significantly bound
genes are identified as the plausible regulatory targets of a
TF, similar to the result (58%) of [21], and 64% of the
inferred regulatory targets have expression profiles that
are positively correlated with the TF's regulatory profile
possibly with time lags. Moreover, only 16% of the
inferred regulatory targets and the TF are co-expressed (i.e.
identified time lag = 0). That is, 84% of the inferred regu-
latory targets may not be found if we use the conventional
correlation analysis that can only check whether a TF-gene
pair are co-expressed or not (see Additional file 1 for
details). The following analyses were performed to vali-
date our method.

Table I: Classification of the binding targets of a TF into
plausible and non-plausible regulatory ones. The numbers of
genes in B*, B*R* and B*R- are shown for each of the nine cell
cycle TFs under study. B*R* is further divided into two subsets
depending on whether the gene's expression profile is positively
(TIC > 0) or negatively (TIC < 0) correlated with the TF's
regulatory profile, possibly with time lags (see Additional file |
for details).

TF B* B*R*(TIC >0, TIC < 0) B*R-
Abfl 247 144 (85,59) 103
Ace2 8l 44 (23,21) 37
Cin5 142 69 (35,34) 73
Fkhl 133 96 (62,34) 37
Fikh2 116 90 (60,30) 26
Rapl 147 82 (61,21) 65
Swid 146 84 (66,18) 62
Swi5 106 42 (32,10) 64
Swié 144 49 (25,24) 95
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Enrichment for specific functional categories

B+*R+is shown to be more enriched than B*R- for specific
MIPS functional categories with adjusted p-value < 0.05
(after the Bonferroni correction for multiple tests) using
the cumulative hypergeometric distribution (see Addi-
tional file 2 for details). In most cases (7/9), except for
Rap1l and Swi5, the number of enriched MIPS functional
categories in B*R+is larger than that in B*R- (see Figure 1).
This result suggests that our criterion for distinguishing
the plausible from non-plausible regulatory targets of a TF
is reliable because co-regulated genes should have a
greater probability to be involved in the same functional
categories than non-co-regulated genes.

Enrichment for cell cycle genes

We compute the proportions of genes of B*R+ and B*R-
that belong to the known cell cycle genes identified by
Spellman et al. [7]. We then test whether the enrichment
of the known cell cycle genes in B*R+ is statistically higher
than that in B*R". The cumulative hypergeometric distri-
bution is used to assign a p-value for determining the sta-
tistical significance (see Appendix for details). In most
cases (7/9), except for Abfl and Ace2, the cell cycle genes
are more enriched in B*R+* than in B*R- (see Table 2). This
result also suggests that our criterion for distinguishing
the plausible from non-plausible regulatory targets of a

Abfl  Ace2 Cin5  Fkhl  Fkh2 Rapl  Swid  Swi5  Swi6
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cell cycle TF is reliable because regulatory targets of a cell
cycle TF should be more enriched for the known cell cycle
genes than should non-regulatory targets.

Taken together, the results mentioned above convincingly
demonstrate that TRIA is a good method for identifying
the plausible regulatory targets of a TF from its binding
targets.

Identifying highly co-expressed genes among the plausible
regulatory targets of a TF

It is known that co-regulated genes may not be co-
expressed [28]. Therefore, it is useful to identify highly co-
expressed genes among co-regulated genes because these
co-regulated and highly co-expressed genes should be
more likely to be simultaneously co-activated or co-
repressed by the same TF and involve in the same cellular
process.

TRIA has the ability to identify subsets of highly co-
expressed genes among the regulatory targets of a TF. First,
we use TRIA to identify the plausible regulatory targets
(B*R*) from the binding targets (B+) of a TF. Then, we clas-
sify B*R* into subsets A; and R;, where A; (R;) contains all
genes whose expression profiles are positively (nega-
tively) correlated with the TF's regulatory profile with a lag
of i time points. Finally, we test whether the expression
coherence of X; is statistically higher than that of B*R+,
where X; = A; or R;. The expression coherence of genes in a
set G (i.e. EC(G)) is defined as the fraction of gene pairs in
G with a correlation in expression level higher than a
threshold T [27]. The threshold T was determined to be
the 95t% percentile correlation value of all pairwise corre-
lations between 2000 randomly chosen genes in the yeast
genome. Note that 0 < EC(G) £ 1. The cumulative hyper-

Table 2: Enrichment of cell cycle genes. The proportions of genes
that belong to the 793 cell cycle genes identified by Spellman et
al. [7] are calculated for B*R* and B*R-. We then test whether the
enrichment of the known cell cycle genes in B*R* is statistically
higher than that in B*R-. The cumulative hypergeometric
distribution is used to determine the statistical significance (see
the Appendix for details). In most cases (7/9), except for Abfl
and Ace2, the known cell cycle genes are more enriched in B*R*
than in B*R-.

TF B*R* B*R- p-value (ng» Mg, np, my)
I Number of enriched MIPS functional categories in B'R™
Abfl 19/144 6/103 0.0439 (144,19,103,6)
I Number of enriched MIPS functional categories in B'R Ace2 |4/44 7137 0.1433 (44,14,37,7)
Cin5 24/69 11/73 0.0055 (69,24,73,11)
. Fkhl 41/96 3/37 5.9970e-005 (96,41,37,3)
Figure | Fkh2 54/90 026  3.7043e-009 (90,54,26,0)
Enrichment in functional annotation for the cell cycle Rap| 13/82 2/65 0.0092 (82,13,65,2)
TFs under study. The numbers of significantly enriched Swi4 60/84 15/62 1.2199e-008 (84,60,62,15)
MIPS functional categories in B*R* (blue) and B*R- (brown) for Swis 22/142 14/64 0.0012 (42,22,64,14)
each of the nine cell cycle TFs under study are shown. Swié 37/49  42/95 2.7593e-004 (49,37,95,42)
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geometric distribution is used to assign a p-value for
rejecting the null hypothesis EC(X;) = EC(B*R*), where X;
= A, or R, (see the Appendix for details).

Table 3 lists all subsets of X;'s that contain highly co-
expressed genes with p-value < 0.001. This result shows
that in general several groups of highly co-expressed genes
can be extracted from the co-regulated genes, consistent
with the result of [28]. These co-regulated and highly co-
expressed genes should be more likely to be simultane-
ously co-activated or co-repressed by the TF and can be
used as candidates for further experimental studies. As
shown in Table 3, different subsets may have different
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functional roles, indicating the diverse functions a TF
might have.

Performance comparison with existing methods

To identify the regulatory targets of a TF, Gao et al. [21]
developed MA-Network that uses multivariate regression
analysis of gene expression data and Yu et al. [22] devel-
oped a modified factor analysis (MFA) approach. We
compare the identified regulatory targets of the TFs that
are available in our study and at least one of the other two
studies. On average, only 53% of our identified regulatory
targets are also found by MA-Network and only 31% of
our identified regulatory targets are also found by MFA.
There is little overlap between the above three studies.

Table 3: Identification of highly co-expressed genes among the regulatory targets of a TF. The expression coherence (EC) of B*R*, A;

and R;are calculated. We then test whether the expression coherence of X is statistically higher than that of B*R-, where X;= A, or R;.

The cumulative hypergeometric distribution is used to assign a p-value for rejecting the null hypothesis EC(X;) = EC(B*R*). Only those

X{S that have p < 0.001 (i.e., -log,, p > 3) are shown (see the Appendix for details). In addition, we show the most enriched MIPS

functional category for each X;.

TF(EC(B*R*)) X; (EC(X); -log,(p-value))
Abf1(0.15) A,(0.64;Inf) A;(0.51;Inf) R,(0.34;Inf)
PROTEIN WITH TRANSCRIPTION BIOGENESIS OF
BINDING CELLULAR
FUNCTION OR COMPONENTS
COFACTOR
REQUIREMENT
Ace2(0.07) Ay(0.3155.11) A4(0.5;3.66) Ry(1;3.55)
CELL CYCLE AND REGULATION OF METABOLISM
DNA PROCESSING METABOLISM AND
PROTEIN
FUNCTION
Cin5(0.08) Ay(0.73;9.14) A(0.43;6.29) As(0.61511.63) Rq(0.76;Inf) R,(0.47;4.14)
ENERGY CELLULAR METABOLISM CELLULAR CELLULAR
TRANSPORT, TRANSPORT, TRANSPORT,
TRANSPORT TRANSPORT TRANSPORT
FACILITIES AND FACILITIES AND FACILITIES AND
TRANSPORT TRANSPORT TRANSPORT
ROUTES ROUTES ROUTES
Fkh1(0.12) Ay(0.65;11.29) A,(0.49;11.03) A,(0.27;4.18)
CELL CYCLE AND CELL TYPE CELL CYCLE AND
DNA PROCESSING DIFFERENTIATION DNA PROCESSING
Fkh2(0.16) Ay(0.69;Inf) A,(0.7;Inf) A,(0.69;11.44) A;(0.76;8.82)
CELL CYCLE AND CELL CYCLE AND CELL TYPE PROTEIN FATE
DNA PROCESSING DNA PROCESSING DIFFERENTIATION
Rap1(0.11) A,(0.58;Inf) A4(0.62;Inf) Aq(1:9.46)
PROTEIN PROTEIN UNCLASSIFIED
SYNTHESIS SYNTHESIS PROTEINS
Swi4(0.2) A(0.87;Inf) A,(0.6;Inf) A,(0.79;Inf) Ay(0.71;6.19)
CELL CYCLE AND METABOLISM CELL CYCLE AND CELL CYCLE AND
DNA PROCESSING DNA PROCESSING DNA PROCESSING
Swi5(0.17) Ay(1:7.79) A,(0.86;11.36) A4(0.64;7.78)
BIOGENESIS OF INTERACTION CELL RESCUE,
CELLULAR WITH THE DEFENSE AND
COMPONENTS ENVIRONMENT VIRULENCE
Swi6(0.23) Ay(0.9;10.18) A((0.73;4.33) A,;(0.75;8.25) R,(0.61;4.76)
BIOGENESIS OF CELL CYCLE AND METABOLISM CELL CYCLE AND
CELLULAR DNA PROCESSING DNA PROCESSING
COMPONENTS
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This is not surprising biologically since the three methods
study different biological possibilities for the same phe-
nomenon. However, since the results of the three meth-
ods are not highly congruent, a performance comparison
of these three methods should be done. Since a TF has to
bind to its regulatory targets to regulate their expressions,
enrichment of the high-confidence TF binding motifs
among the identified regulatory targets of a TF can be used
as a criterion for performance comparison. The high-con-
fidence TF binding motifs were derived using six motif
discovery methods, also including the requirement for
conservation across at least three of the four related yeast
species [19]. Let S, (T,) be the set of regulatory targets of a
TF that are identified by TRIA but not by MA-Network
(MFA) and S, (T,) be the set of regulatory targets of a TF
that are identified by MA-Network (MFA) but not by
TRIA. We tested over-representation of the high-confi-
dence TF binding motifs in S; and S, (T; and T,). The
cumulative hypergeometric distribution is used to assign
a p-value to the motif enrichment (see the Appendix for
details). We found that in four of the five (4/5) cases the
high-confidence TF binding motifs are enriched in S, with
p-value < 0.001 but only two of the five (2/5) cases in S,
are enriched (see Table 4). Similarly, we found that in six
of the eight (6/8) cases the high-confidence TF binding
motifs are enriched in T, with p-value < 0.001 but none of
the eight (0/8) cases in T, is enriched (see Table 5). The
results show that TRIA has a better ability to identify the
regulatory targets of a TF than do MA-Network and MFA.

Discussion

Many researchers used ChIP-chip data to study regulatory
networks of the yeast [17-19,29,30]. Most of them (except
[29]) regarded that a gene is regulated by a TF if the gene
is bound by the TF with a p-value <0.001 in the ChIP-chip

Table 4: Performance comparison of TRIA with MA-Network.
We tested over-representation of the high-confidence TF binding
motif in S; and S,, where S, is the set of regulatory targets ofa TF
that are identified by TRIA but not by MA-Network and S, is the
set of regulatory targets of a TF that are identified by MA-
Network but not by TRIA. The proportions of genes, whose
promoter regions contain the high-confidence TF binding motif is
calculated for S, and S,. The cumulative hypergeometric
distribution is used to determine the statistical significance of
over-representation (see the Appendix for details). In four of the
five (4/5) cases the high-confidence TF binding motifs are
enriched in S, with p-value < 0.001 but only two of the five (2/5)
cases in S,.

TF S p-value S, p-value
Abfl 46/62 0 28/56 3.0839e-011
Ace2 2/28 0.0340 2/17 0.0132
Fikh2 17/47 1.5357e-008 7/18 1.8019e-004
Swi4 16/27 6.5301e-012 6/18 0.0021
Swib 9/25 2.4141e-004 7/30 0.0171
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Table 5: Performance comparison of TRIA with MFA. We tested
over-representation of the high-confidence TF binding motif in
T, and T,, where T is the set of regulatory targets of a TF that
are identified by TRIA but not by MFA and T, is the set of
regulatory targets of a TF that are identified by MFA but not by
TRIA. The proportions of genes, whose promoter regions
contain the high-confidence TF binding motif is calculated for T,
and T,. The cumulative hypergeometric distribution is used to
determine the statistical significance of the over-representation
(see the Appendix for details). In six of the eight (6/8) cases the
high-confidence TF binding motifs are enriched in T, with p-value
< 0.001 but none of the eight (0/8) cases in T,.

TF T, p-value T, p-value
Abfl 75/105 4.0357e-012 10/106 0.9042
Ace2 1/31 0.2782 3/35 0.0056
Fkhl 30/64 3.1252e-007 5/109 1.0000
Fikh2 20/49 6.6581e-011 10/100 0.2038
Rapl 32/72 1.2579e-011 7136 0.0052
Swi4 28/56 5.3634e-012 2/36 0.7981
Swi5 7126 0.0076 4/32 0.3417
Swié 19/30 2.4500e-009 13/72 0.2932

data. However, a TF that binds to a gene may have no reg-
ulatory effect on that gene. Therefore, additional informa-
tion is required to solve this uncertainty. TRIA was
developed to overcome this problem and was applied to
gene expression and ChIP-chip data to identify the plausi-
ble regulatory targets of nine cell cycle TFs. The effective-
ness of TRIA was validated by statistically testing for the
enrichment of functional groups and known cell cycle
genes.

Since co-expressed genes are not necessarily co-regulated
and vice versa [28], it is important to develop a method
that can identify co-regulated genes that are not co-
expressed. TRIA has the ability to do this task. Through
identifying a TF's binding targets that have temporal rela-
tionships with the TF, we can find the TF's regulatory tar-
gets that may not be co-expressed. We can further identify
subsets of highly co-expressed genes among the inferred
regulatory targets according to the identified time lags and
regulatory directions. These co-regulated and highly co-
expressed genes should be more likely to be simultane-
ously co-activated or co-repressed by the TF and can be
used as candidates for further experimental studies.

TRIA has been successfully used by two previous studies to
investigate other biological problems. First, Tsai et al. [31]
developed TFBSfinder, which utilizes several data sources
(DNA sequences, phylogenetic information, microarray
data and ChIP-chip data), to identify cell cycle TF binding
sites in yeast. TRIA was used to select reliable target genes
of a TF in the first step of their algorithm. The target gene
selection is a important step that strongly enhances the
performance of TFBSfinder [31]. Since the performance of
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TFBSfinder is shown to be better than three well-known
TF binding site identification algorithms (AlignACE,
MDscan and MEME) [31], this confirmed that TRIA does
have ability to identify the plausible regulatory targets of
a'TF. Second, Wu et al. [32] developed MOFA, which inte-
grates gene expression and ChIP-chip data, to reconstruct
transcriptional regulatory modules (TRMs) of the yeast
cell cycle. TRIA was used as the first step of MOFA to refine
the noisy raw ChIP-chip data and construct a binding
score matrix. The quality of the binding score matrix
strongly affects the performance of MOFA [32]. The TRMs
identified by MOFA was validated by using existing exper-
imental data, enrichment for genes in the same MIPS
functional category, known DNA-binding motifs, etc. In
addition, MOFA is capable of finding many novel TF-tar-
get gene relationships and can determine whether a TF is
an activator or/and a repressor [32]. Since MOFA can
reconstruct biologically relevant TRMs of the yeast cell
cycle, this also attests to the usefulness of TRIA.

In this paper, TRIA is used to identify regulatory targets of
cell cycle TFs. For a control, we show that TRIA can also
perform well for cell-cycle irrelevant regulators. In this
regard, we apply TRIA to identify regulatory targets of TFs
that are activated by amino acid starved stress. The
genome-wide gene expression and ChIP-chip data under
amino acid starved growth condition are download from
[8,19]. As shown in Figure 2, in most of the cases, B*R*is

I Number of enriched MIPS functional categories in B'R”

I Number of enriched MIPS functional categories in B R

Figure 2

Enrichment in functional annotation for the stress
response TFs under study. The numbers of significantly
enriched MIPS functional categories in B*R* (blue) and B*R-
(brown) for each of the 27 amino acid starved stress TFs
under study are shown.

http://www.biomedcentral.com/1471-2105/8/188

more enriched than B*R- for specific MIPS functional cat-
egories with adjusted p-value < 0.05 (after the Bonferroni
correction for multiple tests) using the cumulative hyper-
geometric distribution. This result suggests that TRIA per-
formed well for cell-cycle irrelevant TFs.

The development of TRIA was motivated by two biologi-
cal observations. First, it is known that TF binding affects
gene expression in a nonlinear fashion: below some level
it has no effect, and above some level the effect may satu-
rate. This type of behavior can be modeled using a sig-
moid function. Therefore, we define a TF's regulatory
profile as a sigmoid function of its expression profile as in
previous studies [33-35]. Although this may not be true
for TFs that are activated at the post-translational stage
[20,36], it is not a serious problem for many cell cycle TFs
whose expression levels significantly varies with times,
indicating that they are under transcriptional control
[24,33,34,37-39]. Second, the regulatory effect of a TF on
its target genes may not be simultaneous but has a time
lag [23,24,26,35,37,38,40-42]. This makes TRIA more
general than previous studies [20-22,28] that regard a
gene to be regulated by a TF only when the gene's expres-
sion profile are co-expressed with the transcription factor
activity (TFA) profile. Actually, we found that TRIA per-
formed better than two previous algorithms (MA-Net-
work and MFA) [21,22]. This may result from the fact that
TRIA is designed for cell cycle TFs and also considers a
time-lagged correlation between a cell cycle TF and its reg-
ulatory targets.

In this study, we use time-lagged correlation analysis
between a TF and its binding targets to identify its regula-
tory targets. However, in some cases, TFs may interact with
each other and together regulate a group of target genes.
This issue will be addressed in the future. We will try to
define an overall regulatory profile of a TF complex and
apply TRIA to identify target genes that are co-regulated by
the same TF complex.

Conclusion

An algorithm called TRIA is developed to identify the
plausible regulatory targets of a TF from its binding tar-
gets. Since the binding of a TF to a gene does not necessar-
ily imply regulation, TRIA is used to solve this ambiguity.
We validated the effectiveness of TRIA by checking the
enrichments for functional annotation and known cell
cycle genes. Moreover, the performance of TRIA was
shown to be better than two published methods (MA-Net-
work and MFA). Moreover, TRIA has the ability to identify
subsets of highly co-expressed genes among the regulatory
targets of a TF. In addition, TRIA has been successfully
applied to identify high-confidence cell cycle TF binding
sites [31] and to reconstruct transcriptional regulatory
modules of the yeast cell cycle [32]. Finally, for a control,
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TRIA is shown to perform well for cell-cycle irrelevant TFs.
In conclusion, TRIA can find biologically relevant results
and should be useful for systems biology study.

Methods

Data sets

Three types of data are used in this study. First, the ChIP-
chip data of the cell cycle TFs under the rich media are
downloaded from [19]. Second, the gene expression data
of the yeast cell cycle are downloaded from [7]. Although
itis an old data set, it is still the best cell cycle data set that
are available in the public domain. Genes that have only
one missing point in their gene expression profiles are
reconstructed by the spline algorithm [43], but genes that
have more than one missing value in their gene expression
profiles or have no ChIP-chip data are excluded. Third, the
genome-wide distribution of the high-confidence TF
binding motifs was downloaded from [19]. The high-con-
fidence TF binding motifs were derived by using six motif
discovery methods, with the requirement for conservation
across at least three of four related yeast species [19].

Temporal Relationship Identification Algorithm (TRIA)
Temporal Relationship Identification Algorithm (TRIA) is
developed to identify TF-gene pairs that have a temporal
relationship. A cell cycle TF and its binding target are said
to have a positively (negatively) temporal relationship if
the target gene's expression profile is significantly posi-
tively (negatively) correlated with the TF's regulatory pro-
file possibly with a time lag. It is known that TF binding
affects gene expression in a nonlinear fashion: below
some level it has no effect, and above some level the effect
may become saturated. This type of behavior can be mod-
eled using a sigmoid function. Therefore, we define a TF's
regulatory profile as a sigmoid function of its expression
profile as in previous studies [33-35].

Let X =(xy, ..., Xy) be the gene expression time profile of
cell cycleTFxand y = (yy, ..., yy) be the expression profile
of gene y. The regulatory profile RP(x ) = (f(x;), ..., fxy))

of TF x is defined as a sigmoid function:

1

[ = —mm V2N

where x is the sample mean and s is the sample standard

deviation of X . Compute the correlation between y and

RP( x ) with a lag of k time points [24,25]:

N-k N-k N—k
k) =| Y, (isr ~7)(f(x)— ) ] / U > ik -7 \/ > (f(x) - ) ] k=01,.,L
i=1 i=1

i=1
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N-k
7é( 2 Yitk J/N_k)f
i=1

N-k
n é[ 2 f(x) ]%N—k) and L is the maximal time lag
i=1

where

of the TF's regulatory profile considered. In this study, we
set L = 8 meaning that we compute the correlation
between a gene and a TF with all possible time lags that
are less than one cell cycle. The time lag may be inter-
preted as the time for a TF to have a regulatory effect on a
gene.

Then we test the null hypothesis H: (k) = 0 and the alter-
native hypothesis H;: (k) # 0 by the bootstrap method
(see the Appendix) and get a p-value p(k). The time-lagged
correlation (TIC) of y and RP( X ) is defined as r(j) that
has the smallest p-value (i.e. TIC(y , RP(x)) =r(j) if p(j) <
p(k) Yk #j). Note that -1 < TIC(y , RP(x)) < 1. Two pos-
sible temporal relationships between y and RP(X) can
be identified by TRIA: y and RP( X ) are (1) positively cor-
related with a lag of j time points if TIC(y , RP( X)) = r(j)
> 0 &P(j) < Prireshola @nd (2) negatively correlated with a lag
of j time points if TIC(y , RP(x)) = 1(j) < 0 &(j) < Prhreshold-
The pryresnoid 18 chosen to ensure that we have at most a 5%
false discovery rate (FDR) [44]. We may consider that TF
x, after a lag of j time points, activates (represses) gene y if
y and RP( x ) are positively (negatively) correlated with a

lag of j time points.

Appendix

Statistical test used in Table 2

We want to test whether the enrichment of the known cell
cycle genes (identified in [7]) in B*R* is statistically higher
than that in B*R-. Following Banerjee and Zhang [27], a
model based on hypergeometric distribution is used.

n, Y m n, { N—-n,
my \my | (mg \ M—m,
n, +ny B N
m, +my M
where N = n, + n,, M = m, + my, n,(n,) is the number of

genes in B*R+ (B*R"), m,(m,) is the number of the known
cell cycle genes in B*R* (B*R"), and

We calculate:

P(mafmb'”a'nb) =
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Mg )a n,!
my, mg,!(n, —my)!

Then, we consider all possible combinations of x,, x; such

that z X = Z m; =M and sum all probabilities
i={a,b} i={a,b}

calculated as above where x, > m,, which is taken as the p-

value for rejecting the null hypothesis that enrichment of
the known cell cycle genes in B*R* is not statistically
higher than that in B*R".

n, \ N-n, n, \ N-n,
!x ' M-x ma’llx ' M-x ]
p=P(x, 2m,)= Z 2 2 /=1~ 2 a

I

(A1)

X, 2m,

Statistical test used in Table 3

The expression coherence (EC) of sets B+R+, A; and R; are
calculated, where A; (R;) contains all genes in B+R* whose
expression profiles are positively (negatively) correlated
with the TF's regulatory profile with a lag of i time points.

We want to test whether the expression coherence of X; is
statistically higher than that of B*R-, where X; = A, or R;.
The p-value for rejecting the null hypothesis EC(X;) =
EC(B*R*) (the alternative hypothesis is EC(X;) >
EC(B*R*)) is defined as in Equation (A1). N is the number
of gene pairs in B*R*, M is the number of gene pairs in X;,
where X; = A; or R, n, is the number of gene pairs in B*R+
that have correlations higher than the threshold T, and m,
is the number of gene pairs in X; that have correlations
higher than the threshold T.

Statistical tests used in Tables 4 and 5

The proportions of genes whose promoter regions contain
the high-confidence TF binding motif are calculated for S,
(T,) and S, (T,), where S, (T)) is the set of regulatory tar-
gets of a TF that are identified by TRIA but not by MA-Net-
work (MFA) and S,(T,) is the set of regulatory targets of a
TF that are identified by MA-Network (MFA) but not by
TRIA. Only 5 TFs (Abf1, Ace2, Fkh2, Swi4, Swi5) are stud-
ied for both TRIA and MA-Network. Only 8 TFs (Abfl,
Ace2, Fkh1, Fkh2, Rap1l, Swi4, Swi5, Swi6) are studied for
both TRIA and MFA.

The high-confidence TF binding motifs were derived by
using six motif discovery methods, under the requirement
for conservation across at least three of the four related
yeast species [19]. The yeast genome has 6229 ORFs. Only
817 genes contain Abfl binding sites, 65 genes contains
Ace2 binding sites, 461 genes contain Fkh2 binding sites,

http://www.biomedcentral.com/1471-2105/8/188

501 genes contain Swi4 binding sites, 575 genes contain
Swi5 binding sites, 1181 genes contain Fkh1 binding sites,
379 genes contain Rap1 binding sites, and 946 genes con-
tain Swi6 binding sites [19].

We tested over-representation of the high-confidence TF
binding motif in S; (T;) and S, (T,). The cumulative
hypergeometric distribution is used to determine the sta-
tistical significance. The p-value is defined as in Equation
(A1), where N = 6229 is the number of genes in the yeast
genome, M is the number of genes in G, where G = S, (T})
or S,(T,) (e.g. M = 62 for Abfl if G = S; and M = 56 for
Abf1 if G = S,; M = 72 for Rap1 if G = T, and M = 36 for
Rapl if G = T,), n, is the number of genes in the yeast
genome that contain binding sites of a TF under study
(e.g. n, = 817 for Abfl; n, = 379 for Rap1l) and m, is the
number of genes in G that contain binding sites of a TF
under study (e.g. m, =46 for Abf1 if G = S, and m, = 28 for
Abfl if G = S,; m, = 32 for Rap1 if G = T, and m, = 7 for
Raplif G =T),).

The bootstrap method for testing the statistical
significance of the difference between r(k) and 0

We observed N-k pairs of observations, Z = {z;:i=1, ..., N-

k and z; = (f(x;), v;..) } - The correlation coefficient from the
sample is calculated and denoted as

N-k B B Nk —, [ -
T(k)=[ ()’inz—l’)(f(xl)‘m)J \/ (vise =7) '\/Z(ﬂxi)_m) | k=012
i= i1 i1

(0.

K
mé{[\i f(xi)]/(N—k) and -1 <r(k) < 1.Itis aimed to
i=1

use these observations to test if (k) is different from 0 sig-
nificantly. Suppose the null hypothesis is H: (k)= 0 and

1>

where y

the alternative hypothesis is H;: r(k) # 0. We will apply the
bootstrap method to perform this hypothesis testing
based on the observations. Keeping the pair relationship
of these N-k pairs to maintain the dependence between
(f(x)), Visr), z; are sampled with replacement N-k times to
form a bootstrap sample, Z* = {z;*:i=1, ..., N-k and z;*
belongs to Z}. The correlation coefficient from the boot-
strap sample Z* is computed and denoted as r*(k), -1 <
r*(k) < 1. Repeat the resampling procedure B times, we
will observed r,*(k), r,*(k), ..., r5*(k). These bootstrap
sorted to  be

correlation coefficients are

—1<1)(R) < 15y(k) < ... <7(py(k) <1. Then, the (1-0)

two-sided  percentile  interval is  given by

Page 8 of 10

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:188

[T(*Bxa/z) (k), T(Bx(1-cr/2))(k) ] in this case [45]. If this per-
centile interval does not contain 0, then the null hypoth-
esis is rejected at the significance level of a.. Otherwise, the
data fail to reject the null hypothesis at the significance
level of a. Since the p-value is the smallest value of a for
which the null hypothesis will be rejected based on the
observation, the p-value for this test is estimated by the
following:

B

plk) = 2xmin{p, (k),1-p, ()}, where p, (k) = Y. 1{r (k) = 0}/ B,
i=1

where I{ -} is the indicator function whose value is one

when the event is true and zero otherwise.
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