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Abstract

Background: Microarray techniques survey gene expressions on a global scale. Extensive
biomedical studies have been designed to discover subsets of genes that are associated with survival
risks for diseases such as lymphoma and construct predictive models using those selected genes.
In this article, we investigate simultaneous estimation and gene selection with right censored
survival data and high dimensional gene expression measurements.

Results: We model the survival time using the additive risk model, which provides a useful
alternative to the proportional hazards model and is adopted when the absolute effects, instead of
the relative effects, of multiple predictors on the hazard function are of interest. A Lasso (least
absolute shrinkage and selection operator) type estimate is proposed for simultaneous estimation
and gene selection. Tuning parameter is selected using the V-fold cross validation. We propose
Leave-One-Out cross validation based methods for evaluating the relative stability of individual
genes and overall prediction significance.

Conclusion: We analyze the MCL and DLBCL data using the proposed approach. A small number
of probes represented on the microarrays are identified, most of which have sound biological
implications in lymphoma development. The selected probes are relatively stable and the proposed
approach has overall satisfactory prediction power.

Background

Microarray techniques provide a way of monitoring gene
expressions on a global scale. An important application of
microarray is to discover subsets of genes that are associ-
ated with occurrence of certain diseases, for example
breast cancer, leukemia or lymphoma. Biomedical studies
have been conducted to measure gene expression levels
and patients' survival information simultaneously. This
article is partly motivated by studies like the Mantle Cell
Lymphoma (MCL) study reported in [1], where expres-
sion levels of 8810 genes and survival information are
measured for 92 subjects. A main goal of the MCL study is

to discover subsets of genes that are linked with patients'
survival risk. Statistically, standard estimation approaches
cannot yield a unique estimator, when the dimension of
gene expressions is greater than the sample size. Biologi-
cally, it is reasonable to assume that only a small number
of genes are relevant to predicting the lymphoma occur-
rence. It is thus of great interest to develop statistical
methodologies that can carry out simultaneous estima-
tion and dimension reduction or variable selection.

Dimension reduction has been extensively investigated

for linear regression models [2,3]. One widely used
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approach is to use low dimensional projections of the cov-
ariates (genes) as surrogates for the true covariates. Exam-
ples include the ridge regression, partial least squares
(PLS), and principal component regression (PCR). For a
detailed discussion, see [2]. Including all the covariates in
the predictive models through projections may introduce
noises and lead to poor predictive performance. In addi-
tion, the underlying assumption that all covariates are
associated with the disease progression is not necessarily
true.

An alternative approach is to use variable selection tech-
niques and identify the important covariates. This can
usually be accomplished by using penalization methods,
where penalties with data dependent tuning parameters
are used to control the sparsity of the models. A general
scheme is outlined in [4]. Penalization methods are espe-
cially effective when there exist a small number of large
covariate effects. Compared with projection approaches,
penalized variable selection may be preferred in microar-
ray studies since it is capable of selecting a small number
of individual covariates and only those covariates are used
in the predictive models. Further biological investigation
can focus on those identified influential genes only.

Modeling survival outcome with high dimensional gene
expressions is more challenging due to the presence of
censoring and the use of complicated semiparametric
models. One approach used by [5] is to cluster genes first,
and then use the sample averages of the gene expression
levels in a Cox model for right censored survival outcome.
Another well developed clustering based algorithm is the
gene harvesting procedure of [6]. Standard PLS method
has been employed in [7], where the resulted PLS compo-
nents are used in the Cox model. A penalized estimation
procedure has been considered for the Cox model using
kernels [8], under the assumption that the covariate
effects are smooth functions of gene expression levels. The
Lasso (least absolute shrinkage and selection) type estima-
tor in the Cox model with right censored data has been
proposed [9], and [10] applies the LARS algorithm in
computing the Lasso estimator in the Cox model. In a
recent study, [11] applies the principal component regres-
sion to additive risk models with right censored data.
Aforementioned studies, except [11], assume the propor-
tional hazards models for survival time. Although this is
the most straightforward assumption, it is not necessarily
satisfied.

Survival analysis assuming the additive risk model may
provide more insights beyond the proportional hazards
model analysis. An additive model is generally adopted
when it is reasonable to assume that the covariate effects
under consideration contribute additively to the condi-
tional hazard. Consider one special form of the additive
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risk models investigated in [12], where we model the con-
ditional hazard at time t by

Me| 2) = 29(6)+ PoZ, (1)

given a d-dimensional vector of time-independent covari-
ates Z. Here f,and Ay( - ) denote the unknown regression
parameter and the unknown baseline hazard function,
respectively. Previous studies have concluded its sound
biological and empirical basis [13] and satisfactory statis-
tical properties [12,14].

The objective function under the additive risk model pro-
posed in [12] takes a least-squares form, which makes esti-
mation computationally easier than under the
proportional hazards model. This is especially important
for high dimensional microarray studies where computa-
tion cost is a serious concern. Inspired by the special form
of the objective function, we propose a Lasso approach for
estimation and gene selection in the additive risk model
(1), which minimizes a least-squares objective function
subject to a L, constraint, when high dimensional micro-
array measurements are present. Because of the nature of
the L, constraint, the Lasso method shrinks coefficients
and sets some estimated coefficients exactly zero. Thus it
can yield a sparse model.

In this article, we investigate survival analysis with high
dimensional gene expressions under the additive risk
model. The goal is to provide an alternative estimation
and gene selection method, when the proportional hazard
assumption cannot be satisfied. Beyond modeling the sur-
vival risk in an additive manner, the proposed approach is
computationally affordable and well behaved. Evaluation
of stability of individual genes and overall predictive
power, which has been ignored in some of previous stud-
ies, are also investigated.

Results

MCL data

A study using microarray expression analysis of mantle
cell lymphoma (MCL) is reported in [1]. The primary goal
of this study is to discover genes that have good predictive
power of patients' survival risk. Among 101 untreated
patients with no history of previous lymphoma included
in this study, 92 were classified as having MCL, based on
established morphologic and immunophenotypic crite-
ria. Survival times of 64 patients were available and other
28 patients were censored. The median survival time was
2.8 years (range 0.02 to 14.05 years). Lymphochip DNA
microarrays [5] were used to quantify mRNA expressions
in the lymphoma samples from the 92 patients. The gene
expression data that contains expression values of 8810
cDNA elements (probes) is available at [15].

Page 2 of 10

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:192

We use the additive risk model (1) for the conditional
hazards given the gene expression values and apply the
proposed Lasso method. Although there is no theoretical
or numerical limitation on the number of probes that can
be used in the proposed approach, we pre-process the data
as follows to exclude noises and gain further stability: (1)
Un-supervised screening: compute the interquartile
ranges of all gene expressions. Remove the probes with
interquartile ranges smaller than their first quartile. 6608
probes pass this screening; (2) Supervised screening: com-
pute correlation coefficients of the uncensored survival
times with gene expressions. Select the 500 probes with
the largest absolute values of the correlation coefficients.
We refer to [16] for more discussions of gene screening.
We then standardize these 500 probes to have mean 0 and
variance 1.

In applying the proposed Lasso approach, we select the
tuning parameter u via the five-fold cross validation. We
show in Figure 1 the CV score as a function of the tuning
parameter u. There is a well-defined minimum at u = 2.3.
Using this cross validated tuning parameter, only 6 out of
500 probes have nonzero estimated coefficients in the
predictive model. We show in Table 1 the list of those six
probes, their official symbols, estimates and correspond-
ing OI (occurrence index). Two of these six probes, UNI-
QID 23826 and 34790, are from the same gene TK1.

The descriptions of the six probes can be found at the
NCBI website [17]. RAD54 (gene Hs.523220) is highly
expressed in organs of germ cells and lymphoid develop-
ment. The protein encoded by this gene has been shown
to play a role in homologous recombination related repair
of DNA double-strand breaks. Defects in RAD54L may be
a cause of tumor formation. Mutations of the tumor sup-
pressor gene SOCS-1 (Hs.50640) in classical Hodgkin
lymphoma are frequent and associated with nuclear phos-
pho-STAT5 accumulation. Methylation of the SOCS-1
gene is associated with lymph node metastasis, advanced
tumor stage and reduced expression of SOCS-1 in GC tis-
sues. It has also been shown that SOCS-1 stringently reg-
ulates development and homeostasis of interleukin-7 and
interleukin-15 in T lymphocyte. In lymphoma, decreased
expression of p57 (Hs.106070) has been observed in

Table I: MCL data: genes with nonzero estimates.

http://www.biomedcentral.com/1471-2105/8/192

about 50% of cases. p57 plays a role in negatively regulat-
ing the cell proliferation of thyroid lymphoma cells and
decreased expression of it contributes to the progression
of the disease. Aberrant DNA methylation of this gene
occurs in the promoter region in lymphoid malignancies
of B-cell phenotype Peripheral blood TK1 (Hs.515122,
UNIQID 23826 and 34790) isozyme is a useful independ-
ent biochemical marker for the subgroup of adult non-
Hodgkin's lymphoma who respond poorly to current
therapy [18]. In a clinical study, it is shown that long-term
treatment of H9 human lymphoid cells in the presence of
dideoxycytidine may down-regulate TK1 gene expression.
The RING domain of UHRF1 (Hs.108106) is a functional
determinant of growth regulation and UHRF1 is generally
required in tumor cell proliferation.

All six probes are either directly associated with lym-
phoma or important in tumor proliferation. The encour-
aging discovery results partly support the effectiveness of
the proposed additive model and Lasso approach. Out of
the six probes in Table 1, two (UNIQID: 32699, 34790)
are also identified in [1]. We note that the difference
between the sets of probes identified is at least partly
caused by the difference in model assumptions. In our
study, an additive risk model is assumed, whereas in [1] a
Cox model assumption is made.

Evaluation is carried out using the Leave-One-Out (LOO)
approach proposed in the Methods section. Note that for
each reduced dataset (with one subject removed), we carry
out the supervised screening and select possibly different
set of 500 probes out of the probes that pass the unsuper-
vised screening. Since the unsupervised screening is
mainly due to technical considerations and the survival
outcome is not used in the selection, the evaluation
results are expected to accurately reflect the stability and
prediction power.

The OIs of individual probes are computed and shown in
Figure 2. In Figure 2, red dots represent the six probes
identified using the proposed approach; while black dots
represent the rest 6603 genes. We can see that genes iden-
tified via Lasso have larger Ols than the rest probes, indi-
cating greater importance. This also shows that the

UNIQID Official Symbol Gene Name Estimate Ol
17149 RADS54L Hs.523220, RAD54-like (S. cerevisiae) 0.287 0.967
17691 SOCsI Hs.50640, Suppressor of cytokine signaling | 0.104 0.228
17821 CDKNIC Hs.106070, Cyclin-dependent kinase inhibitor 1C 0.286 0.978
23826 TKI Hs.515122, Thymidine kinase |, soluble 0.678 0.967
32699 UHRFI Hs. 108106, Ubiquitin-like, containing PHD 0.229 0.902

and RING finger domains, |
34790 TKI Hs.515122, Thymidine kinase |, soluble 0.709 0.967
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Figure |
MCL data: CV score as a function of tuning parameter u.

proposed approach is relatively stable. We see from Table
1 that five out of those six probes have Ols close to 1.
Gene SOCS-1 has smaller OI (0.228), but it is still larger
than OlIs for the unselected probes.

The overall predictive performance is also evaluated using
the LOO approach. We generate two hypothetical risk
groups of equal sizes based on the predictive risk scores.
We show in Figure 3 survival functions of the two risk
groups. We can clearly see that the two survival functions
differ significantly. Chi-square test of the difference yields
test statistic 13.0 and p-value 0.0003. So we can conclude
that the proposed approach can satisfactorily predict sur-
vival risk based on selected gene expression measure-
ments.

To our best knowledge, the only available published arti-
cle dealing with additive risk model and high dimen-
sional gene measurements is [11], where the PCR is used
for model reduction. Since the PCR is not a variable selec-
tion method, it is not directly comparable to the proposed
Lasso approach. Hence we only consider the following
simple alternative approach for comparison. We identify
ten probes with marginally largest (absolute values of)
correlation coefficients with the event time for uncen-
sored subjects. Ten probes are selected so that the degree
of freedom is slightly larger than but roughly matches the
Lasso approach. Predictive models are constructed using
those ten probes only. We compute the predictive power
using the proposed LOO based approach and obtain a
Chi-square test statistic 10.9, which is also significant with
p-value 0.001. The difference between the two risk groups
is smaller than that from the proposed approach, which
suggests less predictive power.

We note that in Table 1 two probes (UNIQID 23826 and
34790) correspond to the same gene TK1. It has been sug-
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Occurrence Index

T T
0 1000 2000 3000 4000 5000 6000

Figure 2
MCL data: occurrence index of individual genes.

gested in literature that analysis can be carried out at the
gene level by combining measurements from two or mul-
tiple probes. However, we find that the correlations of two
(or multiple) probes from the same genes in the MCL data
can be low. So it is not clear whether it is proper to simply
take a summary measure such as the average of the two
probes or arbitrarily discard one of them in the analysis.
In our study, we follow [1] and carry out the analysis at
the probe level.

DLBCL data

The DLBCL (diffuse large B-cell lymphoma) data was first
analyzed in [19]. This dataset consists of 240 patients with
DLBCL, including 138 patient deaths during the fol-
lowup. Expression profiles of 7399 probes are obtained.

Survival Probability
+

,,,,,,,

Figure 3
MCL data: survival functions of two hypothetical risk groups.
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Missing values are imputed using a nearest neighbor
approach as in [8]. We carry out supervised selection and
select 500 probes with the largest absolute values of mar-
ginal correlation coefficients with the uncensored event
times to gain further stability. Probes are then normalized
to have zero mean and unit variance.

Five-fold cross validation is used to determine the optimal
tuning parameter. A plot (omitted here) similar to Figure
1 yields optimal u = 0.7. With the optimal u, 17 probes
have nonzero estimated coeficients in the predictive
model. For the genes corresponding to these probes, their
official symbols, descriptions, estimated coefficients and
corresponding Ols are shown in Table 2.

Five probes in Table 2 (UNIQID: 27556, 16804, 31561,
16480 and 29610) are also identified in [19]. Quite a few
probes we identify have been confirmed to be associated
with lymphoma by other independent studies. The level
of Lactose Dehydrogenase (LDH, Hs.2795) can go high in
reaction to many different kinds of stress or damage to
body tissues. As tissues are damaged they release more
LDH. Although an LDH test isn't very useful for an initial
diagnosis of lymphoma it is frequently used as monitor-
ing test for those who already have lymphoma. Any eleva-
tion from the normal range may indicate a relapse or
renewed growth. The probe from the gene Hs.118638
(official symbol NME1) has been shown to play an
important role in development of DLBCL [20]. Abnormal

Table 2: DLBCL data: genes with nonzero estimates.
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expression of NM23 is associated with malignant poten-
tial, lymph node metastasis and clinical stage, and it may
play a role in development of gastric cancer. Complement
component receptor-2 (CR2, Hs.73792) is the membrane
protein on B lymphocytes to which the Epstein-Barr virus
(EBV) binds during infection of these cells. EBV/C3d
receptor interacts with the p53 anti-oncoprotein
expressed in the human B lymphoma cells. HLA-DMA
(Hs.77522) and HLA-DQB1 (Hs.73931) belong to the
HLA class IT alpha chain paralogues. This class Il molecule
is a heterodimer consisting of an alpha (DMA) and a beta
chain (DMB), both anchored in the membrane. It plays a
central role in the immune system by presenting peptides
derived from extracellular proteins. Class II molecules are
expressed in antigen presenting cells (APC: B lym-
phocytes, dendritic cells, macrophages). The probe corre-
sponding to the Gene Hs.24724 (official symbol
MFHAS1, also known as MASL1) is a candidate oncogene
found in amplification of 8p23.1 and translocated in an
immunoblastic B-cell lymphoma cell line. MMP-2
(Hs.111301) expression has significant correlation with
tumor invasion, tumor differentiation and lymph node
metastases; MMP-2 may participate in the development of
lymph node micrometastasis of gastric carcinoma. Strong
MMP-2 expression is correlated with a favorable progno-
sis of Hodgkin's lymphoma.

Stability of individual probes is evaluated using the pro-
posed OI. Figure 4 shows the OI computed from the LOO

UNIQID Official Symbol Gene Name Estimate Ol
27774 CDK7 Hs. 184298, cyclin-dependent kinase 7 -0.045 0.333
26627 SMYD5 Hs.54413, retinoic acid induced 15 0.023 0.604
27556 CPR2 Hs.347349, cell cycle progression 2 protein 0.029 0.017
16804 0.015 0.004
31561 LDHA Hs.2795, lactate dehydrogenase A -0.009 0.346
16480 NMEI Hs. 118638, non-metastatic cells |, 0.036 0.938

protein (NM23A) expressed i
29610 IGFALS Hs.839, insulin-like growth factor binding protein, 0.006 0.013
acid labile subunit
28383 CR2 Hs.73792, complement component receptor 2 -0.013 0.054
17804 HLA-DMB Hs.77522, major histocompatibility complex, -0.032 0.021
class Il, DM alpha
17280 HLA-DRBI Hs.7393 1, major histocompatibility complex, -0.013 0.004
class Il, DQ beta |
16359 PTK2 Hs.740, PTK2 protein tyrosine kinase 2 -0.041 0.225
29650 MFHASI Hs.24724, malignant fibrous histiocytoma -0.040 0.379
amplified sequence |
27593 MMP2 Hs.111301, matrix metalloproteinase 2 -0.021 0.000
16754 MMP2 Hs. 111301, matrix metalloproteinase 2 -0.012 0.358
15937 ST14 Hs. 119222, suppression of tumorigenicity |3 0.012 0.104
(colon carcinoma)
28840 EDNI Hs.2271, endothelin | 0.019 0.000
30130 Hs.96557, Homo sapiens cDNA FLJ12727 fis, 0.010 0.000
clone NT2RP2000027
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approach. We can see that several genes we identify have
larger Ols than the rest. However, some identified genes
have OIs close to zero. On the other hand, there are a few
probes with large OIs but are not included in the predic-
tive model. Figure 4 suggests that the "signals" in the
DLBCL data are not as strong as in the MCL data and the
final predictive model is less reliable. We note that with a
relatively small sample size and large number of probes,
the randomness caused by the finite fold cross validation
is not ignorable. This partly accounts for the small OIs for
some identified genes.

For probes with small Ols: it is still not clear what the bio-
logical functions are for the gene with UNIQID 16804 (Ol
= 0.000); Gene Hs.73931 has similar functions as
Hs.77522. With the Lasso approach, only one gene (from
a highly co-regulated gene group) tends to be selected.
This partly explains why OI for Hs.73791 is much smaller
than that of Hs.77522. Similar explanation holds for the
OI of gene Hs.111301 (UNIQID 27593); For genes
Hs.2271 and Hs.96557, there are documented studies
showing they are associated with lymphoma or in general
tumor progressions.

The overall prediction power of the proposed approach is
assessed with the approach described in the Methods sec-
tion. The Chi-square statistic (for testing the difference
between the two hypothetical risk groups) is 11.2, with p-
value 0.0008. We thus conclude that the proposed
approach can effectively predict survival risks based on a
small subset of selected genes. As an alternative, the sim-
ple approach with 20 marginally most important probes
yields Chi-square statistic 1.8 (with p-value 0.176). So

T T T
0 2000 4000 6000

Gene

Figure 4
DLBCL data: occurrence index of individual genes.
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unlike the MCL data, the simple approach cannot predict
survival risk based on marginally selected genes.

Conclusion

It is of great practical interest to develop sound statistical
techniques that are capable of identifying a small subset of
influential genes and predicting survival risks based on
selected genes. In this article, we assume the additive risk
model for survival times and propose using Lasso for
simultaneous estimation and gene selection. This is the
first attempt to use the additive risk model and penalized
variable selection in microarray survival study. Evaluation
of individual genes and overall prediction performance
are based on the LOO techniques. We analyze the MCL
and DLBCL data using the proposed approach. Empirical
studies show that the proposed approach can identify a
small subset of genes with satisfactory prediction perform-
ance. Most of the genes we identify have been shown to be
associated with lymphoma in other studies. The effective-
ness of the additive model and the Lasso method is sup-
ported by the satisfactory prediction performance,
reasonable gene discovery results and the correspondence
between the OI and published gene discovery results.

In this article, additive risk model is assumed, whereas in
most previous studies, Cox model assumption is made. In
the additive model, we assume the genes contribute to the
survival hazard in an additive manner. So the estimation
results may be easier to explain than those from the Cox
model. Possible alternative survival models include the
accelerated failure time and accelerated hazard models.
Each model has its own advantages and is preferred under
different circumstances. With high dimensional microar-
ray measurements, it is still an open question how to com-
pare different survival model fitting results. Such a
comparison study is beyond the scope of this article.

With the proposed Lasso approach, we are able to identify
individual gene effects. This advantage is not shared by
approaches like the principal component analysis or the
partial least squares. However, the tradeoff is that the
number of gene effects can be evaluated is limited by the
sample size. If it is biologically reasonable to believe that
the number of genes significantly associated with survival
is larger than the sample size, then transformation of the
gene expressions will be firstly needed. One possibility is
to use linear combinations of individual gene expressions
as covariates. We postpone pursuing this to a separate
study.

Methods

Additive risk model

Consider a set of n independent observations (T}, C;, Z;), i
=1, ..., n. Suppose that the i# subject's event time T;is con-
ditionally independent of the censoring time C;, given the
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d-dimensional covariate vector Z;. For simplicity of nota-
tions, we consider time-independent Z only throughout
this paper unless otherwise specified. Let X; = min(T;, C,)
and ¢, = I(T; < C)) for right censored data. We assume the
additive risk model (1). Other format of additive risk
models have been studied in [14]. For the i" subject,
denote {N,(t) = I(X;<t, 8§,=1); t =0} and {Y,(t) = [(X;>t);
t> 0} as the observed event process and the at-risk proc-
ess, respectively. The regression coefficient /4, can be esti-
mated by solving the following estimating equation:

U(B) =Y. [, ZildNi(t) = Y;(dA(B.1) - Yi(t)BZidt} = 0,
i=1

(2)

where A (1) is the estimator of A, satisfying

{dNi () = ;B Z;du}

> Yi(w)

The resulting estimator of £, satisfies the simple estimat-
ing equation

ABD=] 3)

i J:Yl-(t) (Z: - Z(t)}®2dt:|ﬂ = lZf: {Z; = Z(1)}aN; (1) |,
i=1 i=1

(4)
where Z(t) = z:lzlYi(t)Zi /ZLIYl(t) . Denote

L= J: Y04z - Z(0)Y2dt, R = j: {Z; = Z(1) }dN;(1).

Lis are symmetric semi-positive-definite matrices with
rank equal to 1.

In a typical microarray study such as the MCL, we usually
have d ~ 103 - 104, while the number of subjects n is at
most ~102. In this case, the left hand side of (4) does not
have full rank, so a unique solution to equation (4) does
not exist. Certain regularization or model reduction will
be needed along with estimation. Especially, we propose
using the Lasso regularization.

The Lasso method
Denote the (s, I) element of Li as Lis,l and the st compo-

nent of R'and fas Ri and S, respectively. We can see that

equation (4) is equivalent to the following d equations:

http://www.biomedcentral.com/1471-2105/8/192

i=1 i=1

[ZLis,l ]ﬁ1 +'--+[2Lis,d Jﬂd =Y'R, (5)
i=1
fors=1,..,d.

We note that the validity of the estimating equation (4)
does not depend on any assumption of d and n. The sim-
ilarity between the estimating equations (5) and the nor-
mal equations for simple linear models motivates variable
selection for the additive risk model with right censored
data using the following Lasso type estimator:

~ d no. no. n oo 2
 — argning {M(m _ z{[zﬂs,l ]ﬁl +...+[2Lz,d ]ﬁd —sz} }
s=1 i=1 i=1 i=1
©)

subject to the L, constraint that

Bli= 1Al + o 1Bl <

for a data-dependent tuning parameter u, which indirectly
determines how many components of 3 are zero. With u

— oo, the Lasso estimate will be the same as standard M-
estimate, which is not unique in our microarray study.

When u — 0, certain components of B will be exactly

zero. Variable selection is achieved since only genes with
nonzero estimated coefficients are included in the predic-
tive model. Previous theoretical and practical studies, for
example [9] show that with small u, the Lasso estimate is
shrank towards zero and biased. However with a large
number of covariates present, the biased Lasso estimate
may have better prediction performance due to the bias-
variance tradeoff. This property is especially valuable for
microarray data, when a large number of genes are present
and many of them are purely noises. In addition, for
microarray data analysis, prediction of survival risks and
selection of genes are much more important than accu-
rately estimating the coefficients in predictive models.

One unique characteristic of the Lasso estimate in the
additive risk model is that the summation in (6) is over d,
the dimension of covariates, not over the sample size n as
in the linear regression model. However, considering the
equivalence of (6) and (4), the Lasso estimate defined in
(6) can provide model reduction in the S space. The sim-
plicity of the estimating equation in (6) for the additive
risk model is not shared by other survival models. For the
Cox model in [9], a weighted least squares approximation
to the partial likelihood function and an iterative compu-
tational algorithm are needed.
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Occasionally, there may exist certain covariate effects that
are known to be effective a priori. For example, some genes
may have been confirmed to be associated with disease
occurrence in previous independent studies. In this case
interest lies in more accurate adjustment for other gene
effects and shrinkage of coefficients (of effective covari-
ates) is not preferred. In such an instance, one may simply
omit the corresponding S, from the L, constraint. The L,
boosting algorithm discussed below can be applied to
such situations with minor modifications.

Tuning parameter selection

We propose choosing the tuning parameter u with the fol-
lowing V -fold cross validation [21] for a pre-defined inte-
ger V . Partition the data randomly into V non-
overlapping subsets of equal sizes. Chose u to minimize
the cross-validated objective function

v
CV score(u) = 2 |: M(ﬁ(—ﬂ)) _ M(_”)(ﬁ(_”))],

v=1

where B () is the Lasso estimate of S based on the data

without the v subset for a fixed u and M()is the function
M defined in (6) evaluated without the v subset. When V
= n, we have the widely used Leave-One-Out cross valida-
tion. Another possible tuning parameter selection tech-
nique is the generalized cross validation as used in [9].
Under mild regularity conditions, all the above cross vali-
dation methods are valid and have been shown to have
satisfactory numerical results. It is not clear which cross
validation method is optimal under the current setting. V
-fold cross validation with a small V is used due to its com-
putational simplicity. We postpone the relative efficacy of
different validation techniques to a later study.

Evaluation

In standard survival analysis with n > > d, common inter-
est lies in assessing the significance of a covariate via the
p-value of its z-score. However, when the sample size is
smaller than the number of covariates as in microarray
studies, this standard approach of assessing significance
may not be appropriate, since its validity typically relies
on justifications assuming n >> d. In addition, in microar-
ray studies, one major goal is to predict survival risks
based on selected genes. We propose the following Leave-
One-Out (LOO) cross validation based evaluation
method for assessing the relative stability of individual
genes and overall predictive power.

Fori=1, .., n:

1. Generate the reduced dataset by removing the it sub-
ject.

http://www.biomedcentral.com/1471-2105/8/192

2. Compute the proposed Lasso estimate (including cross
validation and estimation) with the reduced set. Denote

the estimate of £ using the reduced set as B (). Compute

the predicted risk score for the it" subject as B(_i)’Zi .

A total of n predictive models are generated with the
above procedure. For the s" component of 8 compute the
number of times ¢, it is included in the n predictive models
(i.e, the number of times that estimated coefficient is not
zero). Then the proportion o, = ¢/n gives a measure of the
relative importance and stability of the s gene. We call o,
the occurrence index (OI) of the st gene. It lies between 0
and 1. Loosely speaking, if a gene is strongly associated
with the survival outcome, it should be identified in the
reduced datasets. So the corresponding OI should be
equal or close to 1. Generally speaking, higher OI indi-
cates more stable and relatively more important gene.

For evaluation of overall predictive power, we dichot-

omize the n predictive risk scores f3 (-0) Z; attheir median.

Two hypothetical risk groups can then be created. Since
different subjects have the same baseline hazard, higher
P Z leads to higher hazard function and so higher survival
risk. So evaluation of prediction (of survival risk) can be
constructed based on survival functions of subjects with
different predictive risk scores. We compare the difference
of survival functions of those two risk groups, which can
be measured with a chi-square statistic with degree of free-
dom one. A significant difference indicates satisfactory
prediction performance.

We note that an alternative approach is to create the
reduced sets using an approach similar to the V-fold cross
validation, i.e, a subset of size n/V is removed. The ration-
ale of using the proposed Leave-One-Out approach is that
the sample size is usually much smaller than the number
of genes for microarray studies. Removing n/V subjects
may leave an even smaller sample size for the reduced
data. Estimates from the reduced dataset can be less relia-
ble. The theoretical basis of the proposed evaluation
approach is worth further investigation.

Computational algorithm

The L, constraint is equivalent to adding a L, penalty to
the objective function and ignoring the constraint [9].
Since the L, penalty is not differentiable, usual derivative-
based minimization techniques (for example the Newton-
Raphson) cannot be used to obtain the estimate in (6). In
most previous studies, the minimization relies on the
quadratic programming (QP) or general non-linear pro-
gram which are known to be computationally intensive.
Moreover, the quadratic programming procedure cannot
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be applied directly to the settings when the sample size is
much smaller than the number of predictors.

Recent study by [22], which relates the minimization step
for the Lasso estimate to the L, boosting algorithm, a reg-
ularized boosting algorithm proposed by [23], provides a
computationally more feasible solution. The L, boosting
algorithm can be applied to general objective functions
with L; constraints. For the current L, constrained estima-
tor defined in (6) with a fixed u, this algorithm can be
implemented in the following steps:

1. Initialization ;=0 fors=1..d and m = 0.
2. With the current estimate of = (4, ..., £;), compute
d n .
1
@z(ﬂ) = z ZLS,I

s=1 i=1

fork=1..4d.

n . n o no.
Bi+| D La |Ba—2.Ys px| YL
i=1 i=1 =1

3. Find k* that minimizes min(¢,(f), -#.(0)). If ¢,.(f) =0,
then stop the iteration.

4. Otherwise denote y = -sign(g, (f)). Find & that

o = argminge o M [(1 - @)(Br, .. By) + @ x ux ympe],

where 7k* has the k*t" element equals to 1 and the rest
equal to 0.

5. Let B,=(1- @)B,fork#k* and B = (1- O )B,+ pc.
Letm=m+ 1.

6. Repeat steps 2-5 until convergence or a fixed number
of iterations N has been reached.

The S at convergence is the Lasso estimate in (6). We con-
clude convergence if the absolute value of ¢,.(f) com-
puted in step 3 is less than a pre-defined criteria, and/or if
M(p) is less than a pre-defined threshold.

Compared with traditional algorithms, the L, boosting
only involves evaluations of simple functions. Data anal-
ysis experiences show the computational burden for the
L, boosting is minimal. As pointed out in [22], one attrac-
tive feature of the L, boosting algorithm is that the conver-
gence rate is independent of the dimension of input. This
property of convergence rate is essential to the proposed
approach for data like the MCL since the number of genes
is very large. On the other hand, it has been known that
for general boosting methods, over-fitting usually does
not pose a serious problem [24]. So the overall iteration N
can be taken to be a large number to ensure convergence.

http://www.biomedcentral.com/1471-2105/8/192

In our numerical study, the above boosting algorithm is
realized using R. R code for cross validation, estimation
and evaluation is available upon request from the
authors. Our empirical study shows that the boosting
algorithm is very affordable. For the MCL data, cross vali-
dation and estimation combined take less than four min-
utes.
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