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Abstract

Background: The ability to obtain profiles of gene expressions, proteins and metabolites with the
advent of high throughput technologies has advanced the study of pathway and network
reconstruction. Genome-wide network reconstruction requires either interaction measurements
or large amount of perturbation data, often not available for mammalian cell systems. To overcome
these shortcomings, we developed a Three Stage Integrative Pathway Search (TIPS®) approach to
reconstruct context-specific active pathways involved in conferring a specific phenotype, from
limited amount of perturbation data. The approach was tested on human liver cells to identify
pathways that confer cytotoxicity.

Results: This paper presents a systems approach that integrates gene expression and cytotoxicity
profiles to identify a network of pathways involved in free fatty acid (FFA) and tumor necrosis
factor-o. (TNF-a) induced cytotoxicity in human hepatoblastoma cells (HepG2/C3A). Cytotoxicity
relevant genes were first identified and then used to reconstruct a network using Bayesian network
(BN) analysis. BN inference was used subsequently to predict the effects of perturbing a gene on
the other genes in the network and on the cytotoxicity. These predictions were subsequently
confirmed through the published literature and further experiments.

Conclusion: The TIPS® approach is able to reconstruct active pathways that confer a particular
phenotype by integrating gene expression and phenotypic profiles. A web-based version of TIPS®
that performs the analysis described herein can be accessed at http://www.egr.msu.edu/tips.

Background may be singularly regulated, i.e., at the gene or transcrip-
The regulation of cellular functions is achieved through  tion level, or controlled by a network of interactions of
the contribution and interactions of genetic, signalingand  genes, proteins and metabolites. Therefore, understand-
metabolic pathways. Consequently, cellular processes  ing the biological function of the myriad of genes and
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how these genes and gene products interact and regulate
each other to yield a functional cell would help to identify
more appropriate pathways that should be targeted or
studied for a given disease.

Novel analytical frameworks are required to unravel the
regulatory and functional relationships from profiles of
genes, proteins and metabolites. Approaches have been
developed to infer genome wide networks from high
throughput data. These approaches typically require
genome-wide interaction data [1,2] or a wide range of per-
turbation data [3-5], which have been applied to yeast and
human B cells, respectively, to reverse engineer genome
wide gene regulatory networks. Unfortunately, genome-
wide interaction measurements as well as large amounts
of perturbation data are not easily or readily obtainable
for researchers working with mammalian systems. Thus, a
challenge remains to reconstruct networks from a small
amount of perturbation data. The small perturbation data
size poses a challenge to statistical inference and makes it
extremely hard to infer genome wide networks with any
degree of confidence [6-8]. To address this, we developed
an approach to identify a smaller network of active path-
ways rather than genome wide networks based upon a
subset of important genes selected by integrating gene
expression and phenotypic profiles. The approach first
integrates genetic algorithm coupled partial least squares
analysis (GA/PLS) [9] and constrained independent com-
ponent analysis (CICA) [10] to identify a subset of genes
relevant to a phenotype. Next, BN analysis is used to
reconstruct an active sub-network from this smaller group
of genes to reveal which pathways are induced by the
external stimuli or environmental factors. Applying BN to
areduced subset of genes also circumvents the inefficiency
of the BN analysis in inferring large size networks, such as
is the case with genome wide networks. BN can detect
indirect influences and unmeasured events and is not sus-
ceptible to the existence of unobserved variables [6]. It has
been applied to infer gene regulatory network of yeast cell
cycle from gene expression data, metabolic sub-networks
from metabolic data and protein signaling network from
protein activity data [6,11-13]. The reconstructed network
was then used to predict the effect of perturbing a gene on
the other genes in the network with BN inference, and
thus provided insight into how the genes interacted
within the network to produce a specific phenotype.

As proof-of-concept, the framework was applied to iden-
tify the pathways that confer cytotoxicity in HepG2/C3A
cells. Liver toxicity is often used to assess the safety of
drugs and is a primary reason for drug recalls [14]. There-
fore, predicting liver toxicity earlier in the drug develop-
ment process would be valuable. In the current study,
saturated FFA, palmitate, was found to induce liver toxic-
ity, and this effect was exacerbated by the presence of TNF-
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o. Indeed, elevated levels of FFAs and TNF-o have been
shown to be involved in the pathogenesis of liver disor-
ders, such as fatty liver disease and steatohepatitis [15-18].
Therefore, we applied our approach to this model system
from the standpoint that if we can identify pathways that
may attenuate the toxicity in the presence of FFAs and
TNF-a, perhaps this model could be applied eventually to
drug candidates to identify pathways that may be modu-
lated to enhance the efficacy and minimize the toxicity of
the drug. We analyzed the genetic responses of the hepa-
tocytes to physiologically elevated levels of FFAs and TNF-
a to identify pathways involved in conferring cytotoxicity,
and which in turn may provide insight into the physiolog-
ical actions of these factors.

We developed a TIPS® framework that first applied GA/
PLS [9] and independent component analysis (ICA)
[19,20] to identify a subset of genes relevant to cytotoxic-
ity. We assumed, as a first approximation, a log linear rela-
tionship between gene expression and cytotoxicity. The
genes selected by GA/PLS were initially corroborated with
published results to identify known interactions. In order
to extract an independent pathway related to a phenotype,
such as cytotoxicity, from the gene expression profile, we
propose a constrained ICA (CICA) approach. The rele-
vance of the genes to the toxicity identified by GA/PLS
along with the cytotoxicity profiles were used as con-
straints in CICA. CICA extracted a phenotype-relevant-
component from the gene expression data. CICA assumes
that the expression profile of thousands of genes can be
represented by a reduced number of mutually independ-
ent processes. Biologically meaningful gene groups have
been successfully identified by ICA [19,20]. A phenotype-
relevant-component was identified by minimizing the
mutual information between the phenotype-relevant-
component and the other independent components
while maximizing the correlation between the compo-
nent and the constraints. The expression profiles of the
genes with the highest weights in CICA were used in BN
analysis for network reconstruction. The reconstructed
network was perturbed to identify i) which genes, when
perturbed, had an impact on altering the cytotoxic pheno-
type in the palmitate cultures, and ii) how perturbing one
gene (node) affected the other genes in the network. The
reconstructed network provided potential explanation(s)
on how palmitate and TNF-a induced cytotoxicity. The
model identified (i) the roles played by stearoyl-CoA
desaturase (SCD), double-stranded-RNA-dependent pro-
tein kinase (PKR) and Bcl-2 in the palmitate-induced cyto-
toxicity, and (ii) the activation of nuclear factor kappa B
(NF-kB) by TNF-a is mediated by protein kinase C delta
(PKC-3). These simulated perturbations of the recon-
structed network were evaluated experimentally to assess
the accuracy of the predictions.
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Results

I. Identifying genes relevant to cytotoxicity using GA/PLS
Lactate dehydrogenase (LDH) release was measured as an
indicator of the cytotoxicity. We found that exposing
HepG2/C3A cells to FFAs (palmitate, oleate, or linoleate)
in the presence and absence of TNF-a, only palmitate was
cytotoxic to the cells and resulted in significantly higher
LDH release (Figure 1). TNF-a alone was not toxic to the
cells. The cytotoxic effect of TNF-o was observed only in
the palmitate-treated cells. Exposure to oleate or linoleate
was not cytotoxic, but caused the cells to accumulate intra-
cellular triglycerides (Figure 2). To obtain a global view of
the changes induced by FFAs and TNF-a, we capitalized
upon high-throughput cDNA microarrays to quantify the
gene expression profiles of the HepG2/C3A cells.

We applied GA/PLS to the gene expression and LDH
release profiles. The GA/PLS algorithm counted the fre-
quency with which each gene was selected to predict LDH
release and provided a measure of the relevance of each
gene to LDH release [9]. The genes with high frequency
were organized into functional groups based on the liter-
ature information on the functional role of these genes, as
shown in Table 1. Evaluating the groups of genes assigned
high frequency by GA/PLS suggested that the functional
groups such as oxidative stress, apoptosis, TNF-signaling,
mitochondria were relevant to the cytotoxicity. Several of
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Cytotoxicity (LDH release). Confluent HepG2 cells
exposed to different types of fatty acids (0.7 mM, complexed
to 4% wiv BSA) and TNF-a. for 24 and 48 hours. X-axis labels
indicate the TNF-a concentration in ng/ml and the medium
employed in each condition. Data expressed as averages of
nine samples +/- s.d. from three independent experiments. a,
Significant medium effect, P < 0.05 relative to control (BSA
medium with no TNF-a); b, Significant TNF-a effect within a
treatment, P < 0.05 compared to corresponding medium
with no TNF-a exposure. TNF-o. concentrations are in ng/
ml.
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Figure 2

Intracellular TG accumulation. Intracellular TG accumu-
lation increased in FFA treated cells. * significantly higher
than control, p < 0.0l by t-test. H: control, P: palmitate
treatment, O: oleate treatment, L: linoleate treatment.

these potential mechanisms suggested by the GA/PLS
results were experimentally validated. For example, the
identification of oxidative stress related genes suggested a
possible involvement of reactive oxygen species (ROS) in
the palmitate-induced cytotoxicity. Indeed, we found the
ROS level was elevated in the palmitate cultured cells and
adding ROS scavengers prevented the cytotoxicity induced
by palmitate [21]. In addition, the caspase-3 activities
were significantly elevated in the palmitate cultures as
shown in Figure 3, which corroborated the involvement
of apoptosis in the observed cytotoxicity. Finally, identifi-
cation of translocase of outer/inner mitochondria mem-
brane (TOM/TIM) which are known to be related to
mitochondrial potential [22] were corroborated by the
reduced mitochondrial potential in the palmitate cultured
cells [21].

2. Identifying genes involved in an independent pathway
related to cytotoxicity using CICA

GA/PLS determined the frequency with which each gene
was selected to predict LDH release. The frequencies and
the profile of LDH release were applied as structure and
profile constraints respectively in CICA to extract a pheno-
type-relevant-component from the gene expression pro-
file, see methods for more details. The independent
component in this case identified a subset of genes whose
profiles corresponded to the profile of LDH release. CICA
determined the weights for each gene by minimizing the
mutual information between the independent compo-
nents and maximizing the correlation to the constraints.
The weights determined by CICA are in the additional
files [see Additional file 1]. Genes that had weights signif-
icantly different from zero with a 95% confidence using
the Z-test were subjected to BN analysis for pathway
reconstruction.
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Table I: Functional groups of genes related to LDH release, selected by GA/PLS

Functional Category Accession Number Gene name Frequency

Oxidative Stress

AA418907 (gC) cytochrome P450, polypeptide | (CYPIALI) 12
H93482 (g) glutamate-cysteine ligase, catalytic subunit Il
AAI111999 (gC) NADH dehydrogenase (ubiquinone) | alpha subcomplex, | 10
T73468 (gC) glutathione S-transferase A2 (GSTA?2) 10
T73294 (gC) P450 (cytochrome) oxidoreductase (POR) 10
H99813 (gC) glutathione S-transferase theta | (GSTTI) 10
AA460251 (gC) NADH dehydrogenase (ubiquinone) | 9
AA046701 (gC) ATP synthase, H+ transporting, subunit c 8
AA291163 (gC) glutaredoxin (thioltransferase) (GLRX) 8
AAT77289 (gC) glutathione reductase (GSR) 8
R63065 (gC) glutathione S-transferase M3 8
AA664180 (gC) glutathione peroxidase 3 (plasma) (GPX3) 7
H53340 (gC) metallothionein 1G (MTIG) 7
N72263 (gC) NADH dehydrogenase (ubiquinone) | alpha subcomplex, 10 7
AAB865265 (gC) cytochrome c (HCS) 7
N21576 (gC) cytochrome P450, subfamily XXIV (CYP24) 7
AA022627 (gC) NADH dehydrogenase (ubiquinone) | alpha subcomplex, 7 7
T72259 (gK) cytochrome P450, polypeptide 7 (CYP2A7) 7
AA281549 (gM) holocytochrome c synthase (HCCS) 7
AA490938 (gM) NAD(P)H dehydrogenase, quinone 2 (NQO2), mRNA 7
W73474 (gC) microsomal glutathione S-transferase 2 (MGST2) 7
T98002 (gC) cytochrome P450, subfamily IVF, polypeptide 12 (CYP4F12) 7
TCA Cycle
AA679907 (gC) isocitrate dehydrogenase 2 (NADP+), mitochondrial (IDH2) 12
N67639 (gC) citrate synthase (CS) 8
AA234519 (gC) succinate-CoA ligase, GDP-forming, beta subunit 7
Transcription factor
AA406269 (g) nuclear factor I/X (CCAAT-binding transcription factor) (NFIX) 12
AA24743 (gC) zinc finger protein 36, C3H type-like | (ZFP36LI) 9
AA608536 (gC) inhibitor of kappa light polypeptide gene enhancer in B-cells 7
TNF- Signal
AAI134814 (gC) TRAF family member-associated NF«f} activator (TANK) 9
W72329 (gC) lymphotoxin alpha (TNF- superfamily, member |) (LTA) 9
AA486789 (gC) Fas (TNF-RSF6) associated factor | (FAFI) 8
AA443577 (gC) tumor necrosis factor (ligand) superfamily, member 13 (TNF-SFI3) 8
AA625666 (gC) LPS-induced TNF-alpha factor (PIG7) 8
AA433944 (gC) Fas (TNF-RSF6)-associated via death domain (FADD) 7
AA476272 (g) tumor necrosis factor, alpha-induced protein 3 (TNF-AIP3) 7
H98636 (gK) tumor necrosis factor receptor superfamily, member 5 (TNF-RSF5) 7
N50859 (gC) TNF-AIP3 interacting protein 2 (TNIP2) 7
T64483 (gC) TNF-AIP3 interacting protein | (TNIPI) 7
R71691 (gC) TNF- receptor-associated factor | (TRAFI) 7
AA456314 (gC) tumor necrosis factor, alpha-induced protein | (TNF-AIPI) 7
AAT778663 (gC) tumor necrosis factor (ligand) superfamily, member 9 (TNF-SF9) 7
Signal pathways
R32848 (gC) S100 calcium binding protein P (SI00P) 12
T62952 (gC) protein phosphatase 4, regulatory subunit | (PPP4R1) 10
AA019459 (gC) protein tyrosine kinase 9 (PTK9) 10
R72296 (gC) protein phosphatase |, regulatory (inhibitor) subunit |5B 10
AA598996 (gM) solute carrier family 38, member 2 (SLC38A2) 10
AA496810 (gM) protein kinase C substrate 80K-H (PRKCSH) 10
AA454810 (g) tumor-associated calcium signal transducer 2 (TACSTD2) 10
AA453754 (gC) serine/threonine kinase |17a (apoptosis-inducing) (STK17A) 9
AA488413 (gC) MAP kinase-interacting serine/threonine kinase 2 (MKNK?2) 9
N47552 (gC) mitogen-activated protein kinase 6 9
Weé8184 (gC) phospholipase A2, group IVB (cytosolic) 9
AA233185 (gC) insulin-like growth factor binding protein | (IGFBPI) 9
R45941 (gM) protein tyrosine phosphatase, receptor type, N (PTPRN) 8
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Table I: Functional groups of genes related to LDH release, selected by GA/PLS (Continued)

W79920 (gN) G protein-coupled receptor 87 (GPR87) 8

HoOl1164 (gC) serine/threonine kinase |17a (apoptosis-inducing) (STK17A) 8

AA45819 (gC) mitogen-activated protein kinase 3 8

AA678095 (gM) G protein-coupled receptor 48 (GPR48) 8

AA487028 (gM) protein phosphatase |, regulatory (inhibitor) subunit [2A 8
(PPPIRI2A)

H90855 (gC) mitogen-activated protein kinase kinase kinase 7 8
AA485347 (gM) protein phosphatase |, regulatory (inhibitor) subunit || (PPPIRII) 8
AAT789328 (gC) cyclin-dependent kinase (CDC2-like) 10 (CDK10) 8

W44762 (gC) potassium inwardly-rectifying channel, subfamily J, member 2 (KCNJ2) 8

R44740 (gC) mitogen-activated protein kinase kinase | (MAP2KI) 8
AA047570 (gM) phospholipase C, delta 4 (PLCD4) 7

HI11054 (gC) protein kinase C, delta 7
AA443982 (gC) protein phosphatase |, catalytic subunit, alpha isoform (PPPICA) 7
AA480906 (gC) protein kinase C binding protein | 7
AA490473 (gC) protein phosphatase 2 (formerly 2A), catalytic subunit 7
AA679208 (gC) MAP3K7IPI 7

RI19158 (gC) serine/threonine kinase 6 (STK6) 7

R79082 (gC) protein tyrosine phosphatase, receptor type, K (PTPRK) 7

R50953 (gC) MAP4K2 7
AAB862435 (gC) G protein-coupled receptor kinase 5 (GPRKS) 7
AA464590 (gC) protein tyrosine phosphatase, receptor type, N polypeptide 2 7

(PTPRN2)
Fatty acid metabolism
AA877618 (gC) fatty acid amide hydrolase (FAAH) 12

H29215 (gC) fatty-acid-Coenzyme A ligase, long-chain 3 (FACL3) 9

T98355 (gC) long-chain fatty-acyl elongase (LCE) 7
AA678178 (gC) fatty acid amide hydrolase 7

Apoptosis
AA446839 (gC) BCL2/adenovirus EIB 19kDa interacting protein 3 (BNIP3) 10

W45688 (gN) caspase 6, apoptosis-related cysteine protease (CASP6) 10
AA676836 (gC) acid sphingomyelinase-like phosphodiesterase (ASM3A) 9
AA448468 (gC) caspase 8, apoptosis-related cysteine protease (CASP8) 8

H80712 (gC) caspase 10, apoptosis-related cysteine protease (CASP10) 8
AA496782 (gF) requiem, apoptosis response zinc finger gene (REQ) 8
AA165628 (gC) UDP-glucose ceramide glucosyltransferase 7
AA630354 (gC) sphingosine kinase 2 (SPHK?2) 7
AAI156940 (gC) programmed cell death 5 (PDCD5) 7
AA459381 (gC) sphingosine-|-phosphate lyase | 7

T57777 (gC) BCL2-like 13 (apoptosis facilitator) (BCL2LI3) 7

Translation
AA456664 (gM) eukaryotic translation termination factor | (ETFI) 10
AA027240 (gC) eukaryotic translation initiation factor 2, subunit 2 beta, 38kDa 10
(EIF2S2)

N72715 (gC) translational inhibitor protein p14.5 (UK 14) 8
AA916914 (gC) eukaryotic translation initiation factor 3, subunit 10 theta 8
AA191463 (gC) eukaryotic translation initiation factor 4 gamma, 3 (EIF4G3) 7

H92556 (gC) eukaryotic translation initiation factor 2B, subunit 2 beta, 39kDa 8

(EIF2B2)
Mitochondria Related
AA457118 (gC) translocase of outer mitochondrial membrane 34 (TOMM34) 10
R86713 (gC) translocase of inner mitochondrial membrane 22 homolog (yeast) 9
(TIMM22)
AA644550 (gM) translocase of outer mitochondrial membrane 20 7
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Caspase activity. Palmitate treatment increased caspase-3
activity significantly as compared to control (BSA) and
unsaturated fatty acid (oleate). * significantly higher in palmi-
tate, p < 0.01 by t-test. BSA: control, Ole: oleate treatment,
Palm: palmitate treatment.

3. Reconstruct pathways related to cytotoxicity using BN
BN reconstructed how the genes, identified by CICA, are
connected in a network and involved in regulating cyto-
toxicity. The resulting network is shown in Figure 4. To
evaluate potential pathways involved in palmitate-
induced cytotoxicity, we performed in silico perturbation
analyses with BN inference and experimentally validated
the reconstructed network.

3.1 Perturbation of the reconstructed network

The reconstructed network allowed us to perturb the net-
work in silico to identify which nodes had an impact on
modulating LDH release. BN inference was used to predict
the effect of perturbing a single gene/node on i) the other
gene within the network, and ii) the level of LDH release
in the palmitate cultures. The predictions of the simulated
perturbations were subsequently confirmed with inhibi-
tor (or activator) experiments. We altered the activity of
the nodes by inhibiting (activating) the protein activity.
Perturbations of the SCD (see section 3.2) and PKR (sec-
tion 3.3) were simulated with BN inference to evaluate
their effects on cytotoxicity, whereas PKC-3 (section 3.4)
was perturbed to predict its effect on NF-kB activation.

3.2 Role of stearoyl-CoA desaturase (SCD) in palmitate-induced
cytotoxicity

SCD was found closely connected to LDH and acetyl-CoA
carboxylase (ACC) in the reconstructed network. Both of
these connections are supported by the literature [23].
SCD is the rate-limiting enzyme to produce monounsatu-
rated fatty acids. Its deficiency has been found to increase
fatty acid oxidation by activating AMP-activated protein
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kinase (AMPK) in the liver. AMPK phosphorylates ACC at
Ser-79 which leads to the inhibition of ACC activity and
decreased malonyl-CoA concentration [23]. Malonyl-CoA
inhibits carnitine palmitoyl-CoA transferase (CPT-1) [24].
Thus, a decrease in the levels of malonyl-CoA activates
CPT-1 and increases fatty acid beta-oxidation in the mito-
chondrion. In the palmitate cultures, the protein expres-
sion level of SCD (Figure 5A) was reduced as compared to
the control and the oleate cultures. However, co-supple-
menting the palmitate cultures with oleate restored the
SCD protein expression level (Figure 5B) and correspond-
ingly reduced the LDH release (Figure 5C), which indi-
cated a protective role of SCD. This may explain, in part,
the preference of the HepG2/C3A cells to oxidize palmi-
tate as opposed to synthesizing triglycerides from it, as
was done with the unsaturated fatty acids. In support of
this, knockout of the SCD gene in mice has been found to
increase mitochondrial fatty acid oxidation [25].

To investigate the role of SCD in modulating palmitate-
induced cytotoxicity, we simulated an upregulation of
SCD in the reconstructed network by setting the SCD gene
expression to a higher level in silico. Up-regulating SCD
reduced the probability that the LDH release would
remain high from ~67% to ~35% (Table 2). The simula-
tion results agreed well with the literature, e.g., over-
expressing SCD protected CHO cells from palmitate-
induced cytotoxicity [26].

To experimentally validate the simulation results, we sup-
plemented the cell cultures with 50 uM of clofibrate or
ciprofibrate to increase the SCD activity. The SCD1 activ-
ity can be transcriptionally activated by clofibrate or cip-
rofibrate, which are known to increase the activity of SCD
through a PPAR independent pathway [27-29]. The
fibrate supplementation significantly decreased the LDH
release in the palmitate cultures (Figure 6). Therefore, BN
inference correctly identified SCD as a relevant factor in
palmitate-induced cytotoxicity.

3.3 Role of Bcl-2 and PKR in palmitate-induced cytotoxicity

Bcl-2 is a group of proteins including pro-apoptotic mem-
bers, such as Bax, Bid, Bad, and anti-apoptotic ones such
as Bcl-2, Bcl-xl, Bcl-w. Anti-apoptotic Bcl-2 protein inhib-
its apoptosis by guarding the mitochondrial gate against
the release of cytochrome c and the subsequent activation
of caspases. Bcl-2 was found to be connected to factors
such as PKR, TOM20, elF2B and CPT-1 (Figure 4). The
protein expression level of Bcl-2 in cultured HepG2 cells
as a function of TNF-a concentrations was measured by
western blotting (Figure 7A). TNF-a (20-100 ng/ml) sup-
pressed the protein expression level of Bcl-2 in a dose-
dependent manner. Palmitate, similarly, decreased the
Bcl-2 protein expression level significantly as compared to
the control and oleate cultures. The suppression of Bcl-2
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Network reconstructed with constraints based algorithm. GA/PLS and ICA selected the relevant genes, and BN analy-
sis reconstructed the network using the selected subset of genes. The network provides an overview of the factors and path-
ways involved in regulating cytotoxicity. The nodes discussed in the paper are highlighted in red. Microsoft Visio was used to
generate the Figure.
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Effect of palmitate on stearoyl-CoA desaturase
(SCD) measured by western blotting. (A) SCD was
downregulated in the palmitate (0.7 mM) cultures as com-
pared to the oleate (0.7 mM) and control cultures. (B) Co-
supplementation of oleate (0.3 mM) with palmitate (0.4 mM)
prevented the downregulation of SCD. (C) Co-supplement-
ing palmitate (0.4 mM) with oleate (0.3 mM) decreased LDH
release significantly, P < 0.01 (t-test). P: treated with 0.7 mM
palmitate for 48 hours, PO: treated with 0.4 mM palmitate
plus 0.3 mM oleate for 48 hours. Data expressed as average
+/- SD from three independent experiments, * significantly
lower than palmitate, p < 0.0] by t-test.

may explain, in part, the cytotoxic effects of palmitate and
TNF-a in the palmitate cultured cells (Figure 1). In sup-
port of this finding, over-expression of Bcl-2 in 2B4.11 T
cell hybridoma cell lines have been shown to inhibit
palmitate-induced cytotoxicity [30]. While TNF-a and
oleate also reduced the Bcl-2 levels, they did not produce
any overt toxicity by themselves. This indicates that per-
haps, the reduction in Bcl-2 alone is not sufficient to cause
toxicity. However, a reduction in Bcl-2 levels would prime
the cells to other insults such as oxidative stress. Only
palmitate, and not oleate or TNF-a, caused ROS produc-
tion as well as a reduction in the Bcl-2 levels. Thus,
reduced Bcl-2 levels would have only worsened the toxic-
ity produced by the oxidative stress. Therefore, reducing
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Table 2: Simulating genetic perturbation and its effects on LDH
release

Probability of LDH Release

Gene Level Low High
SCD low 0.33 0.67
high 0.65 0351
NF-KB low 0.47 0.53
high 0.77 023}
PKR low 0.65 0.25)
high 0.57 0.43

The probability of LDH release taking on a high or low level in the
palmitate cultures. BN inference was used to conduct the simulations
of up-regulation of SCD, down-regulation of PKR, and up-regulation
of NF-KB. "" indicates decreased probability and "1" indicates
increased probability.

Bcl-2 may be one of the ways in which FFA and TNF-a
made cells susceptible to toxicity.

In the reconstructed network, Bcl-2 was connected to the
translocase of outer membrane (TOM20) and carnitine
palmitoyl transferase (CPT-1). These connections are sup-
ported by published literature results. Targeting the Bcl-2
protein to the mitochondria is mediated by the interac-
tion between the C terminus of Bcl-2 and TOM20 [31].
Similarly, a direct interaction between Bcl-2 and CPT-1
has been confirmed through a co-immunoprecipitation
study [32], thus a direct connection between Bcl-2 and
CPT-1 found by the model is encouraging.

The model found PKR to be indirectly connected to Bcl-2.
PKR, an interferon-inducible serine/threonine kinase, has
been found to mediate a number of signal transduction
pathways involved in immune response, tumorigenesis
and regulation of apoptosis. PKR is best known for its role
in virus infection and regulating cellular apoptosis
[33,34]. In our model, simulating a down-regulation in
the PKR node predicted a decrease in the LDH release
(Table 2) and an increase in the Bcl-2 level in the palmi-
tate cultures (Table 3). Indeed we found that inhibiting
PKR (6 pM PKR inhibitor) in the palmitate cultures up-
regulated the Bcl-2 protein expression (Figure 7B) and
decreased the LDH release from ~50% to ~40%. There-
fore, the model appropriately identified PKR to be an
important factor involved in regulating Bcl-2 protein
expression, and in turn the cytotoxicity.

PKR was also found to be connected to apoptosis inhibi-
tor (API5), which is connected to PP2AB56 and apoptotic
chromatin condensation inducer (ACINUS), and the lat-
ter is connected to elF2B suggesting that these factors are
likely to be involved in the apoptotic signaling pathway.
These connections are supported by published results in
the literature. Caspase-3 activity was enhanced in the
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Figure 6

Effect of SCD activators clofibrate and ciprofibrate
on LDH release in the palmitate cultures. Clofibrate
and ciprofibrate are known to transcriptionally increase the
activity of SCD. Palm: treated with 0.7 mM palmitate for 48
hours, Palm+clofibrate: treated with 50 uM clofibrate and 0.7
mM palmitate, Palm+ciprofibrate: treated with 50 uM ciprofi-
brate and 0.7 mM palmitate. 6 hours pretreatment followed
by 48 hours co-supplementation of 50 1M of clofibrate or
ciprofibrate significantly decrease LDH release in the palmi-
tate culture, P < 0.01 (t-test). Data expressed as average +/-
SD from three independent experiments, * significantly lower
than in control, p < 0.01 by t-test. H: control, P: palmitate
treatment, O: oleate treatment, P+O: palmitate and oleate
co-supplementation.

palmitate cultured cells (Figure 3), which may result in
enhanced phosphorylation of elF2-a. PKR can be cleaved
by caspase-3, 7, 8 to liberate the elF2-o kinase domain,
which phosphorylates elF2-a. [35]. Phosphorylation of
elF2-a. by PKR will inhibit protein synthesis and lead to
apoptosis [35]. PKR also can bind to PP2A at the B56
alpha regulatory subunit (PP2AB56) and increase the
phosphatase activity of PP2A [36]. PP2A is a major Ser/
Thr phosphatase involved in many signal transduction
pathways. PP2A can dephosphorylate and inactivate the
anti-apoptotic Bcl-2 at Ser-70 [37].

3.4 Activation of NF-xB by TNF-c is mediated by PKC-6

We found that the phospho-p65 NF-«B levels to be signif-
icantly lower in the palmitate cultures than in the oleate
and linoleate (not shown) and control cultures shown in
Figure 8. BN inference predicted that an up-regulation of
NF-kB in the palmitate cultures would decrease the prob-
ability of LDH release being high (see Table 2). NF-«B is
an important cytoprotective transcription factor, which
can be activated by oxidative stress and cytokines, includ-
ing TNF-a[38]. From Figure 4 we find that the connection
between TNF-o and NF-kB is linked through PKC-3, sug-
gesting that PKC-3 is an intermediate factor in the activa-
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Effect of palmitate and TNF-o on Bcl-2 expression
measured by western blotting. (A) TNF-o supplementa-
tion at 20—100 ng/ml downregulated Bcl-2 in the control,
palmitate, and oleate cultures. Similarly, palmitate downregu-
lated Bcl-2 protein expression level as compared to the con-
trol and oleate cultures. (B) Effect of PKR inhibition on Bcl-2
level in the palmitate cultures. PKR inhibitor (6 M)
increased the expression of Bcl-2 in palmitate cultured cells.

tion of NF-k B. Connections between TNF-a, PKC-§ and
NF-xB have been identified in cells such as neutrophils
[39] and pancreatic acinar cells [40]. Inhibiting PKC-8 has
been shown to attenuate TNF-a-mediated activation of
the anti-apoptotic transcription factor NF-xB in adherent
neutrophils [39], but showed no effect on NF-xB activa-
tion in cultured myometrial cells [41], thus suggesting the
pathway is cell dependent. There has been no study to
date indicating that PKC-8 mediates TNF-a. 's activation of
NF-xB in HepG2 cells. Our model suggests that down-reg-
ulating PKC-6 will decrease the probability of NF-«xB tak-
ing on a high expression level in the medium (plus TNE-

Table 3: Simulating down-regulation of PKR and its effects on
Bcl-2

Probability of Bcl-2 level

Gene level Low High
high 0.55 0.45
PKR low 0.44 056 T

The probability of Bcl-2 taking on a high or low level in the palmitate
cultures. BN inference was used to conduct the simulations of down-
regulation of PKR. "{" indicates decreased probability and "T"
indicates increased probability. This was validated experimentally as
shown in Figure 7.
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Phosphorylated p65 subunit of NF-kB was deter-
mined by western blot with a monoclonal antibody.
1) HepG2, 2) TNF-a at 20 ng/m; 3) TNFa at 100 ng/ml; 4)
BSA 5) BSA+TNF-a at 20 ng/ml; 6) BSA+TNF-a at 100 ng/
ml; 7) palmitate; 8) palmitate + TNF-a at 20 ng/ml; 9) palmi-
tate + TNF-o at 100 ng/ml.

a) cultures (Table 4). To determine whether PKC-$ is
involved in mediating the activation of NF-kB by TNF-a in
HepG2 cells, we added rottlerin, an inhibitor of PKC-,
and measured the activity levels of NF-xB by western blot-
ting. Rottlerin is a PKC-3 specific inhibitor that inhibits
the tyrosine phosphorylation of PKC-§, which to our
knowledge does not interfere with any of the components
in the NF-«xB activation pathway. The activity of NF-xB
was measured by detecting the levels of phosphorylated
NF-kB p65 at Ser-536 [42]. As shown in Figure 9, the acti-
vation of NF-kB p65 was attenuated by rottlerin. There-
fore, PKC-6 was appropriately identified by the model to
be an important factor in mediating the TNF-a signaling
to NF-xB.

Discussion

With the availability of high dimensional biological data
to characterize a cellular state, one of the challenges is the
development of robust methods that can integrate various
orthogonal datasets to identify the genes and pathways
that induce a phenotype. The significance of the TIPS®
framework is its ability to extract relevant information,
both known and unknown, from high dimensional data.
The phenotypic profile was used to guide the information
extraction process. Proteins relay information from the
genes to execute biological functions, which define the

Table 4: Simulating down-regulation of PKC-5 and its effects on
NF-kp.

Probability of NF-xf3 activation

Gene level Low High
high 0.39 0.6l
PKC-8 low 0.51 0491

The probability of NF-kf3 taking on a high or low level. The model
predicts that a down-regulation in PKC-3 will decrease the probability
of NF-kf3 taking on a high value. This was validated experimentally and
shown in Figure 9. "J" indicates decreased probability and "™
indicates increased probability.
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Figure 9

Effect of rottlerin on NF-kxB measured by western
blotting. Expression of phospho-P65 NF-«kB in control and
palmitate mediums with 0, 20, 100 ng/ml TNF-a, gith and
without rottlerin (5 uM). TNF-a activated phospho-P65 NF-
kB and this activation was attenuated with the PKC-8 inhibi-
tor, rottlerin.

cellular phenotype. Thus, the effects of regulation occur-
ring at the protein level manifest themselves in the pheno-
type. This paper illustrates that uncovering this
information at the protein (i.e., intermediate) level may
be achieved by integrating phenotype and gene expression
data.

A handful of the connections were selected to illustrate
the effectiveness of the framework. The selection was not
intended to be comprehensive or exclusive of other poten-
tially valid connections. The connections selected for fur-
ther analysis and discussion were based upon i) evidence
in the literature that a potential relationship may exist,
although it may not be known what the exact nature of the
relationship is or its relevance to toxicity, and ii) whether
materials, e.g. assays or antibodies, are available to allow
us to evaluate the connections.

Currently, only one phenotypic profile, e.g., LDH release,
was used to identify the active network perturbed by TNF-
o and FFA exposure. Metabolic profiles, which character-
ize the cellular phenotype, may also be used as con-
straints. Incorporating more metabolic profiles would
improve the characterization of the phenotype and in turn
the network reconstruction and predictions. An approach
to add more constraints would be to apply ICA or PLS to
extract several latent variables from the metabolic profiles
[43]. In addition, the current TIPS® approach selects genes
based upon the data without considering a priori knowl-
edge of the system under investigation. Using a purely
data driven approach may result in important genes with
modest changes escaping detection by statistical analysis
such as ANOVA. Incorporating domain knowledge into
the TIPS® approach could improve the selection of rele-
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vant genes. The prior knowledge could be incorporated
with approaches such as gene set enrichment analysis
(GSEA) [44]. GSEA incorporates functional pathway
information in the selection of significantly enriched
functional gene groups.

Additionally, the current TIPS® approach reconstructs
pathways from gene expression and metabolic profiles at
a single time point. Dynamic regulatory interactions may
be inferred if data from multiple time points are available.
Indeed, the underlying biological regulatory mechanism
is likely to be dynamic in response to changes in the envi-
ronmental conditions. A power law model has been
applied in continuous dynamic Bayesian network (DBN)
analysis to model the connection between genes [45,46].
The power law model can easily be extended to allow for
delayed transcription [45,46]. Both discrete [47] and con-
tinuous [45,46] DBN has been applied to model gene reg-
ulatory networks. Therefore, to detect the dynamic
property of biological networks, we plan to obtain time
series data and incorporate a dynamic Bayesian network
reconstruction component into the TIPS® framework.

Due to computational limitation as well as limited data, it
is not possible to reconstruct a network with high confi-
dence using all the genes across the genome. GA/PLS and
ICA provided an approach to identify a relevant subset of
genes for further analysis. However, useful information
may be missed in the selection process or not identified
due to low abundance transcripts. To address the former,
an approach would be to use a more targeted array with a
smaller subset of genes. To address the latter, methods
such as kinetically monitored reverse transcriptase-initi-
ated PCR (kRT-PCR) could be used to measure genes with
low abundance transcripts [48].

Conclusion

In conclusion, we have demonstrated that TIPS® may be
applied to reconstruct the active associations from gene
expression and phenotypic profiles to help elucidate the
pathways involved in regulating palmitate-induced cyto-
toxicity. The pathways identified and shown in Figure 4
are specific to the cytotoxicity induced by FFA and TNF-o.
If other compounds were applied to a cell culture system
(HepG2 or another cell type), new microarray and pheno-
type data would have to be collected and the TIPS® analy-
sis applied to identify a different set of relevant genes
specific to those compounds. This is important because
many connections are context-specific (i.e. cell type and
treatment). For instance, the regulation of Bcl-2 by TNFa
is cell dependent. TNF-a suppresses Bcl-2 in FaO rat
hepatoma cells [49] while it induces Bcl-2 in rat hippoc-
ampal neuron cells [50]. Similarly, signaling pathways are
stimuli specific, for example, TNFa activates IKK activity
with a negative feedback through A20 while LPS activates

http://www.biomedcentral.com/1471-2105/8/202

IKK activity with a positive feedback through a different
pathway involving NF-xB and IRF3 [51]. Therefore,
whether a pathway is activated will depend on the type of
cell and the condition under consideration. The advan-
tage of TIPS is that it allows for these differences and aims
to reconstruct these pathways from the context-specific
data.

Methods

Cell culture

One million Hep G2/C3A cells (ATCC, Manassa, VA) were
seeded into each well of 6-well culture plate. The cells
were kept in 2 ml of medium containing Dulbecco's mod-
ified Eagles medium (Invitrogen, Carlsbad, CA) supple-
mented with 10% fetal bovine serum (ATCC) and 2%
Penicillin-streptomycin (Invitrogen). Cells were incu-
bated at 37°C and in 10% CO2 atmosphere. After cells
reached confluence, the medium was replaced with 2ml
of treatment of FFA, either palmitate (700 uM), oleate
(700 uM), or linoleate (700 uM), and in the presence and
absence of TNF-a (0, 20, 100 ng/ml). Fatty-acid-free
bovine serum albumin (BSA) was used as a carrier for the
FFAs.

Cytotoxicity measurement

For the LDH measurements, cells were cultured in differ-
ent media for up to 48 hours and the supernatant col-
lected. Cells were washed with phosphate buffered saline
(PBS) and kept in 1% triton-X-100 in PBS for 24 h at
37°C. Cell lysate was then collected, vortexed for 15 sec-
onds and centrifuged at 7000 rpm for 5 minutes. Cytotox-
icity detection kit (Roche Applied Science, Indianapolis,
IN) was used to measure the LDH release. LDH released
was normalized to the total LDH (released + lyzed).

Gene expression profiling

Cells were cultured in 10 cm tissue culture plates until
confluence and then exposed to different treatments. RNA
was isolated with Trizol reagent. The gene expression pro-
files were obtained with cDNA microarray. Analyses were
done at the Van Andel Institute, Grand Rapids, MI. The
protocols are available online at [52]. There were two bio-
logical replicates for each condition and each replicate
was labeled with the Cy3 and Cy5 dyes. The microarray
data has been deposited at the GEO website [53], with a
query number of GSE5441.

Inhibitors and activators

1 uM Rottlerin (inhibits PKC-8, BIOMOL Research Labo-
ratories, Plymouth Meeting, PA), 10 pM HA14-1 (inhibits
Bcl-2, BIOMOL Research Laboratories, Plymouth Meet-
ing, PA), 6 uM PKR inhibitor (Calbiochem, EMD Bio-
science, CA) were used in the inhibitor experiments. 50
uM of clofibrate and ciprofibrate (Sigma) were used as
activators of SCD.
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Immunoblotting

Cells were lysed with 1x SDS sample buffer. Proteins in
cell lysates were separated on SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) and blotted onto nitrocellu-
lose membrane. Non-specific binding sites were blocked
with 5% non-fat milk. The membrane were then treated
with anti-SCD (1:1000, Santa-Cruz Biotechnology Inc.,
CA), anti-PKC-3 (1:1000, Santa-Cruz Biotechnology Inc.,
CA), anti-Bcl-2 (1:2000, Cell signaling Inc., MA), and
anti-NF-kB-P65 (1:1000, Cell signaling Inc., MA) to detect
protein level of SCD, PKC-8, Bcl-2, and NF-kB, respec-
tively. Membranes were also immnoblotted with anti-B-
actin (1:1000, Cell signaling Inc., MA) to monitor the
loading level in each lane. All antibodies are against the
human isoform.

Data analysis

ANOVA

The analysis of variance (ANOVA) was applied to com-
pare the effect of treatment (e.g. FFA, TNF-a.) and to deter-
mine whether a treatment has a significant effect. We
applied a two-way ANOVA test to identify the genes that
are affected by FFA, TNF-a or the interaction between FFA
and TNF-a. The analysis was performed in MATLAB 6.3
using Stats Toolbox. A two step ANOVA analysis was per-
formed to identify the genes that changed significantly
due to FFA or TNF-a exposure. We identified a list of genes
from the literature shown in the additional files [see Addi-
tional file 2], that are relevant to palmitate-induced cyto-
toxicity and applied ANOVA with P < 0.05 to this list of
genes (which we denote as "supervised" ANOVA). In
addition, ANOVA analysis was applied to the entire list of
genes with P < 0.01 (which we denote as "unsupervised"
ANOVA). The two lists of genes were then combined into
one list, eliminating any overlaps between the lists. Using
the supervised and unsupervised ANOVA tests, the expres-
sion level of 830 genes were found to be significant due to
either TNF-a or FFA. This list of genes is in the additional
files [see Additional file 3].

TIPS® framework

We apply a mathematical framework that first integrates
genetic algorithm (GA) and partial least squares (PLS)
analyses to identify the genes relevant to LDH release, but
these genes may be involved in many independent path-
ways. Therefore, the framework then applies CICA to
identify an independent pathway involved in LDH
release. Finally the connections between these genes
selected by CICA are reconstructed using BN analysis to
infer how the genes interact with each other in the inde-
pendent pathways. The reconstructed network illustrates
how the genes interact under the given environmental
conditions to regulate LDH release. The framework is
shown schematically in Figure 10.
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Genetic algorithm/partial least square analysis (GA/PLS)

Based upon the notion that metabolic functions are regu-
lated in part by the enzymes catalyzing the reactions,
which in turn are determined in part by their gene expres-
sion levels, we hypothesize that the metabolic function
can be predicted from the expression level of a subset of
genes that are associated with the metabolic function. The
log-linear model (also known as the power law function)
was used to approximate the non-linear relation between
metabolic function and gene expression levels. Log-liner
model has its roots in biochemistry and has been applied
by Savageau et. al. (also coined as S-system) to approxi-
mate the relation between reaction rates and their sub-
strates [54-56]. The log-linear model has also been
applied successfully to model the expression of a gene as
a power law function of the expression of the genes that
regulate it [45]. The advantage of log-linear models is that
they are computationally tractable and robust [56] and
restricted nonlinear relationships have been modeled as
well. Although, mechanism based nonlinear models [57]
can capture more accurate behavior, they require more
parameters and more data to estimate these parameters
and in turn higher computational cost. Therefore, we used
the log-linear model to approximate the non-linear rela-
tions between phenotype and gene expression level
shown in equation (1).

Met(treatment) 12[ Gene(treatment); . C(i)

Met(control) 5 Gene(control);

where Met(treatment) and Met(control) are the metabolic
function for the treated and control cultures, respectively;
Gene(treatment); and Gene(control); are the expression level
of gene i for the treated and control cultures, respectively.

Met(treatment))

Denoting Y as lo
8 8a( Met(control)

and X; as

G treat t);
log, (M), equation (1) is transformed to a
Gene(control);

log-linear model:

n
Y =Y C(i)X;
i=1
In this study the coefficients C(i) in equation (2) are
determined by PLS analysis and the genes, Gene; are
selected by GA/PLS as described in reference [9].

Constrained Independent Component Analysis (CICA)

ICA is a statistical method that has been applied to reveal
"hidden factors" underlying sets of signal measurements
[10]. The expression levels of the genes are the recorded
signals which are affected by underlying regulatory path-
ways. We denote the signal measurements Y to be the gene
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The framework to integrate gene expression and
metabolic profiles. The relevancy of each gene to LDH
release was first evaluated with GA/PLS. Genes with higher
frequencies were considered to be more relevant. The fre-
quencies and profile of the LDH release were then used to
constrain the ICA model to extract an independent compo-
nent that represents the cellular process. The genes in the
independent component with high coefficients were sub-
jected to BN analysis.

expression data, S to be the independent components
(pathways), and A to be the mixing matrix. The ICA
model can be expressed as

Y=AS

The gene expression Y is supplied to the ICA model and
the mixing matrix A can be uniquely estimated by assum-
ing that the components in S are statistically independent
to each other. Y(i,t) represents the expression of gene i in
experiment t, A(i,j) represents weight of gene i in inde-
pendent pathway j, S(j,t) represents the profile of inde-
pendent pathway j in experiment ¢. Since the objective
here is to identify a LDH release related independent path-
way, A was further constrained with the frequency learned
by GA/PLS and S was further constrained with the LDH
release profile. Let F(i) be the frequency of gene i with
respect to LDH release and a(i) be the weight of gene i in
the pathway related to LDH release. Thus, a is constrained
to have a correlation with F by equation (4), where p1 is
a threshold value.

Corr1 = aT *diag (F)*a/(aT *a) > p1

Let 5(t) be the profile of LDH related pathway in experi-
ment t and L(t) be the profile of LDH release in experi-
ment t. Similarly, s is constrained to have a correlation
with L by equation (5), where p2 is a threshold value.
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Corr2 = sT*L*LT*s/(s*sT) >p2

Implicit in the use of ICA is i) ICA separates only linear
effects, ii) all the genes are assumed to be linearly inde-
pendent, and iii) can handle only one Gaussian source,
which is typically assumed to be the noise in the data, and
the independent signal sources are non-Gaussian. The
assumption that information flow from genes to proteins
is linear is a reasonable first-order approximation since
most genes translate to proteins which are not involved in
regulation or feedback loops. We addressed the second
assumption through pre-whitening the gene expression
data with singular value decomposition to remove the
principal components with small eigenvalues, i.e. linear
dependency. For the third assumption, we evaluated the
normality of the independent component and found the
extracted independent component is non-Gausssian [see
Additional file 4], therefore justifying the application of
ICA to the gene data.

Bayesian network analysis

Bayesian networks are directed acyclic graphs (DAG)
whose nodes correspond to variables and whose arcs rep-
resent the dependencies between variables. The depend-
encies are determined by the conditional probabilities of
each node x; given its parent node p,, Pr(x; | p,(x;)). A
Bayesian network i) assumes conditional independence,
such that each node is independent to its non-descend-
ants, given it parents. For example, B and C are condition-
ally independent to each other given A in a network, then

Pr(B | CA) = Pr(B|A)

and ii) consists of joint distribution defined by a set of var-
iables {x;} as:

N
Pr(xy, . %) = [T Pr(; | pa (7))
i=1
In the example above:

Pr(A B, C)=Pr(A)Pr(B|A)Pr(C|A)

There are two common approaches that have been
applied to learn the network structure, the score and
search based and the constraint based methods. This
study compared the score and search based LibB [6]
method with the constraint based greedy thickening and
thinning algorithm [58]. The score and search based LibB
method, downloaded from Nir Friedman's group at [59],
used the sparse candidate algorithm to search for a net-
work with the highest score [6]. The score S(G:D) is
defined to be proportional to P(G|D) and is used to eval-
uate the networks, where G represents the graph and D
represents the training dataset and P(G|D) represent prob-
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ability of Graph G given data D. S(G:D) can be decom-
posed according to equation (9).

S(G:D)= Zslocal(xifpaic :D)

1

Stocat(X ;U : D) = log P(Pa; = U) +log [ T] P(X;[m] | U[m],0)dP(6)

The first term in equation (10), log P (Pa; = U), is the prior
probability for the choice of U as the parent of X, the sec-
ond term in equation (10) calculates the probability of
the data given the possible values for the parameter, 6; 6
defines the conditional probabilities between the nodes.
The score S(G:D) is maximized using the sparse candidate
algorithm in the structure learning process. Mutual infor-
mation based algorithm was used for the constraint based
network reconstruction, the details of the algorithm can
be found in [4,58] and consists of 3 phases. Briefly, in
Phase 1 the mutual information contained in each pair of
genes is calculated as a measure of closeness, indicating
the correlation between the pair of genes. The algorithm
creates a draft of the regulatory network based upon the
calculated mutual information. The mutual information
I(X;X;) for each pair of nodes (x;x;) is computed as fol-
lows:

Pr(x;,x;
10X, X)) =Y, Pr(xi'xf)log%
i ]

X; X,

Then each pair of genes with mutual information I(X;X;)
greater than a threshold value, T, are sorted in a list L from
high to low. T is set to be the default value in BN Power-
Constructor. An arc is drawn for the first two pairs of
nodes in L. The pointer is then moved to the next pair of
nodes. If no path exists between the pair an arc is added.
In Phase 2 arcs are added when pairs of unconnected
nodes are dependent as determined by the conditional
independence (CI) test. The CI test is based on condi-
tional mutual information as defined by equation (12)
below. For I(XiXj|c) less than the specified threshold
value T, (Xi Xj) is said to be independent given ¢, where ¢
is a set of genes.

Pr(x;, x;j | )

I(X;,X;|c)= Pr(x;, x;,c)log———————

(X, X; [ 0) 2 (s oB T
In Phase 3 each arc is examined using the CI test and arcs
are removed if two genes linked by an arc are condition-
ally independent. The LDH node was assigned as a leaf
node in the learning process, which enabled the determi-
nation of direction in the network. BN PowerConstructor
downloaded from Cheng Jie's group at [60] was used in

the constraint based network reconstruction. Both the

http://www.biomedcentral.com/1471-2105/8/202

score and search based and the constraint based
approaches have their advantages and disadvantages in
different respects. For example, Heckerman et al. [61]
showed that the scoring-based method is advantageous
over the constraint-based methods when modeling a
probability distribution of observations. However, Fried-
man et al. [62] showed theoretically that the general scor-
ing-based method may result in poor prediction accuracy,
which was also confirmed by Greiner et al. [63]. Score and
search method often are computationally more costly
[61]. Constraint based method, on the other hand, is able
to discriminate between models with and without hidden
variables and can indicate the presence of a hidden com-
mon cause between two variables [64]. Therefore, we
applied both approaches and compared the network
learned using our data. We found that fewer connections
were identified using the LibB approach and the LDH
node was not connected to any genes (the full network is
shown in the additional files [see Additional file 5]).
Based upon this comparison, we decided to use the con-
straint based approach to generate the network for subse-
quent analyses.

Bayesian network inference

Bayesian network inference was used to predict the prob-
abilities of a phenotype e.g. LDH or a gene will take a cer-
tain value with the other genes in the network at
controlled levels. The posterior probability that the class
node will take on a certain value given the values of the
other nodes is determined based upon conditional prob-
ability. Suppose node A is the target node and b1 and c1
are the known values of evidence nodes B and C, respec-
tively, we can predict the posterior probability Pr(A| xi, xj)
according to the Bayesian rule:

Pr(A=a,|B=b,
Pr(B=b,,C=c,) (9)

C=c,)=Pr(B=b,,C=c,|A=a,)*Pr(A=a,)/

However, applying this exact inference to a large network
is computationally costly [65]. Therefore, we applied an
approximate inference algorithm, logic sampling [66], to
infer the posterior probabilities. Briefly, logic sampling
generates a case by randomly assigning values to each
node weighted by the probability of that value occurring.
To estimate the posterior probability Pr(X|E) where X is
target node and E is the evidence node, we compute the
ratio of the number of cases where both E and X are true
to the number of cases where just E is true, i.e.
Pr(X=x|E=e) = Pr(X=x, E=e)/Pr(E=e). The inference proc-
ess was conducted with Genie [67].
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