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Abstract
Background: Gene expression microarray and other multiplex data hold promise for addressing
the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted
treatments. A new approach to the construction and quantification of transcriptional regulatory
networks (TRNs) is presented that integrates gene expression microarray data and cell modeling
through information theory. Given a partial TRN and time series data, a probability density is
constructed that is a functional of the time course of transcription factor (TF) thermodynamic
activities at the site of gene control, and is a function of mRNA degradation and transcription rate
coefficients, and equilibrium constants for TF/gene binding.

Results: Our approach yields more physicochemical information that compliments the results of
network structure delineation methods, and thereby can serve as an element of a comprehensive
TRN discovery/quantification system. The most probable TF time courses and values of the
aforementioned parameters are obtained by maximizing the probability obtained through entropy
maximization. Observed time delays between mRNA expression and activity are accounted for
implicitly since the time course of the activity of a TF is coupled by probability functional
maximization, and is not assumed to be proportional to expression level of the mRNA type that
translates into the TF. This allows one to investigate post-translational and TF activation
mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic
formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while
a physically-motivated regularization of the TF time course is found to overcome difficulties due to
omnipresent noise and data sparsity that plague other methods of gene expression data analysis.
An application to Escherichia coli is presented.

Conclusion: Multiplex time series data can be used for the construction of the network of cellular
processes and the calibration of the associated physicochemical parameters. We have
demonstrated these concepts in the context of gene regulation understood through the analysis of
gene expression microarray time series data. Casting the approach in a probabilistic framework has
allowed us to address the uncertainties in gene expression microarray data. Our approach was
found to be robust to error in the gene expression microarray data and mistakes in a proposed
TRN.
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Background
Gene expression microarray [1-3] and other multiplex
data (e.g. NMR, ChIP-on-chip and proteomics) contain a
wealth of information, and thereby hold promise for
addressing the challenge of cellular complexity and deriv-
ing advances in medical sciences [4-7]. Considering the
volume of the data and the complexity of the phenomena
to be understood, it is evident that the interpretation of
such multiplex data must be facilitated by automation.
Recently we proposed an approach to the analysis of mul-
tiplex bioanalytical data based on the integration of these
data with cell modeling through information theory [8].
Here we show how this approach can be extended to the
analysis of gene expression microarray time series data.

Kinetic cell models have been used for predicting cell
behavior [9-11]. Unfortunately there is a lack of informa-
tion about many of the rate and equilibrium constants for
the reaction and transport processes involved [8,12]. Fur-
thermore, we are presented with the challenge of calibrat-
ing and using an incomplete model since key aspects of
biochemical networks have yet to be resolved. In contrast,
gene expression microarray, protein spectroscopy, NMR,
ChIP-on-chip and other multiplex data acquisition tech-
niques yield many simultaneous measurements but they
are often only indirectly related to the quantities we seek
such as protein and mRNA production and degradation
rate coefficients, and TF/gene binding constants, and the
stoichiometry of posttranslational processes.

Time series experiments commonly involve monitoring a
sample of cells over their cycle or during response to time-
varying conditions in the extra-cellular medium such as
due to heat shock, transitions to aerobic to anaerobic con-
ditions, from enriched to minimal growth media, or expo-
sure to hormones or drugs. Other dynamical phenomena
of interest involve behaviors in response to nuclear trans-
plantation, fertilization or viral infection, as well as the
time course of normal development, radiation, transitions
to abnormality or drug resistance. Predicting these phe-
nomena, and analyzing of time series data on them can be
facilitated using kinetic approaches if the associated
dynamic variability is to be explored. In contrast, steady-
state approaches can only yield ratios of rate coefficients
and not all coefficients independently. Nor can a steady-
state approach capture autonomous oscillatory dynamics
such as observed during transcription [13,14].

To quantitatively understand the cell, we must account for
the omnipresent uncertainty in observed data and in the
structure of a cell model. Thus, a probabilistic framework
is needed. We suggest that the probability of interest is a
function of the rate parameters and initial concentrations
and a functional of the time course of the frontier varia-
bles for which we do not know the governing equations or

experimental measurements. Since we know the time
course of gene expression microarray data, in principle,
some of the rate parameters, equilibrium constants, initial
concentrations as well as the time profile of the frontier
variables are more likely to be consistent with it than oth-
ers. A new approach to the construction and quantifica-
tion of TRNs is presented here that integrates gene
expression microarray time series data and cell modeling
through information theory. Given a partial TRN and time
series data, a probability density is constructed that is a
functional of the time course of TF thermodynamic activ-
ities at the site of gene control, and is a function of mRNA
degradation and transcription rate coefficients, and equi-
librium constants for TF/gene binding.

In attempt to reduce the effect of measurement errors,
gene expression microarray data is usually preprocessed
via image analysis, statistical approaches and channel nor-
malization before any biochemically viable information
is derived [15-17]. A number of methods have been pro-
posed for extracting information and overcoming system-
atic errors from gene expression microarray data after
preprocessing it. Among them are Boolean network mod-
els [18], Bayesian network models [19], Bayesian statistics
[20,21], cluster analysis [22,23], independent component
analysis (ICA) [24,25], principal component analysis
(PCA) [26,27] and network component analysis (NCA)
[28,29]. These techniques are based on the assumption
that the system is at steady-state.

The goal of Boolean model analysis is to infer gene regu-
latory network structure. However, Boolean network
models oversimplify gene expression by using a binary
approximation wherein genes are considered either active
or inactive. The interaction between genes is then repre-
sented by Boolean functions (e.g. AND, OR, etc.), and
hence the state of a gene (active/inactive) is calculated
using the state of the controlling genes. A regulatory net-
work is then constructed by searching all possible Boolean
functions until a network that best fits all the data is
obtained. While such approaches miss the subtler varia-
tion in the degree of gene activity, their computational
efficiency allows them to be applied to large networks.

In Bayesian networks, the expression level of every gene is
specified by a random variable. Starting form an a priori
gene regulatory network, gene expression data and using
Bayesian statistics, one can construct the conditional
probability of the level of expression for each gene given
the expression level of another gene that is assumed to
regulate it. This conditional probability is then used to
build a Bayesian network by keeping all edges (i.e.
assumed regulatory interactions) that have a conditional
probability higher than a threshold.
Page 2 of 18
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:20 http://www.biomedcentral.com/1471-2105/8/20
Cluster analysis, Bayesian statistics, ICA and PCA classify
genes into groups; genes that have similar expression pro-
files are assumed to be similarly regulated or share the
same biochemical functionality. However, they cannot
uniquely predict the TRN as they do not address the role
of TFs mediating gene-gene interactions or the effect of
external factors (e.g. carbon source or TF activators/deacti-
vators such as hormones). Cluster analysis is based on sta-
tistical techniques wherein correlations are sought
between the responses of genes. However, the coordina-
tion can be extremely complex and circuitous. Thus genes
may be part of a multi-branch feedback loop involving
several TFs made or activated/deactivated by proteins
translated from other genes via a series of kinetic steps that
can introduce time delays which can easily mask some
interactions or introduce spurious ones. Such effects are
even more pronounced in light of noise in the observed
expression profiles. Furthermore, for a given gene, there is
no established correlation between mRNA expression and
the level of protein it translates [30]. These time-delayed,
complex relationships are revealed by our method which
explicitly accounts for the role and time course of the TFs.

NCA differs from other techniques in that the structure of
the TRN is assumed to be known. A number of assump-
tions are made in NCA to arrive at the final steady-state
model. The approach presented here requires at least a
part of the TRN. However, we place no restrictions on the
structure of this network, use a kinetic model, construct
synthetic gene expression microarray time series, apply a
physically motivated regularization constraint for the
time-dependence of TF activities that enhances robust-
ness, places the entire computation in an information the-
ory context so that the uncertainty can be assessed, and
then analyzes TRN structure and the associated physico-
chemical parameters. The latter include mRNA produc-
tion and degradation rates and TF/gene binding
constants. The use of a kinetic model also allows us to
generalize our approach to proteomic and metabolic data
either by themselves or with gene expression microarray
data.

Our method is significantly different from the approach
proposed by Gardener et al. [31] whose objective is to
construct the gene control network using gene expression
microarray data and limiting the number of interactions
per gene. However, even when there are just a few interac-
tions per gene, there can be thousands of networks that
can explain the same gene expression microarray data
with a given accuracy. A variety of other methods has been
also proposed for TRN construction and augmentation;
these include gene ontology, phylogenetic profiles [32]
and promoter sequence analysis [33]. The methodology
presented here is meant to compliment other approaches
and act as a filter for spurious networks by contrasting pre-

dictions with observed expression and predicting TF time
courses. The later provides an important framework for
TF/gene interactions or a self-consistency check on predic-
tions of the other methods. Furthermore, as other meth-
ods suggest that there could be TF/gene interaction, our
methodology compliments this by providing the specific
nature (up/down) of the regulation.

In this paper, we present our approach and apply it to E.
coli. Our analysis is based on a simplified approach
wherein only TRN structure is obtained. Next the resulting
TRN is used with the kinetic/information theory approach
presented here to calibrate the physicochemical parame-
ters and refine the network structure.

Methods
Schematically, our approach to the incomplete-model
challenge is as follows. The state of a cell is specified by a
set of variables Ψ for which we know the governing equa-
tions and a set T, which is at the frontier of our under-
standing (i.e. for which we do not know the governing
equations). The challenge is that the dynamics of Ψ is
given by a cell model, e.g.

in which the rate G depends not only on many rate and
equilibrium constants Λ, but also on the time-dependent
frontier variables T(t). The descriptive variables, Ψ, can
only be determined as a functional of the unknown time
courses T(t). Thus the model cannot be simulated.

Gene expression microarray time series data, M, reflects
the evolving state of the genome and hence one can com-
pare it with a model predicted synthetic time series, Msyn,
to derive a measure of the accuracy and completeness of
the model. Solving Eq. 1, yields the time-course of Ψ over
the duration of the experiment as a function of Λ, the ini-
tial state Ψ(t = 0), and as a functional of T(t) (i.e. Ψ =
Ψ[T,Λ,Ψ0]); thus the gene expression microarray data con-
structed, Msyn, when compared with M, yields a measure
of the accuracy of T(t), Λ and Ψ0. In the present applica-
tion, Ψ represents intracellular mRNA levels, Λ is the
aforementioned set of rate and binding constants, and
T(t) is the time course of TF activities at the site of gene
control.

To quantitatively understand the cell, we must account for
the omnipresent uncertainty in observed data and in the
structure of a cell model. Thus, a probabilistic framework
is needed. We suggest that the probability of interest
(denoted ρ) is a function of Λ and Ψ0 and a functional of
the time course of the frontier variables T(t). Since we
know M, in principle, some Λ, T(t) and Ψ0 are more likely

d

dt
G T

Ψ Ψ Λ= ( )( , , ), 1
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to be consistent with it than others. We develop a model
(e.g. a realization of Eq. 1) and use time series gene expres-
sion microarray data with information theory to construct
ρ.

In the present approach the physics and chemistry of the
mechanisms built into a kinetic cell model puts con-
straints on the relationship between Ψ and T(t), Λ and Ψ0;
this facilitates the determination of these variables from
time series data. In a sense, physics and chemistry of bio-
chemical reaction/transport processes enhance the solva-
bility of the inverse problem for the determination of
T(t),Λ and Ψ0 given the time series gene expression micro-
array data. Since we know M, in principle, some Λ,T(t)
and Ψ0 are more likely to be consistent with it than others.
We develop a model (e.g. a realization of Eq. 1) and use
time series gene expression microarray data with informa-
tion theory to construct ρ.

A transcription model
Gene expression is a multi-step process that is mainly reg-
ulated by proteins that activate or repress transcription. In
prokaryotic genes, transcription initiation is controlled by
promoters which are DNA sequence elements recognized
by RNA polymerase. The activity of RNA polymerase is
regulated through the interaction of the DNA-binding
proteins known as transcription factors with short, spe-
cific DNA sequences. These sequences are normally
located close to the promoter of the regulated gene. DNA-
binding proteins alter the binding affinity of RNA
polymerase, consequently affecting the RNA transcription
rate [34]. It is evident that the physiological function of a
DNA-binding protein is driven by its binding affinity with
a gene promoter or adjacent DNA sequence. In particular,
Repressor proteins bind to the promoter site thus compet-
ing with RNA polymerase for the same binding site while
activator proteins usually bind adjacent to the promoter
site and hence enhancing the binding affinity of RNA
polymerase.

In our approach, we no longer require a comprehensive
cell model to make quantitative predictions even though
processes within and among the genome, proteome and
metabolome are all strongly coupled. Rather our
approach only requires an incomplete model wherein
governing equations for the variables Ψ of Eq. 1 are to be
set forth and the model must contain those variables with
which one may construct synthetic data of the type avail-
able. Thus the following model is based on equations for
mRNA levels so that synthetic gene expression microarray
data can be constructed. But to do so one must know the
time course of TFs as they up/down regulate genes. Specif-
ically, to implement our approach the TF intra-nuclear
thermodynamic activities are identified as the frontier var-
iables T(t) of (Eq. 1). Closure is obtained by using time

series data to generate functional differential equations
for the T(t). Thus one need not make oversimplified
assumptions on T(t) to compute Ψ (i.e. one may calibrate
and run an incomplete transcription model even though
the dynamical variables (e.g. RNA populations) are
strongly coupled to T(t)).

We first develop a forward model in which given a set of
time courses of TF thermodynamic activities, T(t), the
time course of intra-cellular mRNA populations R(t) is
predicted. Due to the dense environment within the
nucleus, TF thermodynamic activities are preferred over
concentrations. With such a model and time series gene
expression microarray data, we now show how transcrip-
tion rate and other parameters, the most probable T(t) can
be obtained, and the gene control network can be quanti-
tatively characterized. Finally, note that the following
model is rather simple. While more complete models
could be used [11], our purpose here is to demonstrate the
approach and not to address the supercomputer challenge
of a very detailed approach.

Given a TRN with NTF TFs and Ng genes, the i-th gene (gi),

i = 1,�Ng, is assumed to have  uncompetitive TF

binding sites labeled j = 1,� . Assume the binding at

any site is independent of the state of others and that only
one type of TFs can bind to each site. While the latter two
assumptions are not inherent restrictions of our approach,
they are made here for simplicity. Let nij label the TF that

can bind to site j on gene i. Let bij be minus one or plus one

indicate the nature of regulation (down or up) of TF type
nij on gi. At TF/gene equilibrium, the probability Hi that gi

is available for RNA polymerase (RP) complexing is taken
to be given by an equilibrium Langmuir uncompetitive
adsorption isotherm [35]

for binding constant Qij (liter/mole) and intra-nuclear

activity  of the nij-th TF. The rate of RNA transcription

initiation is written

where  is a saturation rate coefficient that we suggest

is diffusion-limited. This assumption is reasonable
because it take into account that on one hand, for TF/DNA
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and RP/DNA binding, electrostatic interactions tend to
lead to higher limiting rate coefficient than the diffusion
limited one. On the other hand, the need for having a spe-
cific orientation in order for a TF or RP to bind to the DNA
tends to lower the limiting rate coefficient than the diffu-
sion limited one [36]. The two aforementioned processes
in addition to electrostatic screening due to presence of
salt in vivo are assumed to balance each other. After RP
binds to a gene mRNA elongation commences. If nucleo-
tide concentrations are roughly steady during transcrip-
tion and the RP advancement velocity ui (which in

principle depends on the sequence of the gene and meas-
ured in units of nucleotides/sec), then the transcription
polymerization rate Ai is taken to be

A form which captures the rate limiting step of the two
serial processes (RP binding and the elongation). With
this, the governing equation for the mRNA populations is
written as

where  is the total length of the gene gi, and λi is the

decay constant. However, for a more detailed model,
mRNA degradation could depend on mRNA protein bind-
ing factors as well as the level of some hormones or
metabolites such as iron [37]. If the rate limiting step for
transcription is RNA polymerase binding to the gene [34],
then the second term in Eq. 4 may be dropped. Finally,
[RP] is the activity of free RNA polymerase and is assumed

to be constant and henceforth is subsumed in . The

governing equation for mRNA levels evolution becomes

Finally, our methodology can be generalized by relaxing
any of the above assumptions. For example, Hi, can be
changed such that competitive binding and TF complex-
ing are accounted for explicitly which in effect will allow
for OR logic. Although the extension of our transcription
model to include competitive binding is crucial to accu-
rately recover TF activity time courses, this level of descrip-
tion is out of the scope of this study. Further research is
needed to obtain specific data on the molecular level
about which TF binds to which binding site of a given
gene.

Information theory model/data integration
General formulation
Gene expression microarray data is fraught with inaccura-
cies. Much attention has been placed on minimizing sys-
tematic and random errors via quality screening, multi-
spot/multi-slide analysis and averaging. Software carrying
out these functions yields confidence intervals which are
quantitative measures of errors in the experimental data.
Information theory was introduced as a method for
assessing the uncertainty in the state of a system via an
entropy measure [38,39]. In a series of papers [8,40], we
have shown how information theory can be used to cali-
brate model parameters, use an incomplete model and
estimate the associated uncertainties based on the inaccu-
racies in the observed data and the model used. The prob-
ability density ρ for the values of the set Λ of model
parameters and the time-dependence of T(t) (the set of
variables whose governing equations are not in the
model, here TF activities within the nucleus) is obtained
through entropy maximization.

The development starts with the introduction of the
entropy S,

where  is an integration over all Λ and a functional inte-
gration over all time courses T(t) is indicated. The experi-
mental data and model are introduced via a set of error

measures labeled l = 1,2,..., each of whose average  is

assumed known and are given in terms of ρ via

For cDNA microarray data,  can be estimated from
confidence intervals provided by statistical data analysis.
According to the information theory prescription we con-

struct ρ(T(t),Λ) by maximizing S subject to the constraints

(Eq. 8), normalization of ρ, qualitative information on
the timescale over which T(t) can evolve, and other factors

reflecting one's expertise. The result is a form for ρ which

implies that the Λ, T(t) which are most probable yield the
lowest error. Also the T(t) obtained has no time depend-
ence that is unphysically short. Other constraints could be
introduced that allow one to assign higher probability to

the range of parameter values Λ that are near those one
expects from experience. Given the inherently subjective

nature of probability (e.g. if we know nothing then all Λ,
T(t) are equally likely), the information theory prescrip-

tion yields a ρ that is to be consistent with the level of our
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knowledge of the system. In our procedure, the resulting

ρ is then maximized with respect to Λ and T(t) to deter-
mine their most probable values. Cell parameters that
must be calibrated to attain a predictive model using our
approach are those introduced in the previous section.

Implementation for cDNA microarray data
Our analysis starts with preprocessed data, thus the pre-
dictions of our method as other genome wide microarray
analysis methods depend on the choice of the preprocess-
ing procedure (although the approach could also be gen-
eralized to proceed directly with raw data). Analysis of
preprocessed microarray data can be placed in our frame-
work by introducing an associated error EcDNA. Let Mi� be
the microarray expression level for the i-th of Ng genes in
the �-th of Nmicro experiments (e.g. time slice). Then

where mi� = Mi�/MiA with A being the initial time or the

standard condition. Here,  is the synthetic micro-

array data constructed from mRNA levels predicted from
a cell model (e.g. here that of the previous section), while
obs indicates an observed value. Thus EcDNA is a function of

the set of model parameters Λ as contained in a cell model

(e.g. ,k,λ and ). Similarly EcDNA is a functional of the

time course T(t) of intra-nuclear TF activities. Following
the above information theory formulation we introduce

the probability ρ = ρ (T(t), Λ), a functional of the time

course T(t) and a function of Λ. We construct ρ by maxi-
mizing the entropy subject to estimates of the average
error measures (here EcDNA) and other information.

The number of time points is restricted due to cost. This
fact and the high level of uncertainty in microarray data
suggest that the probability functional method cannot
yield a meaningful T(t) unless more information is
known. In our formulation this is introduced via a
homogenization constraint that eliminates unphysically
short timescale variations in T(t) that the sparseness of the
time series data would otherwise allow. In particular, we
impose the constraint

for a time series run over the interval from 0 to tf;tc is the

shortest characteristic time over which we expect that T(t)

can change appreciably and we assume  (the average

TF/gene binding constant) is the inverse of the typical var-
iation of T.

One can also use a steady-state approximation for infor-
mation available about post-translational reactions to fur-
ther constrain S. If a subnetwork of genes with
stoichiometric matrix of processes dn is responsible for the
production of Tn, then the associated error measure for
these processes is

where Ntimes is the number of discretized times at which

the TF activity is computed, zn is the number of genes

involved in the production of Tn, and αn is an equilibrium

constant.  is the observed microarray for the j-th gene

responsible for the creation of the n-th TF.

Maximization of the entropy with respect to ρ gives

where Ξ is a normalization constant and β1, β2, ω are
Lagrange multipliers. The multipliers are determined by
insuring that the constraints are satisfied. With this the
most probable values of Λ, T, given the microarray data,
are obtained by solving ∂ρ/∂Λ = 0 coupled to δρ/δ T= 0, a
functional differential equation for T(t) that we solve
numerically (see appendix A). A discussion of a symmetry
rule that applies to the invertibility of microarray data is
given in appendix B and implies the need for a minimal
amount of regulatory information in order to obtain a
unique network. Figure 1 illustrates our approach where
microarray and a priori TRN is used to infer TF activity
time courses and TF/gene binding constants.

Results and discussion
Synthetic example
To test our implementation of the approach described
above, and to find its practical limitations, we used a
model network that consists of 20 genes and 10 TFs. None
of the 20 genes is assumed to code for any of the 10 TFs.
The TRN is shown in Table 1 where ± 1 implies up/down
regulation. We took all binding constants and initial
mRNA concentrations to be unity and 10-9 M, respec-
tively.

We generated TF time courses according to the following
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Tn(t) = 1 - 0.5sin(υnt + ϕn),  (13)

where υn, ϕn are randomly chosen period and phases.
Then we created the synthetic time series microarray data
using our transcription model, selecting 10 "data points"
that are 500 seconds apart. In the following, we demon-
strate the robustness of our approach in reconstructing
T(t) despite mistakes in the regulatory network and noise
in the microarray data, conditions commonly encoun-
tered in practice.

Uncertain regulatory network information
Promoter sequence analysis can be used to determine the
structure of the TRN based on likely binding sites. How-
ever, this approach is likely to suggest a large number of
false positive interactions in the TRN. It is of interest to
test whether our approach can filter the redundant
nonzero entries in the control network. In our approach,
if a TF is assumed to upregulate a gene, large binding con-
stants, i.e. QT >> 1, imply that this interaction is unlikely

(redundant) as QT/(1 + QT) ≈ 1. A similar argument hold
for wrongly assumed down regulation as indicated by
small binding constants (QT << 1, and therefore 1/1 +QT)
≈ 1). Therefore, our methodology filters out incorrect
interactions by assigning large/small binding constants
for up/down regulation. To check the vulnerability of our
approach to such redundant interactions, we added ran-
dom nonzero factors in the regulatory network, and
obtained the "conjectured full regulatory network" as
shown in Table 2. As this network is full (i.e. each gene is
regulated by all transcription factors), the NCA method
fails. In our approach, the match between the predicted
and know TF time courses is remarkable even when the
"conjectured" full network was used. Figure 2 illustrates
the effect of the number of redundant interactions on the
mismatch between the predicted and actual TF time
courses. The mismatch (relative to the one obtained using
the actual network) does not exceed 2 even when the full
interaction network is used as a starting point. Thus, our

A flowchart of our transcription model/microarray data integrationFigure 1
A flowchart of our transcription model/microarray data integration.
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approach effectively filters the gene control network of
unnecessary interactions.

Robustness to microarray error levels
Despite advances in the technology, microarray data has
considerable levels of error. There have been few system-
atic analyses of microarray accuracy due to the many tech-
nology platforms available. These platforms have many
technological variations which affect the accuracy and
reproducibility of the measured expression levels of genes.
Such variations are due to multiple techniques of making
labeled material, various hybridization conditions, differ-
ent microarray scanners and settings, etc [41]. Other fac-
tors that affect reproducibility of microarray experiments
are variations in physiological conditions as well as the
number of measurements made to improve the signal to
noise ratio. Yeu et al. [42] estimated the coefficient of var-
iation for non differentially expressed genes to be 12%–
14%, and up to 25% for differentially expressed genes
across the entire signal range using 10000 element E. coli
cDNA microarray. Yuen et al. [43] reported a median coef-
ficient of variation of 20.2% when they used cDNA tripli-
cate measurements of 47 genes of E. coli. Novak et al.
carried out an extensive study of Affymetrix Gene Chip oli-
gonucleotide arrays using either identical RNA samples or
RNA from replicate cultures under similar biological con-
ditions [44]. They reported an overall coefficient of varia-
tion of 24.4% for 4377 genes of the IMR90 human cell
line when they used 4 measurements on the same mRNA

mixture sample. However, the overall coefficient of varia-
tion was 19.9% when they used 11 measurement of
mRNA obtained from replicate cultures.

In our implementation, we input raw microarray channel
data, perform standard channel normalization (based on
housekeeping genes determined using ranking of channel
intensities and quality filtering for multiple spot and slide
data [16]). The resulting confidence intervals constitute
prior information about the level of noise in the micro-
array response. In this test, we investigate the vulnerability
of our approach to error in microarray data. We added
random noise to the synthetic microarray data that was
obtained using the assumed TF time courses, and the tran-
scription regulatory network (Table 1) as follows

 (t) = mi(t) × (1 + noise × (2r - 1)),  (14)

where r is a random number between 0 and 1. noise
×100% represents the coefficient of variation or the per-
centage noise level in the microarray data. Figure 3 shows
the mismatch (relative to the TF time course obtained
without added noise) as a function of added noise level
with and without the regularization constraint (see Eq.
10). The regularization constraint yields a better match at
noise levels higher than 30%, providing robustness to the
solution of the inverse problem when noisy data is used.
More generally, the Lagrange multiplier for the regulariza-

mi
obs

Table 1: The TRN used for the synthetic example.

T1 T2 T3 T4 T5 T6 T7 T6 T9 T10

G1 -1 0 0 0 0 0 0 0 0 -1
G2 0 -1 0 0 0 0 0 0 0 1
G3 0 0 -1 0 0 0 1 0 0 0
G4 0 0 0 -1 0 0 0 0 0 0
G5 0 0 0 0 -1 0 0 0 0 0
G6 0 0 0 0 0 -1 0 0 0 0
G7 0 0 0 -1 0 0 -1 0 0 0
G8 0 0 0 0 0 0 0 -1 0 0
G9 0 0 0 0 0 0 0 0 -1 0
G10 0 0 0 0 0 -1 0 0 0 -1
G11 -1 0 0 0 0 0 0 0 0 -1
G12 0 -1 0 0 0 1 0 0 0 1
G13 0 0 -1 0 1 0 1 0 0 0
G14 0 0 0 -1 0 0 0 0 0 0
G15 -1 0 0 0 1 0 0 0 0 0
G16 0 0 0 0 0 1 0 0 0 0
G17 0 0 0 -1 0 0 -1 0 0 0
G18 0 0 0 0 0 0 0 1 0 0
G19 0 0 0 0 0 0 0 0 1 0
G20 0 0 0 0 0 1 0 0 0 1

Columns indicate the TFs whereas the rows indicate the genes that they affect (-1 for down regulation, +1 for up regulation, 0 for no interaction)
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tion constraint, Eq. 12, should decrease with the width of
the confidence interval. It should be noted that these
results were obtained with a fixed Lagrange multiplier for
the regularization constraint. If error level is believed to be
very small, a smaller Lagrange multiplier should be used.
We believe that error levels 30% and higher are to be
expected in expression data, in particular for low concen-
tration RNAs. This example also illustrates one of the
advantages of time series over steady-state data in that the
former is less vulnerable to noise due to the use of our reg-
ularization constraint.

Healing mistakes in a proposed regulatory network
Often we rely on TF-gene interactions obtained from
questionable quality resources. Therefore, it is important
that our algorithm is robust to potential sign mistakes in
the TRN due to regulatory differences between the cell line
of interest and that for which the network was con-
structed. In this case, we run our code in a discovery mode
that searches for network mistakes. We first rank genes
based on the mismatch between the predicted and
observed microarray response, highest ranked having the
greatest mismatch. Then, we rank the TFs based on the
rank and number of genes that they regulate. As calcula-
tion progresses, we periodically check the genes whose
mismatch is greater than Eaverage + aσ where Eaverage is the
average mismatch and σ is the standard deviation of gene
mismatch and a is an empirical parameter. Once the genes
satisfying this criterion are identified, we change the sign
of the regulatory interaction for each of the highest ranked
TF (up/down). We also consider additional input that the
user provides regarding confidence in each element of the

TRN. At a given step in this process, we only change one
sign per column of the TRN. After a few iterations, we
monitor the mismatch behavior; if the sign change failed
to improve the mismatch, we change the sign back. To test
this algorithm, we took the TRN of Table 1 and introduced

The sum of the square mismatch between the predicted and actual TF time course relative to the one obtained using the actual gene control network shown in Table 1Figure 2
The sum of the square mismatch between the predicted and 
actual TF time course relative to the one obtained using the 
actual gene control network shown in Table 1. Although the 
mismatch increases as the number of interactions in the gene 
control network increases, it stays within a limit of 2 in this 
particular example, showing the potential of our approach to 
discover the operating gene control network hidden in a 
larger one (see Table 1 and 2 provided in the supplementary 
material).

Table 2: In order to test our approach for a large number of TF-gene interactions that might be suggested by sequence analysis or 
uncertain experimental data, we increased the number of interactions systematically by introducing additional random interactions. 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

G1 -1 1 -1 1 1 1 1 -1 -1 -1
G2 1 -1 1 -1 -1 1 1 -1 1 1
G3 1 1 -1 -1 -1 -1 1 1 1 1
G4 1 1 -1 -1 1 -1 -1 1 -1 -1
G5 1 1 1 -1 -1 -1 -1 -1 1 -1
G6 -1 -1 1 1 -1 -1 1 1 -1 1
G7 1 -1 1 -1 1 -1 -1 -1 -1 1
G8 1 -1 1 1 -1 -1 -1 -1 1 1
G9 1 1 -1 -1 -1 1 1 -1 -1 1
G10 -1 1 1 1 -1 -1 1 1 -1 -1
G11 -1 -1 -1 1 -1 1 -1 1 -1 1
G12 -1 -1 1 1 1 1 -1 1 -1 1
G13 1 1 1 1 1 -1 1 -1 1 1
G14 1 -1 -1 -1 1 1 -1 1 -1 -1
G15 -1 1 1 -1 1 -1 -1 1 1 1
G16 -1 1 -1 1 1 1 1 -1 -1 -1
G17 1 1 1 -1 -1 1 1 1 -1 1
G18 1 1 1 -1 -1 1 1 1 -1 1
G19 1 -1 1 -1 -1 -1 -1 1 1 1
G20 -1 1 1 1 -1 1 -1 1 1 1

In the original matrix, there are 34 nonzero elements whereas in the augmented full matrix there are 200 nonzero elements. The challenge is to 
identify the actual operating TRN.
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four mistakes by changing the sign of the diagonal ele-
ments of genes 1–4. Our algorithm successfully corrected
the network after only 10 iterations. Figure 4 shows the
predicted and observed microarray data. The triangle
markers represent the best fit to the microarray data when
the TRN with four mistakes is assumed, whereas the
square markers represent the best fit after our algorithm
corrected the mistakes. This demonstrates another aspect
of our methodology, correcting a user-supplied TRN via
microarray data. For large, real systems, we believe that
many iterations will be necessary to arrive at an accurate
network. The methodology will recommend changes in
the TRN based on the microarray data and a user-sug-
gested network. The rankings supplied with the improved
network can be used to guide literature searches or carry
out sequence analysis that can be used to further refine the
network.

Application to E. coli
To test our methodology we used the E. coli microarray
data obtained for carbon source transition from glucose to
acetate media. Details on the experimental conditions and
the microarray procedure are provided in Ref. [29]. The
data included expression levels (relative to initial time) of
100 genes at 300, 900, 1800, 3600, 7200, 10800, 14400,
18000 and 21600 seconds. The TRN used is based on Reg-
ulonDB[45] as modified by Kao et al. (2004). We made
additional changes based on EcoCyc [24]. The final tran-
scriptional regulatory network used is shown in Table 3.
Figure 5 shows the time courses of 16 representative TF
activities (out of 38). Kao et al. (2004) applied NCA to the

same problem. However, the biologically relevant regula-
tory network that consists of 100 genes and 38 TFs does
not satisfy the NCA column rank requirement. Further-
more, the transcription kinetics in our approach differs
from the seady-state assumption and binding formulation
used in NCA. Despite these differences, 15 out of 16 TF
activity time courses (Kao et al. only presented the time
courses of 16) are in qualitative agreement. As shown in
Figure 5, PhoB increases as a result of response to acetate
enrichment of the medium in contrast to the decreasing
activity predicted by NCA. Therefore one would expect the
phoB activity to increase as well. As a verification of our
results, consider the arcA gene which makes ArcA TF that
upregulates arcA itself. One would expect a correlation
between the expression of arcA and TF activity of ArcA. To
have an unbiased test, we took the expression of arcA from
the microarray data and calculated the time course of ArcA
activity based on the other 17 genes in the network that it
regulates. The resultant ArcA time course was indistin-
guishable from the one obtained by including arcA in the
microarray expression data. A comparison of predicted
ArcA activity (Figure 5) and expression of arcA Figure 6
shows a similar trend. Figure 6 also shows a comparison
between the predicted and observed microarray expres-
sion data for nuoJ, nuoA, arcA, livK, ppsA, pykF, pstC and
pstS. In a second study, we added up to 30% noise to the
E. coli. Microarray data, our approach is still found to be
robust.

Brown and Callan [33] have predicted many binding sites
for the two TF CRP and ArcA. Among the genes included
in our model, they predicted that two genes (xthA and
livJ) in our data set to be regulated by ArcA. Also they pre-
dicted that two genes serA, cyoA and aroP are predicted to
be regulated by CRP. To further examine the consistency
of our approach with promoter sequence analysis, we per-
formed another simulation after adding these interactions
to the TRN obtained form ecoCyc and assuming the
nature of these interactions (up vs down) to be unknown.
Figure 7 shows improvements in the results obtained for
xthA, livJ and serA. Our algorithm predicts that xthA and
livJ are down regulated by ArcA. It also predicts that serA
and cyoA are down regulated by CRP. However, no
improvement is observed for aroP (Figure 8).

Regularization is important for discriminating between
noise/data sparsity-related spurious oscillations and that
arising from the nonlinear dynamics of transcription
chemical kinetics [13,14]. To demonstrate the effect of
regularization, we added 25% noise the observed micro-
array data. Figure 9, as an illustration, shows that arcA
microarray response exhibit oscillatory behavior when no
regularization constraint is used. These oscillations are
not physical, but rather it is an artifact of using sparse
noisy data.

The sum of the square mismatch between the predicted and actual TF time course (relative to that obtained using noise-free microarray data) as a function of the amplitude of ran-dom noise added to the microarray dataFigure 3
The sum of the square mismatch between the predicted and 
actual TF time course (relative to that obtained using noise-
free microarray data) as a function of the amplitude of ran-
dom noise added to the microarray data. The diamond and 
square markers represent the mismatch with and without 
the regularization constraint. For large noise levels the regu-
larization constraint provides significant improvement in the 
calibration process.
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TRN discovery and limitations
A number of issues must be addressed in developing a
TRN discovery strategy as follows. Discovering the struc-
ture and quantifying the physical chemistry of the gene
regulatory network and the underlying mechanism has
the challenges that arise in any chemical kinetics problem.
For example, the simple process A+B+C→ABC can occur
through the mechanism A+B→AB, AB+C→ABC or the
other two permutations; to identify the actual mecha-
nism, one must provide intermediate measurements on
the dimers AB, BC and CA, rather than simply a measure-
ment of the net rate of ABC production. Clearly, in a sys-
tem with thousands of participating genes and hundreds
of TFs, the resolution of the network and the detection of
spurious ones, is a grand challenge of combinatorial mag-
nitude. Essentially, all present network discovery methods
suffer from this uniqueness difficulty due to the sparsity of
available information. In this paper, we demonstrate how

our method provides a way to augment an incomplete
TRN and to identify inconsistencies in a proposed net-
work based on microarray data.

Processes such as acetylation, methylation and phosphor-
ylation, and the associated enzymes, play important roles
in the wider set of pathways [34]. Thus the paradigm
genes→ mRNAs→ proteins → TFs → genes .... is an over-
simplification. While these processes could readily be
added to our formulation, it is clear that data in addition
to gene expression microarray observations would be
required to resolve them. Thus we take the perspective
that the simple paradigm cited above can be adopted as a
starting point if it is recognized that other processes are
somehow mediating the network we quantify. For exam-
ple, if some genes are repressed in one mammalian cell
line by methylation this will be reflected as a small tran-
scriptional rate constant our approach reveals. When pre-

Comparison of observed (solid line) and predicted microarray data for genes 1–4 (see Table 1)Figure 4
Comparison of observed (solid line) and predicted microarray data for genes 1–4 (see Table 1). Triangles indicate the best 
microarray fit when there are four mistakes in TRN (the first four entries in the upper left diagonal for genes 1–4); squares 
indicate the best microarray fit when we allow our program to correct the network. This shows that our algorithm is not only 
able to calculate the TF time courses, binding constants, etc.; it can also be used as a tool to decide whether a TF is up or down 
regulating a gene.
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Table 3: The transcriptional regulatory network used in this study for the 100 responsive genes in E. coli when subjected to carbon 
source transition from glucose to acetate media. 

Gene Transcription Factor Gene Transcription Factor Gene Transcription Factor

AceA -ArcA, -FruR, -IclR, +IHF ldcC +RpoS trpA -TrpR

AceB -ArcA, -FruR, -IclR, +IHF leuA +LeuO trpC -TrpR

AceK -ArcA, -FruR, -IclR, +IHF leuB +LeuO tyrA -TyrR

Acs +Crp, +IclR, +RpoS, +FNR leuC +LeuO tyrR -TyrR

AdhE -FruR, -NarL, +RpoS, +FIS livJ -Lrp, ugpB +Crp, +PhoB

aidB +RpoS, +ada livK +FruR, -Lrp ugpE +Crp, +PhoB

arcA +ArcA, +FNR lrp -Lrp, +RpoS, +GadE uspA -FadR

aroF -TyrR mdh -ArcA, +Crp, -FlhD wrbA +RpoS

aroG -TyrR mdoH +RpoE xthA +RpoS

aroM -TrpR, -TyrR mutH +RpoS yciG +RpoS

aroP -TyrR narH +NarL, +IHF, +FNR

csgD +CsgD, +OmpR narl +NarL, +IHF, +FNR

csgE +CsgD, +OmpR narY +RpoS

csgF +CsgD, +OmpR nrfE +NarL

csiE +Crp, +RpoS, +HNS nuoA -ArcA, +NarL, -IHF, -FNR

cyoA -ArcA, -FNR nuoE -ArcA, +NarL, -IHF, -FNR

cyoB -ArcA, -FNR nuoF -ArcA, +NarL, -IHF, -FNR

cysA +CysB nuoH -ArcA, +NarL, -IHF, -FNR

cysH +CysB nuoJ -ArcA, +NarL, -IHF, -FNR

cysK +CysB osmE -IHF

cysM +CysB phoR +PhoB, +TrpR

dapA + RpoE poxB +RpoS, +MarA, +SoxS

Epd +Crp, +FruR ppsA +FruR

fabA +FadR prop +Crp, +RpoS, +FIS

FtsZ +RpoS, +SdiA, +RcsA pspA +IHF, +PspF, +RpoN

gale +Crp, -GalR, -Rob pstC +PhoB

galK +Crp, -GalR, -Rob pstS +PhoB

galT +Crp, -GalR, -Rob purA +RpoE

gatA -GatR purK -PurR

gatC -GatR purM -PurR

gatD -GatR pykF -FruR

gatY -GatR, +LeuO rfaF +RpoE

glgA +Crp rob +RpoS

glgP +Crp rpoD +RpoE, -Lexa

glgS +Crp rpoE +RpoE

glpD +Crp, -GlpR rseC +RpoE

gltA -ArcA, +Crp sdhA -ArcA, +Crp, -FNR, -FIS

Gor +OxyR sdhB -ArcA, +Crp, +NarL, -FNR, -FIS

guaB -PurR serA +Lrp

hdeA +RpoS, +GadX, +GadE sucB -ArcA, +Crp, -FNR, -FIS

hdeB +RpoS, +GadX, +GadE sucC -ArcA, +Crp, -FNR, -FIS

IclR -FadR sucD -ArcA, +Crp, -FNR, -FIS

IlvB +Crp surA +RpoE

ilvH +Lrp tnaL CAP

Kbl +Lrp topA +FIS

+ indicates up-regulation
– indicates down-regulation
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dicted levels for a given gene expression are found to be in
poor agreement with observations and assuming that the
probability that other TFs could be regulating that gene
has already been explored, we consider this to imply that
the simple paradigm has broken down and the other proc-
esses must be acting in a dynamical way to affect the gene
expression time series. In light of the above, it is evident
that network structure, physicochemical parameters and
TF activity time courses can not all be extracted from a sin-
gle approach.

Conclusion
Multiplex time series data (e.g. microarray, ChIP-on-chip
and protein mass spectroscopy) holds a great promise for
the construction of the network of cellular processes and
the calibration of the many associated physical chemical

parameters. We have demonstrated these concepts in the
context of transcription regulation understood through
the analysis of microarray time series data. Casting the
approach in a probabilistic framework has allowed us to
address the uncertainties in microarray data. Our
approach was found to be robust to error in the micro-
array data and mistakes in a proposed regulatory network.
Our approach compliments other methods (e.g. gene
ontology, phylogenetic and sequence analysis) when used
as a part of a wider network discovery/quantification algo-
rithm. Given its robustness, its capacity to refine and
quantify complex networks of cellular processes, and the
potential for extension to other multiplex bioanalytical
data, we believe that our approach has great potential in
the pure and applied life sciences.

TF activity time courses for 16 of 38 TFsFigure 5
TF activity time courses for 16 of 38 TFs. These results are in qualitative agreement with those obtained by Kao et al. (2003) 
except for PhoB. pstC and pstS are upregulated by PhoB and their level of expression increases in time (shown in Figure 6), 
therefore one would expect the activity of PhoB to increase as well.
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Appendices
A. Numerical methods

The numerical methods used for simulating time evolu-
tion of mRNA populations, solving the calibration inverse
problem by determining of TF time courses and model
parameters are as follows. The latter parameters are sets of
TF binding constants  and saturation limiting transcrip-

tion rate coefficients kmax and mRNA degradation rate con-

stants λ.

Q

Comparison of predicted (hollow markers) and observed (solid markers) microarray response for a) nuoJ, nuoA, b) arcA, c) livK, ppsA, pykF, d) pstC and pstSFigure 6
Comparison of predicted (hollow markers) and observed (solid markers) microarray response for a) nuoJ, nuoA, b) arcA, c) 
livK, ppsA, pykF, d) pstC and pstS.
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Fast and accurate solution of the ODE model is crucial to
construct thousands of gene expression levels to find the
optimum model parameters in a practical time. For the i-
th gene, mRNA population, Ri, time evolution is com-
puted using an implicit Euler method

The time step Δtn+1 used is adaptive and depends on the
maximum component of the rate vector k. The microarray
expression level at a given experimental time is predicted
as the relative abundance of mRNA populations to their
reference state at initial time

In solving ∂ρ/∂Λ = 0, a gradient steepest descent approach
suffers from slow convergence. We overcome this via a
combined steepest descent/simulated annealing
approach. The key to efficiently solve the inverse problem
cited above is to use an iterative alternating parameter
approach. The calibration starts by minimization of the
microarray error EcDNA with respect to TF binding con-
stants . To reduce the computational cost, we utilize the

exact solution of (Eq. 6) [46],
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The predicted microarray response of xthA, livJ, cyoA and serA is enhanced after adding interactions suggested from promoter sequence analysisFigure 7
The predicted microarray response of xthA, livJ, cyoA and serA is enhanced after adding interactions suggested from promoter 
sequence analysis. Diamonds indicate the experimental microarray response; Circles indicate the predicted microarray 
response before adding the suggested interactions; Triangles indicate the predicted microarray response after adding the sug-
gested interactions
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The latter establishes an integral equation for ki(t). Solving
for ki(t) at the given experimental microarray times yields
a computationally efficient algebraic approach that allows
the use of a simulated annealing algorithm [47] to find
the optimum values for binding constants. The solution is
achieved by discretizing the time profile of ki over a grid of
microarray experimental times and then interpolating it
as a continuous piecewise linear function,

With (A.4) we can evaluate the above integral analytically

Our lack of knowledge about the initial value of ki

(i.e. ), gives us one less equation than the number of

unknowns. The simplest way to overcome this difficulty is
via a linear extrapolation between the points at t2 and t1 to

the point at t0. Higher order extrapolations were tested

and proven not to be very advantageous in this case, espe-
cially if we have frequent microarray measurements for
early times. With this,

(A.5) and (A.6) give us a linear system that can be solved

for , l = 0,�Nmicro. We use the resulting  to construct

a new error measure ,

where nij is the type of TF that binds to the j-th site on gene

i. We find that, if the rate integral equation is accurately
solved, then minimizing this error is equivalent to mini-
mizing the microarray error. Applying simulated anneal-
ing enhance the likelihood that we get as close as needed

to the global minimum of i. When the resulting solu-

tion fails by increasing the error due to numerical instabil-
ity, we switch to a steepest descent scheme.

For the TF activities we solve the discretized temporal reg-
ularization functional differential equations, ∂ρ/∂ T = 0,
with no flux boundary conditions [8] for its activity time
course implicitly. For the j-th TF at the (n+1)-th iteration,
one obtains

and

Where l = 1,�(Ntimes - 1), ω is the regularization coefficient
and Δs is chosen small enough by line search to assure that
EcDNA is minimized. For the j-th set of equations, one must
restrict the analysis to those genes regulated by that TF.
The above linear system is efficiently solved using the
Thomas algorithm for tridiagonal linear systems [48]. The
remaining parameters (i.e. mRNA degradation rate coeffi-
cients λ, and transcription limiting rate kmax) are found by
a steepest descent based on EcDNA.

If only the microarray data was provided, and in absence
of direct information and physical measurements on the
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The predicted microarray response of aroP shows no signifi-cant improvement as we add the suggested CRP interactionFigure 8
The predicted microarray response of aroP shows no signifi-
cant improvement as we add the suggested CRP interaction. 
Diamonds indicate the experimental microarray response; 
Circles indicate the predicted microarray response before 
adding the suggested interactions; Triangles indicate the pre-
dicted microarray response after adding the suggested inter-
actions.
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binding constants and TF activities, it is clear that there is
a degeneracy in the solution for this problem. This means
that there are many states in the parameter space that have

the similar EcDNA. For example if Qij,  satisfy the error

minimization criterion, then for all ε > 0 also  = εQij,

 satisfy the same criterion. A normalization

procedure is imposed on the solution at every step in the
iterative inversion by assuming knowledge of the tempo-

ral average of each TF to be  as follows

and

This is self-consistent since it eliminates the cited above
QT degeneracy.

B. Symmetry rule and microarray inversion

For a general class of models used here, there is a TF up/
down regulation symmetry that leads to a multiplicity in

the determination of T(t). Notably there are  solu-
tions of the microarray inversion problem that are equally

viable unless some knowledge of  is provided. This is

proved for our model as follows. The control function H
(Eq. 2) contains factors of the form xb/(1 + x) where b is

(bij + 1)/2 and x is Qij . Note that x/(1 + x) = 1/(1 + 1/

x). Thus an up regulation with Qij  is equivalent to a

down regulation with 1/(Qij ). This suggests that

unless for each TF we know bij for at least one gene the

inversion will allow two equally probable answers corre-

sponding to bij = ± 1 (either the correct result Qij and 

for all i of the given TF type, or 1/  with binding con-

stant 1/Qij). This implies that for each TF type n we must

find at least one gene for which the nature of the regula-

tion (up versus down) is known. This means that if  is

written in a sparse form as a Ng row by NTF column matrix,

then at least one entry in each column must be known.
(see Table 1).
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