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Abstract
Background: The underlying goal of microarray experiments is to identify gene expression
patterns across different experimental conditions. Genes that are contained in a particular pathway
or that respond similarly to experimental conditions could be co-expressed and show similar
patterns of expression on a microarray. Using any of a variety of clustering methods or gene
network analyses we can partition genes of interest into groups, clusters, or modules based on
measures of similarity. Typically, Pearson correlation is used to measure distance (or similarity)
before implementing a clustering algorithm. Pearson correlation is quite susceptible to outliers,
however, an unfortunate characteristic when dealing with microarray data (well known to be
typically quite noisy.)

Results: We propose a resistant similarity metric based on Tukey's biweight estimate of
multivariate scale and location. The resistant metric is simply the correlation obtained from a
resistant covariance matrix of scale. We give results which demonstrate that our correlation
metric is much more resistant than the Pearson correlation while being more efficient than other
nonparametric measures of correlation (e.g., Spearman correlation.) Additionally, our method
gives a systematic gene flagging procedure which is useful when dealing with large amounts of noisy
data.

Conclusion: When dealing with microarray data, which are known to be quite noisy, robust
methods should be used. Specifically, robust distances, including the biweight correlation, should
be used in clustering and gene network analysis.

1 Background
One of the primary goals of experiments involving DNA
microarrays is to find genes which are somehow similar
across various experimental conditions. "Similar" is usu-
ally taken to mean co-expressed, but it can be measured in
several different ways. The distance (usually one minus

similarity) measure most commonly used is Pearson cor-
relation, though Euclidean distance, cosine-angle metric,
Spearman rank correlation, and jackknife correlation are
also used frequently. (Note that correlation and cosine-
angle metrics do not fulfill the triangle inequality, so they
are not true distance metrics. However, they are used to
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measure distance in many applications.) For example, [1-
4] use Pearson correlation in their gene network analysis;
[5-13] use Pearson correlation (or a modification) to clus-
ter gene expression data. Once the similarity or distance
measure is chosen, the relationship between the genes is
given by some sort of clustering algorithm (e.g., k-means,
hierarchical clustering, k nearest neighbors) or gene net-
work analysis.

Clustering results can be highly dependent on the choice
of similarity measure (particularly when comparing genes
whose similarities are based on tens of samples instead of
comparing samples whose similarities are based on thou-
sands of genes); one or two outlying values can produce
large changes in the value of some similarity measures.
Outlying data points can be real or noise, though micro-
array data are known to have substantial noise. The noise
can occur during any of the stages in the experimental
process, and the effect can be in any direction. For exam-
ple, a large outlier might cause co-expressed genes to seem
dissimilar while a different large outlier might cause dis-
similar genes to look co-expressed. Sometimes the outly-
ing value is meaningful and important in which case the
data should be included in the correlation. Our flagging
procedure lets the practitioner determine whether or not a
flagged value should be removed.

The goal in our paper is to give a resistant correlation
measure that can be used as a distance metric in any clus-
tering or gene network algorithm which calls for some
type of distance or similarity measure in order to identify
the relationship between a pair of genes, across gene mod-
ules, or within a cluster of genes. Tukey's biweight [14] has
been well established as a resistant measure of location
and scale for multivariate data [15-17]. When considering
2 genes on n samples, the 2 × 2 biweight covariance matrix
that results from the biweight measurement of multivari-
ate scale can be thought of as a resistant covariance
between two genes (or of n points in dimension 2). Trans-
lating a 2 × 2 biweight covariance matrix into a biweight
correlation measure is simply a matter of taking the
biweight covariance divided by the product of the individ-
ual gene biweight standard deviations (analogous to com-
puting the Pearson correlation from a standard covariance
matrix.) Tukey's biweight is a type of M-estimate, a class of
estimators which has been used in robust correlation esti-
mates (for example, Mosteller and Tukey defined the cob
[18] and Wilcox defined the percentage bend correlation
[19].) M-estimates are consistent estimates of multivariate
location and shape, so the biweight correlation is estimat-
ing the same parameter as the Pearson correlation. We
show that our robust correlation based on the biweight M-
estimate is intuitive, flexible, and performs well under a
variety of data distributions.

When considering the correlation between each pair of
genes, we find that, although the biweight correlation and
the Pearson correlation usually agree, when they do not
agree, there are often problems with the gene's (or genes')
data which may indicate to the biologist that the gene
should be removed from further study. Our biweight cor-
relation method provides two novel applications particu-
larly suited to microarray analysis: 1. We have created a
similarity measure that is resistant to outlying data points
(an important feature in analyzing microarray data), and
2. By investigating gene pairs that have discrepant correla-
tion values, we create a diagnostic procedure to identify
values which may need to be flagged (i.e., removed or else
further investigated.)

In the remainder of the paper, we provide details of the
method and results. First, in section 1.1 we discuss micro-
arrays and their particular need for resistant measures. In
section 1.2 we explain Tukey's biweight (its computation
is given in the appendix, section 8.) We give our results in
section 2, showing that the biweight correlation can be
used as a resistant similarity measure or a diagnostic pro-
cedure for flagging data. We then demonstrate, in section
2.4, that our method is more efficient than Spearman cor-
relation (another resistant correlation method.) In section
2.5 we show that the biweight correlation has empirically
low bias and is superior to other robust measures. We con-
clude with some ideas of how to further develop our
methods for other microarray applications.

1.1 Why resistance is important in microarray analysis
Microarray technology requires biologists and statisticians
to work side by side in analyzing gene expression informa-
tion. Gene microarray chips measure, simultaneously, the
expression levels of thousands of genes in an organism.
Comprehensive gene expression data is useful if one
wishes to find clusters of genes with similar function.
Microarrays have been used to study the gene expression
trends (for example across time) in diseases and even to
classify and diagnose different types of diseases, such as
cancerous tumors [20]. For some organisms, microarrays
enable biologists to monitor the entire genome of interest
on a single chip in order to create a large picture of the
interactions among thousands of genes simultaneously. A
microarray is an orderly arrangement of spots that pro-
vides a medium for measuring known and unknown DNA
pieces (genes) based on base-pairing rules. Each microar-
ray measures thousands of genes simultaneously, so
resulting microarray data is typically on the order of thou-
sands of genes by tens of samples.

Although microarray technology has been very useful in
discovering changes in gene expression, limitations of the
technology have been observed: dye bias and relative gene
expression levels having different sample variances due to
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differences in experimental conditions [21]; differences
due to laboratories and platforms [22,23]; pixel saturation
[24]; low signal/noise ratio [25]; and differences due to
image analysis techniques [26-29]. Researchers have
worked to address the particular problems inherent in
microarray analyses, but even after novel techniques (of,
for example, normalization or filtering) have been
applied, microarray data remain noisy [30,31].

Some work has been done showing the need for resistant
correlation metrics as similarity measures. In particular,
Heyer et al. give a jackknife correlation that is more resist-
ant than the Pearson correlation. However, as they state in
their paper, the jackknife correlation is only resistant to
single outliers [32].

1.2 Biweight as a resistant correlation measure
Tukey's biweight has been used as a resistant estimator of
location and scatter as well as a resistant estimator of
regression parameters in a wide range of applications (see
[33] for an overview of Tukey's work in resistant statistics).
The former approach has been used by Affymetrix to nor-
malize microarray data [34] but not in applications of
data distances.

M-estimators are a class of estimators of multi-dimen-
sional location and scatter that provide for flexibility, effi-
ciency, and resistance. The key to M-estimation is the
ability of the estimator to down-weight points that are far
from the data center with respect to the data scatter.
Because of the weighting, M-estimates are more resistant
to outlying values than standard estimates (like the mean
or the Pearson correlation.) Additionally, M-estimates use
the actual data values in constructing location and scatter
estimates and are therefore more efficient than estimators
based on rank (like the median or the Spearman rank cor-
relation.) M-estimators are defined iteratively using a
weight function which down-weights data values that are
far from the center of the data. We use the M-estimate of
2-dimensional scatter (i.e., covariance) to calculate a
biweight correlation. Details for the biweight are given in
the appendix, and R code for the biweight is available
from the corresponding author (some of the R code is
taken from Wilcox [19].)

An important aspect of M-estimators is their resistance to
outlying data values. One measure of the resistance of an
estimator is its replacement breakdown, which is the
smallest fraction of a data set that one could replace with
corrupt data in such a way as to take the estimator over all
bounds [17]. Unlike the mean (breakdown = 0) or the

median (breakdown close to ), the biweight is parame-

terized so that the breakdown can be adjusted over a range

of values. Adjusting the breakdown value will have impli-
cations in flagging data values (discussed further in sec-
tion 2.3).

The results of the biweight iteration scheme are a multi-

variate location estimate, , and shape estimate, . Let-

ting  be the (j, l)th element of , we can think of  as

a resistant estimate of cov (Xj, Xl) (where Xj and Xl are two

n-vectors of interest.) Consequently,

is the biweight correlation between vectors j and l and is a
more resistant estimate of correlation than the Pearson
correlation (denoted by rjl.) Because the components

(center and shape parameters) are estimated using resist-
ant techniques (unlike the Pearson correlation), we know
the biweight correlation will be more resistant than the

Pearson correlation. Note that | | ≤ 1.

Using the biweight correlation ( ) as a resistant estimate

of the correlation measure, we can incorporate  into
clustering algorithms which depend on similarities or 1 -

 into clustering algorithms that depend on distances. In
the next section we will demonstrate that the biweight
correlation is clearly a better choice for a distance (or sim-
ilarity) measure than the Pearson correlation (r).

2 Results
Because our methods are most valuable when applied to
noisy data, we applied our technique to a real microarray
data set. The data set was chosen because it has been used
widely in clustering applications [5-7] as well as gene net-
work applications [1-3]. The data are taken from an exper-
iment on Saccharomyces cerevisiae created to describe yeast
genes with periodically varying transcript levels within the
cell cycle [35]. The cell cycle data are based on a time
course experiment, and so they are not independent and
identically distributed (iid.) However, they are typical of
many microarray data sets which are also not iid. The data
are publicly available from the Stanford Microarray Data-
base (SMD) http://smd.stanford.edu and include 25 sam-
ples on over 6000 genes. We kept the default filters from
SMD, including using "Log (base2) of R/G Normalized
Ratio (Mean)" as our value of interest (that is, we worked
with a value that is the log (base2) transformation of the
normalized ratio of the average red signal ("R") and the
average green signal ("G").) Typically, the red signal meas-
ures the amount of gene expression activity under an
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experimental condition, and the green signal measures
the gene expression activity for a control. The value of
interest is the relative expression measured by the ratio
log2 (R/G). The only additional filtering we did was to
eliminate genes that had more than ten missing values
(correlation was computed on the remaining values for
those genes with minor missing data.) Note, also, that we
have applied similar techniques to multiple other inde-
pendent data sets, and the results are consistent across
platforms (e.g., oligonucleotide or cDNA), organisms,
and normalization techniques (results not shown.)

2.1 Biweight correlation as a resistant similarity measure

To demonstrate the difference between Pearson correla-
tion (PC) and biweight correlation (BWC), we computed
both correlations (BWC based on breakdown of 0.2) on

all  pairs of genes from the top 2 most 1000 vari-

able genes (in terms of standard deviation.) A scatterplot

with all  pairs of genes is given in figure 1 (the

horizontal axis is BWC, the vertical axis is PC.) The PC and
BWC are highly positively correlated, with most of the cor-
relations in relative agreement. However, in the corners
and on the edges, we see numerous strong discrepancies
between the PC and the BWC. A further investigation into
those edge points gives clear evidence of why PC and BWC
values differ.

Before discussing the particular pairs of interest, we will
break down the plot into four (not well defined) groups:

1. gene pairs that give "consistent" PC and BWC

2. gene pairs that give "opposite" PC and BWC

3. gene pairs that give PC ≈ 0 and large |BWC|

4. gene pairs that give large |PC| and BWC ≈ 0

We will discuss group 1 further in section 2.3.

In groups 2–4, the inability to consistently measure gene
correlation can generate serious problems in clustering
algorithms. We argue that for gene pairs in groups 2–4,
the BWC is a much better measure of distance than the PC.

Consider points e, j, d, and k from figure 1 (group 2
points). For each pair of genes, there is an extreme outly-
ing value causing the PC to be manipulated in the outlier's
direction. The panel of plots in figure 2 shows the clear

outlying values for each of the points in figure 1 identified
as being in group 2.

Consider points i, a, b, and c from figure 1 (group 3
points). For each pair of genes, there appears to be an out-
lying point which is nullifying the existing (strong) corre-
lation. The panel of plots in figure 3 shows the existing
correlation that has been calculated as low (using PC)
because of the outlier(s).

Consider points f, g, h, and l from figure 1 (group 4
points). For each pair of genes (seen in figure 4), there
appears to be virtually no correlation though the PC cal-
culates a strong correlation. The highly influential points
in group 4 are those that we are most worried about.
Points in group 4 will show up as strongly co-expressed in
either a cluster or a gene network and will give researchers
misleading results. Because of the high dimensionality of
microarray data, already we often come across false posi-
tive results (even without outlying values). Using BWC
instead of PC will help to reduce the number of false pos-
itives in any given application that are due to outlying val-
ues which produce misleadingly high PC.
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⎠
⎟ Scatterplot of all pairwise correlations of the 1000 most vari-able genes in the yeast dataFigure 1

Scatterplot of all pairwise correlations of the 1000 most vari-
able genes in the yeast data. The blackest hexagons represent 
9,556 pairs of genes. The lightest hexagons represent one 
pair of genes. Notice that, though most of the points lie near 
the line y = x, there are many pairs of genes that give quite 
different correlations when measured with Pearson's or the 
biweight. Each letter refers to a gene pair which will be 
described in figures (2), (3), and (4).
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2.2 Using the biweight correlation to flag low quality data

Our method of comparing PC and BWC can also be used
as a data flagging method. For gene pairs that produce a
relatively high correlation (by at least one of the methods)
and highly discrepant correlations across the two meth-
ods, we flag the gene pair for further investigation. Note
that we require the gene pair to yield a high correlation
value (in either direction), because we are not particularly
interested in genes whose value flips, for example, from r

= 0.3 to  = - 0.2; such a change will not have a strong
impact in a clustering scheme because the similarity
across the two genes is weak in both measures. We will
flag points as outlying if

1. |r| > 0.85 OR | | > 0.85

2. AND |r - | > 1.0

Depending on how strict one wants to be at flagging pos-
sible outlying values, one may want to adjust the cutoffs
in the above procedure. The quality of data will affect the

size of the absolute difference |r - |. Therefore, if a data
set has low quality (for example, if GeneSpring output

files give evidence of low quality), a resistant metric
should be used and/or claims should only be made about
genes for which the resistant and non-resistant metrics
give similar results.

Using the outlying flag procedure defined above, we iden-
tified 12 gene pairs (see figure 5.) We can see that in the
12 pairs of genes, genes YOL087C, YDR388W, and
YGL157W were identified three times each. Genes which
get flagged as outlying when compared to multiple other
genes are likely to have some poorly measured data or
other outlying virtues. In order to find those genes which
are repeatedly seen as outlying, we reduce the flag proce-
dure to 1. a single correlation being at least 0.8 and 2. a
difference of at least 0.65. We then identify 593 gene pairs
(which represent 363 unique genes) as possibly outlying.
By tabulating the frequency of the 363 unique genes in the
593 plots of gene pairs, we are able to find genes which are
repeatedly identified (eight genes that showed up in at
least 20 of the 593 pairs.) The four most common gene
outliers (YLR328W, YDR388W, YJL042W, YJL188C) all
showed up in our more stringent outlier detection plot
(see figure 5). These gene outliers could represent either
noise or truly large values. Follow-up experiments or
other datasets would be needed to distinguish these two
possibilities.

r
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r

Each point represents the log2 (R/G) value for the specified genes on a particular arrayFigure 3
Each point represents the log2 (R/G) value for the specified 
genes on a particular array. The Pearson correlation is close 
to zero, and the biweight correlation gives a relatively high 
value for these group 3 pairs.
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Each point represents the log2 (R/G) value for the specified genes on a particular arrayFigure 2
Each point represents the log2 (R/G) value for the specified 
genes on a particular array. The Pearson correlation and the 
biweight correlation give opposite values for these group 2 
pairs. Due to the outlying values, it is clear that the Pearson 
correlation is quite misleading.
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2.3 Effect of breakdown in biweight correlation

As mentioned in section 1.2, the breakdown controls the
resistance of the estimator. For example, setting a break-
down at 0.2 allows for up to 20% of the data values to be
manipulated without being able to take the estimator
across all bounds. Naturally, the lower the breakdown,
the less resistant the estimator. In our case, a breakdown
of zero will give a BWC estimate almost equivalent to the
PC (the very slight difference is due to the BWC weight
scheme weighting points differently while PC weights

every point .) In a plot (not shown) of the PC vs. BWC

at zero breakdown there are no points in the groups we
had previously defined as 2, 3, and 4 (see section 2.1.)
Conversely, the higher the breakdown, the more discrep-
ant the PC and BWC will be (data not shown.) A higher
breakdown will lead to flagging more genes as possibly
low quality. Depending on the noise level of the data, one
may want to adjust the breakdown. Ideally, the break-
down should be set only as high as the percentage of data
which is outlying. A breakdown of 0.2 gives a good bal-
ance between resistance and ability to make use of the

bulk of the data in the estimation process. The breakdown
value will have an effect on the correlation value that is
used as a similarity measure. If the breakdown is not high
enough, the metric will not be resistant. If the breakdown
is too high, the technique will lose power. The effect of the
similarity metric on a clustering or gene network will
depend on the particular algorithm. However, if the simi-
larities between two genes is estimated to be 0.9 with the
first measure and 0.1 with the second measure (or vice
versa, both situations seen in figure 1), we would expect
clustering algorithms to link the two genes with the first
measure and not with the second (or vice versa.) The effect
of non-resistant similarity metrics on clustering results
can be disastrous.

2.4 Efficiency of the biweight correlation
We have demonstrated that the biweight correlation is
effective as a resistant correlation as well as a tool for flag-
ging low quality data (both valuable in analyzing micro-
array data.) The Spearman correlation, based on the ranks
of the data, is also a resistant correlation technique. How-
ever, because the biweight incorporates the actual data
values (instead of just their order), the biweight correla-
tion is more efficient than the Spearman correlation. The
efficiency of the biweight as a location and scale estimator
has been well studied [17,36]. Table 4 gives the efficien-
cies (versus the Pearson correlation) for both the biweight
and the Spearman correlations. The efficiency is calcu-
lated from 10,000 bivariate samples of a given size and
correlation. The table values are each the ratio of the vari-
ance of the biweight (or Spearman) correlation across the
10,000 samples versus the variance of the Pearson correla-
tion across the 10,000 samples. Particularly for high cor-
relations (those in which we are interested), the biweight
correlation is substantially more efficient than the Spear-
man correlation.

Additionally, in a plot of Spearman vs. Pearson correla-
tions (see figure 6) for the yeast data, we see that the
Spearman and Pearson correlations are more consistent
with each other than the biweight versus Pearson correla-
tions were (see figure 1) for this noisy data. With clean
data we would expect the Pearson and biweight to be
more consistent than the Pearson and Spearman. How-
ever, because the biweight is able to capture the large cor-
relations that are seen as small with Pearson, the biweight
actually seems more different from the Pearson than the
Spearman does. The efficiency of the biweight correlation
helps us discover large correlations that the Spearman cor-
relation measure misses.

1
n

Each point represents the log2 (R/G) value for the specified genes on a particular arrayFigure 4
Each point represents the log2 (R/G) value for the specified 
genes on a particular array. The biweight correlation is close 
to zero, and the Pearson correlation gives a high absolute 
correlation. Group 4 pairs are the most worrisome; it would 
be a mistake to think that two genes were highly correlated 
when that high correlation is simply due to one outlying 
point.
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2.5 Empirical consistency of biweight correlation under 
non-normal distributions
In order to assess the performance of the biweight correla-
tion under different situations, we ran a series of simula-
tions computing the empirical correlation for each of
different true correlations, sample sizes, distributions, and
correlation metrics. For a given true correlation, sample
size, and distribution a pair of data were simulated; the
empirical correlation was then calculated. In each of the
simulations except the one-wild, the correlation structure
was imposed after the data were simulated. For the one-
wild distribution, the data were simulated with the appro-

priate correlation structure and then the wild observation
was substituted randomly. The process was repeated
10,000 times. The average of the 10,000 simulations (with
standard deviations) are seen in tables 1, 2, and 3. Three
of the correlation metrics (Pearson, Spearman, and
biweight) have already been discussed. The fourth, the
percentage bend correlation [19], is an additional robust
correlation metric based on M-estimation using Huber's
Ψ-function. The percentage bend correlation has an
advantage over the Spearman in that it uses the weighting
of the M-estimation instead of just the ranks of the data,
but it has a disadvantage over the biweight because the

Each point represents the log2 (R/G) value for the specified genes on a particular arrayFigure 5
Each point represents the log2 (R/G) value for the specified genes on a particular array. Each panel again shows the relationship 
between two genes whose biweight and Pearson correlations differ. Here we measure the actual difference between the Pear-
son correlation and biweight correlation. Each of the 12 pairs of genes had an absolute correlation difference of at least 1.0 and 
one of the correlations had an absolute value of at least 0.85.
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percentage bend is not iterative and can fail to be as resist-
ant as the biweight.

The distributions of data are meant to cover a variety of
situations. The Lognormal data are skewed; the Beta(2,2)
data have light tails. The slash distribution is created by
dividing a standard normal deviate by an independent
uniform (0,1) deviate and has much heavier tails than
normal while being less pathological than the Cauchy dis-
tribution. The one-wild distribution is a contaminated
standard normal such that one value (in only one dimen-
sion) is replaced with a random deviate from a uniform
(5,10) distribution. From tables 1, 2, and 3 we make the
following observations:

• Pearson correlation is seriously affected by heavy tails
(slash distribution) and outliers (one-wild distribution.)

• Spearman and percentage bend correlations are quite
resistant, but they tend to underperform the biweight (at
any breakdown).

• The biweight correlation performs well consistently
across different distributions and sample sizes.

• Though some efficiency is lost when the biweight is
compared to the Pearson, the improvement in perform-
ance for non-normal data is essential for applications to
microarray data.

• The breakdown parameter alters the biweight correla-
tion performance only slightly. As long as the breakdown
percentage covers the amount of the contamination, the
biweight correlation will have low bias and high effi-
ciency.

2.6 Convergence of the biweight
As described in section 1.2, the biweight correlation is an
iterative estimator. For a (normal) sample size of 25, it
takes about 43 seconds to compute 100,000 pairwise
biweight correlations on a Pentium 4, 3GHz computer
with 2GB RAM running Windows XP (compared to less
than a second for the Pearson correlation and the Spear-
man correlation, and about 2 seconds for the percentage
bend correlation.) Admittedly, the computation time is
the shortcoming for the biweight correlation when com-
puting all pairwise correlations across hundreds or thou-
sands of genes. All simulations are done using R and
would likely be considerably faster using a different pro-
gramming language.

As mentioned in the appendix, the biweight correlation is
computed by first finding an initial estimate of location
and scatter. We have found that initializing the biweight
using robust estimates of location and scatter of the

median and MAD (Median of the Absolute Deviations
from the median) converge to the same biweight esti-
mates as using the Minimum Covariance Determinant
[37] location and scatter estimates (which are slightly bet-
ter multivariate estimates but slower to compute.) Addi-
tionally, we have found (simulations not shown) that
running the iteration for 5–10 steps gives equivalent
results (biweight correlations). Typically, for noisy data,
the iteration scheme will take between 10–25 steps to
converge fully. For a slash distribution with a sample of
size 25, it takes 95 seconds to compute 100,000 pairwise
biweight correlations which completely converge and 42
seconds when the iterations are capped at 8.

3 Discussion
We have provided a novel resistant estimate of correlation
based on a well-known multivariate location estimator of
location and scale. Tukey's biweight has been used as a

Scatterplot of all pairwise correlations of the 1000 most vari-able genes in the yeast dataFigure 6
Scatterplot of all pairwise correlations of the 1000 most vari-
able genes in the yeast data. The blackest hexagons represent 
7,708 pairs of genes. The lightest hexagons represent one 
pair of genes. Notice that, unlike the comparison of the 
biweight correlation vs. Pearson correlation, here there are 
fewer points in groups 2 or 3 (see section 2.1) indicating that 
the Spearman correlation is less able to recognize pairs that 
have mistakenly been given high Pearson (when resistant 
measure is opposite) or zero Pearson correlations (when 
resistant measure is high.) Also note that when there is less 
agreement overall between Spearman and Pearson than 
between biweight and Pearson (the center section is wider 
than in figure (1).)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Pearson Correlation

S
pe

ar
m

an
 C

or
re

la
tio

n

Page 8 of 13
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:220 http://www.biomedcentral.com/1471-2105/8/220

Page 9 of 13
(page number not for citation purposes)

Table 2: 

Normal Lognormal Beta(2,2) Slash One-wild

n = 15 Pearson 0.686 (0.15) 0.677 (0.13) 0.671 (0.16) 0.433 (0.49) 0.297 (0.26)
Spearman 0.646 (0.17) 0.780 (0.12) 0.622 (0.18) 0.528 (0.24) 0.561 (0.19)
Perc. Bend 0.660 (0.17) 0.779 (0.12) 0.628 (0.18) 0.530 (0.25) 0.583 (0.19)
BWC (brk = 0.1) 0.685 (0.17) 0.704 (0.14) 0.670 (0.16) 0.504 (0.36) 0.519 (0.22)
BWC (brk = 0.2) 0.683 (0.15) 0.749 (0.14) 0.667 (0.16) 0.583 (0.31) 0.685 (0.16)

n = 25 Pearson 0.693 (0.11) 0.685 (0.10) 0.686 (0.11) 0.493 (0.48) 0.373 (0.20)
Spearman 0.662 (0.12) 0.802 (0.08) 0.643 (0.13) 0.571 (0.18) 0.610 (0.14)
Perc. Bend 0.668 (0.12) 0.789 (0.09) 0.643 (0.13) 0.572 (0.19) 0.624 (0.13)
BWC (brk = 0.1) 0.693 (0.11) 0.725 (0.10) 0.685 (0.12) 0.581 (0.28) 0.681 (0.12)
BWC (brk = 0.2) 0.692 (0.12) 0.747 (0.11) 0.684 (0.12) 0.642 (0.22) 0.693 (0.12)
BWC (brk = 0.4) 0.685 (0.16) 0.762 (0.13) 0.670 (0.18) 0.678 (0.19) 0.688 (0.15)

n = 50 Pearson 0.697 (0.07) 0.693 (0.07) 0.693 (0.08) 0.560 (0.46) 0.474 (0.13)
Spearman 0.672 (0.08) 0.815 (0.05) 0.655 (0.09) 0.601 (0.12) 0.647 (0.09)
Perc. Bend 0.673 (0.08) 0.793 (0.06) 0.650 (0.09) 0.603 (0.13) 0.653 (0.09)
BWC (brk = 0.1) 0.697 (0.08) 0.727 (0.08) 0.693 (0.08) 0.640 (0.18) 0.696 (0.08)
BWC (brk = 0.2) 0.697 (0.08) 0.738 (0.08) 0.692 (0.08) 0.675 (0.14) 0.698 (0.08)
BWC (brk = 0.4) 0.694 (0.10) 0.745 (0.10) 0.686 (0.11) 0.692 (0.12) 0.695 (0.10)

At each sample size (n), correlation metric, and data distribution (ρ = 0.7), the average correlation is reported (standard deviation in parentheses) 
for 10,000 random samples. The correlation metrics compared are Pearson correlation, Spearman correlation, percentage bend correlation, and 
biweight correlation at three different breakdown values. Distributions compared are normal, lognormal (skewed), beta(2,2) (light tails), slash 
(heavy tails), and one-wild (outlier). (Note that a breakdown of 0.4 with n = 15 data points leaves too few points to accurately estimate a 
correlation.)

Table 1: 

Normal Lognormal Beta(2,2) Slash One-wild

n = 15 Pearson 0.487 (0.21) 0.474 (0.19) 0.469 (0.21) 0.298 (0.53) 0.214 (0.26)
Spearman 0.455 (0.22) 0.627 (0.17) 0.430 (0.23) 0.363 (0.27) 0.393 (0.23)
Perc. Bend 0.463 (0.22) 0.609 (0.18) 0.429 (0.23) 0.366 (0.29) 0.409 (0.23)
BWC (brk = 0.1) 0.487 (0.21) 0.511 (0.20) 0.469 (0.22) 0.341 (0.41) 0.317 (0.23)
BWC (brk = 0.2) 0.485 (0.22) 0.565 (0.21) 0.466 (0.23) 0.401 (0.36) 0.484 (0.22)

n = 25 Pearson 0.492 (0.16) 0.484 (0.14) 0.484 (0.16) 0.346 (0.53) 0.265 (0.20)
Spearman 0.465 (0.17) 0.647 (0.12) 0.447 (0.17) 0.393 (0.21) 0.427 (0.17)
Perc. Bend 0.468 (0.17) 0.622 (0.12) 0.442 (0.17) 0.393 (0.23) 0.436 (0.17)
BWC (brk = 0.1) 0.492 (0.16) 0.535 (0.15) 0.483 (0.16) 0.393 (0.33) 0.463 (0.17)
BWC (brk = 0.2) 0.491 (0.16) 0.562 (0.16) 0.481 (0.17) 0.436 (0.27) 0.490 (0.17)
BWC (brk = 0.4) 0.483 (0.23) 0.580 (0.20) 0.468 (0.24) 0.477 (0.26) 0.483 (0.22)

n = 50 Pearson 0.494 (0.11) 0.494 (0.10) 0.493 (0.11) 0.388 (0.52) 0.334 (0.14)
Spearman 0.472 (0.11) 0.659 (0.08) 0.459 (0.12) 0.414 (0.15) 0.454 (0.12)
Perc. Bend 0.471 (0.11) 0.625 (0.09) 0.449 (0.12) 0.416 (0.16) 0.458 (0.12)
BWC (brk = 0.1) 0.494 (0.11) 0.533 (0.11) 0.493 (0.11) 0.446 (0.23) 0.490 (0.11)
BWC (brk = 0.2) 0.494 (0.11) 0.544 (0.12) 0.492 (0.12) 0.472 (0.18) 0.495 (0.11)
BWC (brk = 0.4) 0.491 (0.15) 0.553(0.14) 0.486 (0.16) 0.490 (0.17) 0.492 (0.15)

At each sample size (n), correlation metric, and data distribution (ρ = 0.5), the average correlation is reported (standard deviation in parentheses) 
for 10,000 random samples. The correlation metrics compared are Pearson correlation, Spearman correlation, percentage bend correlation, and 
biweight correlation at three different breakdown values. Distributions compared are normal, lognormal (skewed), beta(2,2) (light tails), slash 
(heavy tails), and one-wild (outlier). (Note that a breakdown of 0.4 with n = 15 data points leaves too few points to accurately estimate a 
correlation.)



BMC Bioinformatics 2007, 8:220 http://www.biomedcentral.com/1471-2105/8/220
resistant estimator in diverse contexts such as regression,
analysis of variance, time series, and control charts to
monitor product quality [33] because of its resistance and
efficiency properties. We have shown that the biweight is
also a powerful technique to use when computing corre-
lations between pairs of genes regardless of whether there
is a significant amount of contamination or not.

Additionally, the tuning parameters of the biweight allow
for the estimates to be minimally or largely resistant to
outlying values; the breakdown of the correlation (which
defines the tuning parameters) can be set to allow for a
degree of resistance suitable for the analysis. We have
found that setting our breakdown to 0.2 works well in
most situations.

Not only does the biweight correlation give a resistant
measure of correlation, but it also provides a data flagging
method that (a) finds pairs of genes which give mislead-
ing Pearson correlations, and (b) finds genes that, when
compared to many other genes, consistently give mislead-
ing Pearson correlations. The data flagging method can be
used to improve the accuracy of secondary analyses (e.g.,
clustering or gene network analyses) and to decrease the
rate of false positives. The high dimensionality of micro-
array data produces a need for automated data cleaning,
and we provide one way of examining the data for outly-
ing values before analyses are performed.

Because the biweight estimator is iterative, it is computa-
tionally more time intensive than either the Pearson or
the Spearman correlation estimates. To save computation

Table 4: 

true correlation
0.5 0.7 0.9

BWC SP BWC SP BWC SP

sample size 10 0.894 0.918 0.874 0.802 0.853 0.529
20 0.900 0.894 0.896 0.788 0.892 0.535
50 0.898 0.878 0.915 0.795 0.920 0.607
100 0.910 0.888 0.912 0.791 0.908 0.608

Efficiency of biweight correlation (BWC) vs. Spearman (SP) correlation. All values are simulated variance of correlation of interest (biweight or 
Spearman) divided by the variance of the Pearson correlation. Simulations are based on 10,000 samples of standard normal bivariate data sets with 
the appropriate sample size and correlation.

Table 3: 

Normal Lognormal Beta(2,2) Slash One-wild

n = 15 Pearson 0.894 (0.06) 0.887 (0.05) 0.885 (0.07) 0.588 (0.43) 0.389 (0.26)
Spearman 0.860 (0.08) 0.917 (0.05) 0.841 (0.09) 0.723 (0.18) 0.745 (0.14)
Perc. Bend 0.879 (0.07) 0.927 (0.05) 0.859 (0.09) 0.722 (0.19) 0.772 (0.14)
BWC (brk = 0.1) 0.894 (0.06) 0.898 (0.05) 0.885 (0.07) 0.721 (0.29) 0.860 (0.11)
BWC (brk = 0.2) 0.893 (0.06) 0.918 (0.05) 0.883 (0.07) 0.817 (0.21) 0.892 (0.06)

n = 25 Pearson 0.897 (0.04) 0.894 (0.04) 0.892 (0.04) 0.671 (0.39) 0.481 (0.20)
Spearman 0.871 (0.06) 0.931 (0.03) 0.858 (0.06) 0.774 (0.13) 0.802 (0.09)
Perc. Bend 0.882 (0.05) 0.931 (0.03) 0.868 (0.06) 0.774 (0.13) 0.820 (0.08)
BWC (brk = 0.1) 0.897 (0.04) 0.910 (0.04) 0.891 (0.05) 0.809 (0.18) 0.896 (0.04)
BWC (brk = 0.2) 0.897 (0.05) 0.920 (0.04) 0.890 (0.05) 0.870 (0.11) 0.896 (0.05)
BWC (brk = 0.4) 0.893 (0.06) 0.925 (0.05) 0.882 (0.08) 0.889 (0.08) 0.893 (0.06)

n = 50 Pearson 0.899 (0.03) 0.897 (0.03) 0.896 (0.03) 0.757 (0.34) 0.606 (0.13)
Spearman 0.882 (0.04) 0.939 (0.02) 0.870 (0.04) 0.811 (0.08) 0.845 (0.05)
Perc. Bend 0.886 (0.03) 0.933 (0.02) 0.874 (0.04) 0.811 (0.09) 0.854 (0.05)
BWC (brk = 0.1) 0.899 (0.03) 0.911 (0.03) 0.896 (0.03) 0.863 (0.09) 0.898 (0.03)
BWC (brk = 0.2) 0.899 (0.03) 0.916 (0.03) 0.895 (0.03) 0.890 (0.06) 0.898 (0.03)
BWC (brk = 0.4) 0.898 (0.04) 0.918 (0.04) 0.892 (0.04) 0.895 (0.05) 0.896 (0.04)

At each sample size (n), correlation metric, and data distribution (ρ = 0.9), the average correlation is reported (standard deviation in parentheses) 
for 10,000 random samples. The correlation metrics compared are Pearson correlation, Spearman correlation, percentage bend correlation, and 
biweight correlation at three different breakdown values. Distributions compared are normal, lognormal (skewed), beta(2,2) (light tails), slash 
(heavy tails), and one-wild (outlier). (Note that a breakdown of 0.4 with n = 15 data points leaves too few points to accurately estimate a 
correlation.)
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time, one might use the biweight as an initial estimate and
an outlier detection method, and then progress to one of
the other methods for analyses that require computing
correlations multiple times in a row.

We have used microarray data to illustrate our methods.
However, the methods can easily be applied to any data
set, and they will be particularly useful for data sets where
there is a large amount of noise and many distance pairs
are being calculated. For example, we could use this
method on other high throughput data like proteomic or
metabolomic data. Additionally, other disciplines with
large data sets like Astronomy and Econometrics will also
value a robust and systematic procedure for calculating
distances. Many supervised discrimination techniques use
metrics/statistics which are similar to correlations. For
example, Fisher's Linear Discriminant Analysis (LDA) is
based on the mahalanobis squared distance. Because the
biweight is inherently a multivariate estimator, one could
easily use the biweight to measure resistant mahalanobis
squared distances to use in LDA. Additionally, popular
methods like Classification and Regression Trees (CART)
use regression models to partition samples into groups.
Biweight regression methods could also be used to make
for more resistant partitioning in CART methods.

4 Conclusion
Tukey's biweight has been well established as a resistant
estimation method in many fields. It has played a small
role in the analyses of microarray data. However, the need
for resistant methods in microarray data is great, and the
biweight is a powerful tool that can provide improved
methodology and results in many applications of micro-
array analyses. The methods shown here use Tukey's
biweight to give a robust and efficient estimate of distance
between two genes on a microarray.

5 Availability
R code is available from the authors as well as in a supple-
mentary file to this article.

6 Authors' contributions
JH conceived of the study, participated in its design and
coordination, and wrote the manuscript. AM, LH, and
BVK contributed to writing the computer code, validating
the method, and editing the manuscript.

7 Appendix
Multivariate estimates of location and scatter given by
constrained M-estimates are defined iteratively using a
weight function, w (·), to down-weight data values that
are far from the bulk of the data. Using initial estimates of

the location, , and shape, , we calculate the distance
of each point to the center of the data set,

For a given objective function, ρ (·), the constraint,
parameterized by k, (for the constrained M-estimator) is
(see [38] for details)

where bo = E [ρ (d/k)] and n is the number of samples (d is
defined originally as above in equation (2) and subse-
quently as below in equation (6), and k is found using
equation (3) after bo and dj are determined.) bo is given as
the product of the specified breakdown and the maximum
value of ρ [39]. To find k, the expected value (bo) is calcu-
lated under the assumption of multivariate normality (d
will have a chi-square distribution if the data are normally
distributed). Though we retain the convention, we do not
presume to think that microarray data are normally dis-
tributed. The implication of an incorrect normality
assumption will be a breakdown value slightly different
from what we set. Because our work does not focus on a
particular breakdown value of interest (and instead
focuses on the general idea of having a resistant estima-
tion procedure), we are not bothered by a slight miscalcu-
lation of the breakdown value.

Subject to the constraint in equation (3), the M-estimators
of location and scale are given by the following iterative
equations [40,41]

(alternating with equation (3) to determine k, note that
the value for k changes at each iteration) where Xj is a gene
of interest and
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v(d) = d ψ(d) (9)

The objective function for Tukey's biweight [42] is given
by:

Because E [ρ (·)] is a function of c and the breakdown, we
can use the Newton-Raphson method to find c using E [ρ
(·)] and the breakdown. For example, given a sample in
dimension two (p = 2), with a breakdown of 0.2, c will be
5.07.

The iterative scheme has the potential for the existence of
multiple solutions, although multiple solutions essen-
tially never happen in practice. After our iterative scheme
has converged, we are left with a location vector and shape
matrix. As seen in equation (1), the biweight correlation
will be the biweight covariance divided by the product of
the individual gene biweight standard deviations.

Additional material
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