
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Motif kernel generated by genetic programming improves remote
homology and fold detection
Tony Håndstad1, Arne JH Hestnes1 and Pål Sætrom*1,2

Address: 1Department of Computer and Information Science, Norwegian University of Science and Technology, NO-7052, Trondheim, Norway
and 2Interagon AS, Laboratoriesenteret, NO-7006 Trondheim, Norway

Email: Tony Håndstad - tony.handstad@gmail.com; Arne JH Hestnes - arnejohe@gmail.com; Pål Sætrom* - paal.saetrom@interagon.com

* Corresponding author

Abstract
Background: Protein remote homology detection is a central problem in computational biology.
Most recent methods train support vector machines to discriminate between related and unrelated
sequences and these studies have introduced several types of kernels. One successful approach is
to base a kernel on shared occurrences of discrete sequence motifs. Still, many protein sequences
fail to be classified correctly for a lack of a suitable set of motifs for these sequences.

Results: We introduce the GPkernel, which is a motif kernel based on discrete sequence motifs
where the motifs are evolved using genetic programming. All proteins can be grouped according
to evolutionary relations and structure, and the method uses this inherent structure to create
groups of motifs that discriminate between different families of evolutionary origin. When tested
on two SCOP benchmarks, the superfamily and fold recognition problems, the GPkernel gives
significantly better results compared to related methods of remote homology detection.

Conclusion: The GPkernel gives particularly good results on the more difficult fold recognition
problem compared to the other methods. This is mainly because the method creates motif sets
that describe similarities among subgroups of both the related and unrelated proteins. This rich set
of motifs give a better description of the similarities and differences between different folds than
do previous motif-based methods.

Background
A huge gap exists between the number of protein
sequences and the number of proteins with a known
structure and function. The exponential growth in
sequence information means that better methods to auto-
matically annotate new sequences are needed. Current
methods include ab initio structure prediction, sequence-
structure comparisons, and sequence comparisons [1,2].
Ab initio methods try to predict the native protein structure
from the amino acid sequence. The protein can then be
annotated by comparing the predicted structure to those

of proteins with known structure and function. Sequence-
structure comparisons, or threading methods, try to fit the
protein sequence to known structures. Compared with ab
initio predictions, threading limits the candidate solutions
to those structures already known. Sequence comparisons
are based on the assumption that similar sequences share
a common ancestor – that is, they are remote homologues
– suggesting structural and functional similarities. Several
good solutions exist when the level of sequence similarity
is high, but when the sequences are highly divergent it is

Published: 25 January 2007

BMC Bioinformatics 2007, 8:23 doi:10.1186/1471-2105-8-23

Received: 7 July 2006
Accepted: 25 January 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/23

© 2007 Håndstad et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 16
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/23
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
still difficult to distinguish remotely homologue
sequences from sequences that are similar by chance.

Early solutions to the problem of finding remote homo-
logues, such as the Smith-Waterman algorithm [3] and
heuristic alternatives like BLAST [4] and FASTA [5],
looked for sequence similarity between pairs of proteins.
Later solutions used aggregated statistics of related pro-
teins to generate more complex models that a protein with
unknown function could be compared to. These methods,
including profiles [4,6] and hidden Markov models
(HMMs) [7-9] used only related sequences for model gen-
eration.

The most successful recent methods have been discrimi-
native. Classifiers are trained on both related and unre-
lated proteins to recognize what distinguishes the related
proteins from the unrelated ones. Kernel methods such as
the support vector machine [10] have proven to give par-
ticularly good results, and several groups have introduced
different types of kernel functions [11-19]. Most of these
kernel functions are typically either based on profiles and
sequence alignments, or based on the occurrences of dis-
crete motifs.

Kernels based on profiles and sequence alignments
The Fisher kernel [11] was the first method that used sup-
port vector machines. This method trains profile HMMs
on related proteins and produces feature vectors from
sequences by aligning them to the HMMs. Another align-
ment-based kernel is SVM-Pairwise [12], which represents
each sequence as a vector of pairwise similarities to all
sequences of the training set. The SVM-I-sites method [13]
compares sequence profiles to the I-sites library of local
structural motifs for feature extraction and this method
has also been improved to take into account the order and
relationships of the I-site motifs [14].

A relatively simple but efficient kernel is the Mismatch
kernel [15] in which the feature space consists of all short
subsequences of length k, called k-mers. A k-mer is said to
be present in a sequence if the sequence contains a sub-
string that has at most n mismatches to the k-mer. In the
profile kernel of Kuang et al. [16], the mismatch kernel is
combined with profiles; a k-mer is said to be present in a
sequence if the sequence contains a substring that when
aligned to the profile gives a score above a given thresh-
old. Later methods, such as the LA-kernel [17] and SVM-
SW [18] are also alignment-based, but instead of repre-
senting the sequences as a vector of features they calculate
the kernels directly by an explicit protein similarity meas-
ure. The LA-kernel uses all optimal gapped local align-
ment scores for all possible subsequences of two
sequences, while SVM-SW uses the optimal local align-
ment that maximizes a direct profile-profile score.

Kernels based on discrete sequence motif content
Motif kernels are based on the idea of using motif content
to measure sequence similarity. Protein sequence motifs
describe some common sequence pattern that is con-
served over greater evolutionary distance than the rest of
the sequences. Focusing on sequence motifs therefore
means focusing on the most conserved parts of a
sequence, where remote homologues are most likely to
share similarities.

Although there are many databases of sequence motifs
available [20-23], these databases were created in a super-
vised way to have motifs that characterize different known
protein families, domains, or functional sites. Conse-
quently, a motif kernel based on these databases will be
biased towards correctly classifying known functions or
families. This also makes such motif kernels inappropriate
in benchmark studies. The eMOTIF kernel of Ben-Hur and
Brutlag [19] avoids these problems by using motifs
extracted with the unsupervised eMOTIF method [24]
from the eBLOCKS database [25]. The eMOTIF kernel has
good performance when classifying sequences in classes
for which several motifs are available, but the perform-
ance decreases when related sequences share few or no
motifs [16].

An alternative to using motifs from an existing database is
to generate the motifs from the available data. We intro-
duce a motif kernel where genetic programming is used to
find discriminative sequence patterns matching the posi-
tive training set sequences while not matching the nega-
tive training set sequences. The motifs are made from a
simple regular expression-like grammar and the resulting
matches against the data set is used to build feature vec-
tors for a support vector machine.

We benchmark our GPkernel on updated versions of two
commonly used benchmarks [18] based on the SCOP
database [26] and compare its performance with the
eMOTIF, Mismatch, SVM-Pairwise, and LA kernels as well
as the PSI-BLAST method. We find that our method
achieves performance similar to the LA-kernel method
and gives significantly better results than all of the other
methods. We also find, when comparing the GPkernel to
related motif methods, that motifs trained on the different
classes of negative sequences are vital for the method's
predictive power.

Results and discussion
Genetic programming for protein motif discovery
There are several methods that use genetic programming
(GP) [27] to evolve Prosite motifs [20] from multiple una-
ligned [28-30] or aligned [31] sequences. Genetic pro-
gramming has also been used to create stochastic regular
Page 2 of 16
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
expression motifs [32]. We use GP to evolve the discrete
sequence motifs that serve as a basis for our methods.

Our GP algorithm is trained on a positive and negative
training set and the fitness of a candidate solution is a
function of its matches in the two sets. More specifically,
the fitness is

where TP, FP, TN, and FN are the number of true and false
positives and true and false negatives, and Se and Sp are
the rates of correctly classified positives and correctly clas-
sified negatives. These rates are also known as the sensitiv-
ity and specificity. The fitness evaluation is accelerated by
special purpose search hardware [33], which reduces the
training time.

The hardware supports several regular expression-like
operators, but we use only a small subset of these. Our
solution language is formally defined for the DNA alpha-
bet elsewhere [34], but is here modified to handle the pro-
tein alphabet of amino acids. The amino acid symbols are
the language's basic elements. The language then uses sev-
eral operators to build patterns from the basic amino acid
letters.

Concatenation is the simplest operator and it gives pat-
terns that match sequential occurrences of amino acids;
for example, the pattern GLAA matches the sequence
GLAA. The logical disjunction operator allows alternative
amino acids at specific positions, such that the pattern GL
(A|C) A matches sequences GLAA and GLCA. The wild-
card operator is a special variant of the logical disjunction
operator as it matches any amino acid. Thus, the pattern
GL.A matches GLAA, GLCA, GLDA, and so forth.

The final operator, called the "p-of-n" operator, can be
used to specify the minimum number of amino acids that
must match within its sub-pattern. To illustrate, the pat-
tern {GLAA : p ≥ 3} will match GLAA, GCAA, and ELAA,
but not match GLCC, and GCAQ. Note that the p defines
the minimum number of amino acids that must match.
The "p-of-n" operator is also called the Hamming distance
operator, as it matches sequences that have a Hamming
distance below n – p, where n is the sub-pattern's number
of amino acids.

By using the Hamming distance operator, we can specify
patterns that have a certain number of mismatches. Fur-
thermore, by combining the Hamming distance and the
logical disjunction operators, we can boost the impor-
tance of amino acid residues at specific positions in the
pattern. To illustrate, the pattern {G(L|L)AA : p ≥ 4} gives

a double weight to Leucine at the second position. This
pattern will only match sequences that contain Leucine
and at least two of the three other amino acids, such as
ALAA, GLCA, and GLAE. We can use this position specific
weighting of amino acids to define patterns that approxi-
mate position weight matrices.

The GPkernel uses diverse motifs
The problem of protein remote homology detection has
an inherent structure as all proteins can be grouped
according to evolutionary relations and structure. This is
the basis for the SCOP hierarchy [26]. Our method uses
this inherent structure to create a kernel based on a rich set
of motifs that tries to capture information about all
related sequences in a particular dataset.

To compute the kernel, we use the GP algorithm to pro-
duce motifs from the SCOP training set. The kernel is
therefore referred to as the GPkernel. For each superfamily
classifier, we make both positive and negative motifs; that
is, motifs trained to match the classifier's superfamily as
well as motifs trained to match the other superfamilies.
Correspondingly, we do the same for the fold benchmark
and train motifs for all folds. This is done based on the
hypothesis that motifs trained to recognize the different
aspects of the negative data will increase the discrimina-
tive power of the GPkernel.

The basic positive training sets for GP include all members
of a superfamily or fold, except for the sequences forming
the positive test set. This means that all the motifs will
have to cover a large taxonomic distance. To narrow the
structural range each motif has to cover, we also split the
positive training set into subsets, as shown and explained
in Figure 1. For the superfamily benchmark, the subsets
exclude one family from the superfamily sequences. For
each such subset, we make ten motifs. We also make ten
motifs trained on all the sequences of the superfamily. As
a consequence, the number of motifs produced for each
superfamily will be ten times the number of families in
the superfamily. In total, this produces 3350 motifs for
each classifier in the superfamily benchmark.

For the fold benchmark, it is not practical to generate
motifs for all subsets excluding one superfamily because
of the very high number of superfamilies in each fold. As
we still want several motifs representing different subsets
within a fold, we adopt a slightly different solution. The
sequences of a fold are grouped into superfamilies and ten
sets are made for each fold such that each set exclude one
tenth of the sequences. This gives 3300 motifs for each
classifier in the fold benchmark.

For both benchmarks, we run GP with a population of
100 candidate solutions for 50 generations. The resulting

f Se Sp=
+

+
+







= + ()1
2

1
2

1
TP

TP FN
TN

TN FP
(),
Page 3 of 16
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
motifs are matched against all the sequences to produce a
matrix of binary feature vectors. This matrix contains a 1
at position (i, j) if sequence i contains motif j and a 0 oth-
erwise. The Gram matrix is then produced by taking the
dot product between the vectors of the sequences; see
Methods for additional details.

As described above, training the GPkernel basically
amounts to 1) training motifs on each superfamily and
fold for the respective problems, 2) joining the motifs into
a common kernel, and 3) training an SVM to recognize
each of the superfamilies or folds. Although this is how
one would train final versions of classifiers for predicting
superfamily or fold membership, training one set of
motifs from the complete database is not appropriate for
a benchmark study that tries to assess the method's pre-
dictive power. When estimating the predictive perform-
ance of any machine learning method, it is essential that
one evaluates the trained models on test sets that are inde-
pendent of the training set; that is, none of the sequences
in the test set should be part of the training set. Otherwise,
the performance estimates will be biased. To ensure that
our performance estimates are unbiased, we therefore cre-
ate a separate set of motifs for each of the superfamily and
fold test sets. Consequently, we create 102 * 3350 = 341,
700 and 86 * 3300 = 283, 800 superfamily and fold
motifs for the SCOP 1.67 benchmarks, which means we
will have evaluated about 3 * 109 GP patterns. Each GP
run takes under 2 seconds on our Pentium 4 2.8 GHz sys-
tem accelerated by one search chip. This gives a total runt-
ime of about 14 days for both SCOP 1.67 benchmarks,
but as we run several parallel processes on different sub-

sets of the benchmarks, we can reduce the evaluation time
to get complete results within one day. As a simple com-
parison, nrgrep [35] uses about 1 minute to evaluate 5000
expressions with varying numbers of amino acids and
mismatches.

Boosted classifiers and an extended eMOTIF kernel
The GPkernel uses motifs made from genetic program-
ming as a basis for a support vector machine kernel. We
also propose another method in which we use the
GPboost program [34] to build boosted classifiers [36].
Each such classifier is based on 100 weighted sub-motifs
where each sub-motif is made by running genetic pro-
gramming on the SCOP training sets with a population of
100 candidate motifs for 100 generations. A boosted clas-
sifier's prediction is a sum of the predictions from the
weighted sub-motifs. In addition, 10 boosted classifiers
are made and combined so that the final prediction for a
new sequence will be the average of 10 boosted classifiers.
The setup is explained in Figure 2.

The eMOTIF kernel has shown good performance on pro-
tein families that share many eMOTIFs, but the perform-
ance decreases for families that are not covered well by the
eMOTIFs. We propose to extend the eMOTIF kernel with
an additional small set of GP motifs in hope that this will
give a better performance when classifying the sequences
that share fewer eMOTIFs. The extended eMOTIF kernel,
called GPextended, is made from an eMOTIF kernel with
additional GP motifs trained to target the positive training
set. The motifs are made in exactly the same way as for the
GPkernel, but only the positive motifs – the motifs trained

Splitting of training sets for GP algorithmFigure 1
Splitting of training sets for GP algorithm. The figure shows three families from an example superfamily that constitute
the positive training set for GP. The positive test set and the negative training and test set are not shown in this figure. In addi-
tion to train motifs to cover the sequences of all three families, we also train GP on all the possible subsets of this superfamily
that exclude one family of the positive training set. This is indicated by the four sets in the right part of the figure. Ten motifs
are made for each subset.
Page 4 of 16
(page number not for citation purposes)

 2007, :23 http://www.biomedcentral.com/1471-2105/8/23
on the subsets of a given classifier's training set – are
added to an eMOTIF kernel to create the GPextended ker-
nel.

The GPkernel performs significantly better than the other
motif-based methods
Figure 3 shows the performance of the GPkernel, GPboost
classifier, the eMOTIF kernel, and the GPextended kernel
on the superfamily benchmark. The GPkernel has the best
overall performance in terms of both the cumulative ROC
and ROC-50 scores, and the differences to the eMOTIF

kernel are significant for the cumulative ROC-score (p = 4
* 10-4 and p = 0.7 on ROC and ROC-50 results with signed
rank tests corrected for multiple testing). The results also
indicate that extending the eMOTIF kernel with GP motifs
improves the performance of the eMOTIF kernel. Even
though the performance differences between the GPex-
tended and eMOTIF kernel are not significant (p = 0.3 and
p = 0.9 on ROC and ROC-50), the GP motifs boost the
performance of the eMOTIF kernel such that the GPex-
tended kernel's ROC-scores are not significantly worse
than those of the GPkernel (p = 0.06).

Boosted classifiersFigure 2
Boosted classifiers. The figure shows the setup of the boosted classifiers. For each test set, we create 10 boosted classifiers
whose predictions are averaged to give a final classification. Each classifier is made from 100 boosted GP motifs.

� Predictions

Motif 1 Weight Prediction
Motif 2 Weight Prediction
Motif 3 Weight Prediction

...

...
Motif 100 Weight Prediction

Classifier 1

Average

� Predictions

Motif 1 Weight Prediction
Motif 2 Weight Prediction
Motif 3 Weight Prediction

...

...
Motif 100 Weight Prediction

Classifier 2

� Predictions

Motif 1 Weight Prediction
Motif 2 Weight Prediction
Motif 3 Weight Prediction

...

...
Motif 100 Weight Prediction

Classifier 10

....

Protein Sequence

Classification
Page 5 of 16

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23

Page 6 of 16
(page number not for citation purposes)

GPkernel has highest overall performance of motif methods on superfamily benchmarkFigure 3
GPkernel has highest overall performance of motif methods on superfamily benchmark. The graphs show the
cumulative number of families with a ROC (top) and ROC-50 (bottom) score greater than a given value for the GPkernel,
GPboost, GPextended, and eMOTIF methods.

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
As Figure 4 shows, the gain of adding additional motifs to
the eMOTIF kernel is more evident on the fold bench-
mark. Because most of the eMOTIFs are relatively specific,
the sequences that belong to a fold will on average share
few eMOTIFs, giving a very sparse kernel. This might
explain the huge performance drop for the eMOTIF
method compared with its performance on the super-
family benchmark. If the eMOTIF method lacks a suitable
set of eMOTIFs for fold detection, the additional motifs
made for the GPextended kernel can compensate for this.
Both the GPextended kernel's ROC and ROC-50 scores are
significantly better than the eMOTIF scores (p = 2 * 10-4

and p = 2 * 10-4).

The GPkernel has a very good performance on fold detec-
tion compared to the other motif methods (all p-values ≤
10-8). The key to the GPkernel's increased performance are
the motifs trained on the different negative folds. When
we tested a kernel that consisted of an equal number of
positive motifs only, the average ROC-50 score fell by
30% (data not shown). Similarly, GPboost and the GPex-
tended kernel only use motifs trained to recognize the
positive training set and are less accurate than the GPker-
nel is. As the above experiments have shown, the negative
motifs are more useful on the fold than on the super-
family recognition problem. Because the positive
sequences are more similar on the superfamily than on
the fold benchmark, methods that only focus on recogniz-
ing the positive sequences can more easily find motifs that
characterize the positive sequences than they can on the
fold benchmark. On the fold benchmark, the motifs that
characterize the positive sequences do not confidently
predict a protein's correct fold, but an absence of motifs
common to some of the negative folds may complement
the occurrence of positive motifs. This complementarity
probably explains the GPkernel's higher relative perform-
ance on the fold than on the superfamily benchmark com-
pared to the other motif methods. To further put the
GPkernel's performance in perspective, we benchmarked
the GPkernel on Liao and Noble's SCOP 1.53 superfamily
benchmark set [12,37]. The only difference from their
original benchmark to our setup is that we randomly
assign individual families instead of individual sequences
to the test set. Table 1 summarizes the GPkernel's average
ROC-score on the 54 test sets and compares this average
to the averages of the other motif-based methods that
have been benchmarked on the set. We have also included
a recent method that uses latent semantic analysis (LSA)
on three different motif kernels [38]. Dong and colleagues
showed that using LSA on the best motif kernel, which
consisted of χ2 selected patterns extracted by the TEIRE-
SIAS algorithm [39], gives a performance comparable
with the performance of the LA-kernel [17]. Both the basic
and LSA-optimized kernels (SVM-Pattern and SVM-Pat-
tern-LSA; Table 1) have lower average ROC-scores on the

SCOP 1.53 superfamily benchmark than the GPkernel
has.

Apart from the LSA, Dong and colleagues' approach dif-
fers from ours in that the TEIRESIAS algorithm is an unsu-
pervised approach that finds all patterns occurring more
than a specified number of times in the input sequences.
Although this approach should give a similar good cover-
age of the complete training set as the GPkernel, the fea-
ture selection biases the initial set towards patterns that
discriminate between the positive and negative training
sets. This procedure also likely removed the patterns that
discriminate between the different subgroups in the nega-
tive set. Our results show that such patterns are crucial for
the GPkernel's performance.

The SCOP 1.53 benchmark set differs from our SCOP 1.67
set in two ways. First, Liao and Noble used a slightly more
stringent criterion to filter out similar sequences. Second,
and more importantly, the set includes all sequences that
pass the similarity filter, whereas our set only includes
sequences from superfamilies that have at least one family
with ten or more sequences and one or more additional
families that together have at least ten sequences. The
result is that for our benchmark set, the GPkernel consists
of motifs from all superfamilies, whereas for the SCOP
1.53 set, some superfamilies will not have any motifs.
Thus, if the negative motifs are important for the GPker-
nel's performance, the GPkernel should have a lower per-
formance on the SCOP 1.53 set than on the 1.67 set.
Nevertheless, the average ROC scores on the two sets are
almost identical (0.899 and 0.902 on SCOP 1.53 and
1.67). Similarly, when we benchmarked the GPkernel on
Rangwala and Karypis' SCOP 1.53 fold benchmark [18],
the GPkernel's average ROC score was 0.825; the average
ROC score on the SCOP 1.67 benchmark was 0.844.
Although results on the SCOP 1.53 and 1.67 cannot be
compared directly, these results suggest that the negative
motifs may not be that important for the GPkernel's per-
formance, which is contrary to what the initial results sug-
gest. The average ROC-50 scores on the superfamily and
fold benchmarks show, however, that the negative motifs
are important. Even though the GPkernel's overall per-
formance is comparable on the two benchmark sets, the
GPkernel has a large drop in average ROC-50 score on the
SCOP 1.53 set (from 0.591 and 0.514 to 0.265 and 0.111
on superfamily and fold). This large drop is likely caused
by the GPkernel missing negative motifs from some of the
superfamilies and folds, which then led to these super-
families and folds being overrepresented as false positives
among the high-scoring sequences.
Page 7 of 16
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23

Page 8 of 16
(page number not for citation purposes)

GPkernel outperforms other motif methods on SCOP fold benchmarkFigure 4
GPkernel outperforms other motif methods on SCOP fold benchmark. The graphs plot the cumulative number of
superfamilies with a ROC (top) and ROC-50 (bottom) score greater than a given value for the GPkernel, GPboost, GPex-
tended and eMOTIF methods.

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
The GPkernel has better overall performance than most
existing methods
To further assess the GPkernel's performance, we evalu-
ated the performance of four other popular methods for
remote homology detection: PSI-BLAST and the LA-ker-
nel, Mismatch, and SVM-Pairwise kernels. Figure 5 sum-
marizes the performances of the five methods on the
superfamily benchmark. The GPkernel is significantly bet-
ter than the other methods, except the LA-kernel, in terms
of ROC scores (p-values of 0.001, 0.0004, and < 10-10 for
Mismatch, SVM-Pairwise, and PSI-BLAST). The GPkernel
also has significantly higher ROC-50 scores than Mis-
match and PSI-BLAST (p = 0.03 and p < 10-10), but the
GPkernel and SVM-Pairwise's ROC-50 scores are not sig-
nificantly different (p = 0.7). The LA-kernel is, however,
the best method in terms of both performance measures
(p = 0.02 and p = 3 * 10-5 for ROC and ROC-50).

Figure 6 shows how the methods compare on the fold
benchmark. As would be expected, there is a bigger differ-
ence between the methods when the level of sequence
similarity is very low. Especially, the BLAST-based meth-
ods have difficulties producing effective alignments
between related sequences at the fold level. SVM-Pairwise
has a much lower performance on the fold than on the
superfamily benchmark, and the scores for PSI-BLAST on
fold detection are not reported due to the very poor results
achieved. The mismatch kernel, using more general string
patterns than the eMOTIF kernel has a stable performance
on both benchmarks and is significantly better than SVM-
Pairwise on the fold benchmark (p = 6 * 10-8 and p = 1 *
10-5 for ROC and ROC-50). The GPkernel has the best per-
formance on the fold benchmark. Although the difference
to the LA-kernel is not significant when accounting for the
multiple testing (p = 0.1 and p = 0.2 for ROC and ROC-
50), the GPkernel is significantly better than the third best
performing Mismatch kernel (p = 2 * 10-4 and p = 7 * 10-3

for ROC and ROC-50). Table 2 gives the average ROC and
ROC-50 scores for all of the methods.

Although the above results confirm the GPkernel's high
performance on the fold benchmark, the results do not
prove that the GPkernel is a useful tool for remote homol-
ogy detection and fold prediction. The GPkernel and LA-
kernel have similar performance, and the GPkernel may,
for instance, simply make similar predictions as the LA-
kernel. If this was the case, one could argue that the GPk-
ernel is a redundant method, as one could simply use the
LA-kernel to get the same predictions as the GPkernel. To
investigate this, we plotted the GPkernel's ROC-50 score
against the LA-kernel's ROC-50 score on all the test sets for
the superfamily and fold benchmarks (Figure 7). These
graphs show that the two methods are not redundant, but
complementary. Although this result may not be surpris-
ing – the two methods rely on distinct features – it sug-
gests that the two methods can be combined to create an
improved method for remote homology and fold detec-
tion [40].

Our SCOP 1.67 benchmark set uses a less stringent
sequence similarity filter than the SCOP 1.53 benchmark.
To ensure that this higher sequence similarity had not
influenced the results for the GPkernel and LA-kernel, we
repeated the GPkernel and LA-kernel fold experiments on
a modified version of the SCOP 1.67 set. Using the same
E-value threshold of 10-25 as for the SCOP 1.53 bench-
mark gave 3511 sequences and 86 superfamilies to use as
test sets. The average ROC scores for the GPkernel and LA-
kernel were 0.863 and 0.846; the average ROC-50 scores
were 0.520 and 0.513. The differences in ROC scores are
significant (p = 0.009 and p = 0.4; ROC and ROC-50).

Motif based classifiers for fold detection perform better
with many motifs of low specificity
One of the SCOP superfamilies (b.68.1) that participate
as a test set in the fold detection benchmark is classified
well with the GPkernel method (ROC-50 score of 0.903)
but achieves a lower score with the eMOTIF method
(0.128). Even though there seems to be a mild correlation

Table 1: Average ROC scores for motif-based kernels on SCOP 1.53 superfamily and fold benchmarks

Method SF Fold Source

GPkernel 0.899 0.825
Mismatch 0.872 - [17,18]
SVM-Pattern [38] 0.835 - [38]
SVM-Pattern-LSA [38] 0.879 - [38]

LA-eig (β = 0.2) 0 923 0 847 [18]
LA-eig (β = 0.5) 0.925 0.771 [18]
SW-PSSM(3.0,0.750,1.50) 0.982 0.933 [18]
BV-PSSM(4) 0.963 0.941 [18]

SF and Fold are the average ROC-scores on the SCOP 1.53 superfamily and fold benchmark sets [12,18]; dash (-) represents an unreported value;
Source is the sources of results other than ours. For reference, the table's lower part shows the best average ROC-scores reported by Rangwala
and Karypis [18]. These methods do not use discrete sequence motifs.
Page 9 of 16
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23

Page 10 of 16
(page number not for citation purposes)

GPkernel compares favorably to some common methods for remote homology detection on superfamily benchmarkFigure 5
GPkernel compares favorably to some common methods for remote homology detection on superfamily
benchmark. The figure plots the cumulative number of families with a ROC (top) and ROC-50 (bottom) score greater than a
given value for the GPkernel, LA-kernel, Mismatch, SVM-Pairwise and PSI-BLAST methods.

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23

Page 11 of 16
(page number not for citation purposes)

Large differences in performance on fold detectionFigure 6
Large differences in performance on fold detection. The figure plots the cumulative number of superfamilies with a
ROC (top) and ROC-50 (bottom) score greater than a given value for the GPkernel, LA-kernel, Mismatch and SVM-Pairwise
methods. PSI-BLAST is omitted in this context due to the method's very poor results on fold detection.

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
(0.16) between the number of eMOTIF matches for a fold
and the ROC-50 score achieved, the training and test sets
for this superfamily do not have significantly fewer eMO-
TIF matches than other superfamilies. More important is
the number of eMOTIFs shared between sequences. This
number varies a lot between different pairs of sequences,
but if we calculate the average number of eMOTIFs shared
between sequences in the b.68 fold, we find that the
sequences on average share 0.73 eMOTIFs. This is less
than the average for all folds (2.41) which again is much
less than the average shared between sequences of a super-

family (11.92). This shows that because sequences at the
fold level have a very low sequence similarity, and because
of the specificity of most of the eMOTIFs, the number of
eMOTIFs shared between sequences in a fold will also be
low. This will in turn influence the performance of the
eMOTIF kernel.

Table 3 shows examples of GP motifs trained on the train-
ing set for the b.68.1 fold classifier. The GP motifs varies
and do in general not share any huge similarities with the
eMOTIFs that match the sequences of the fold. The table

The GPkernel and LA-kernel predictions are complementaryFigure 7
The GPkernel and LA-kernel predictions are complementary. The graphs show the LA-kernel's ROC-50 scores plot-
ted against those of the GPkernel on the superfamily (A) and fold (B) benchmarks. Identical predictions from the two methods
would fall on the diagonal line.

Table 2: Average ROC/ROC-50 scores on SCOP 1.67 benchmarks

Average ROC and ROC-50 scores

Superfamily level Fold level
ROC ROC-50 ROC ROC-50

GPkernel 0.902 0.591 0.844 0.514
GPextended 0.869 0.542 0.753 0.371
GPboost 0.797 0.375 0.688 0.298
SVM-Pairwise 0.849 0.555 0.724 0.359
Mismatch 0.878 0.543 0.814 0.467
eMOTIF 0.857 0.551 0.698 0.308
LA-kernel 0.919 0.686 0.834 0.504
PSI-BLAST 0.575 0.175 0.501 0.010

The table shows the average ROC and ROC-50 scores obtained by the different methods on the superfamily benchmark and the fold benchmark.
Page 12 of 16
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
also shows the relative percentage of matches in the posi-
tive and negative training and test sets for the fold. The GP
motifs do match a higher percentage of the positive
sequences than the negatives, but the considerable
number of negative sequences that are matched shows the
difficulty of finding simple discrete sequence motifs that
cover many sequences of a fold while also being as specific
as possible. The best GP motifs tend to be either very short
sequences or very long complicated expressions with mul-
tiple alternative amino acids at each position in the motif.

When looking at all motifs made, we find that each motif
on average matches nearly a fourth of all sequences. All
sequences will therefore share many GP motifs. If we com-
pare the related sequences of a superfamily or fold with
randomly chosen sequences, we find that related
sequences share more motifs than randomly chosen
sequences do. On average, sequences in a superfamily
have a higher correlation in their motif matches than
other sequences on the positive motifs (correlation coeffi-
cient 0.25 versus 0.16) and they also correlate more on the
other motifs (0.33 versus 0.21). This means that related
sequences share more of all motifs than unrelated
sequences, explaining the GPkernel's performance.

Another kernel that also has a good performance on fold
detection is the mismatch kernel. This kernel is based on
a much larger feature set of even more unspecific patterns
than the GPkernel is. For the mismatch kernel, the gener-
ality of the patterns ensures that the whole solution space
of sequences is covered and that most sequences share at
least a few patterns. The GPkernel achieves good coverage
by training a certain amount of motifs for each super-
family or fold. The GP motifs, while not being too spe-
cific, are still more tuned to discriminate between
sequences of different folds than the completely general
mismatch k-mer patterns. This suggests that to capture the

small sequence similarity that exists at the fold level,
motif-based classifiers benefit from motifs that are general
enough to match a significant number of the weakly sim-
ilar sequences of a fold. In summary, it seems that good
motif-based classifiers on the fold recognition problem
need to strike a balance between specificity (eMOTIF) and
generality (mismatch). The GPkernel is one step in that
direction.

Conclusion
We have introduced a motif kernel with discrete sequence
motifs trained with genetic programming. Motifs are
evolved using a subset of regular expressions to describe
sequences in a superfamily or fold, and discriminate
between these and sequences in other superfamilies
(folds). The method gives very good results on two SCOP
benchmarks when compared to other relevant methods.

In addition, we have established two new and updated
benchmark sets. These sets, which are nearly twice as large
as previously used benchmarks, should prove useful for
future studies on remote homology detection.

Methods
Genetic programming
Genetic programming [27] is a form of automatic pro-
gramming that aims to find an optimal solution to a prob-
lem by using a population of candidate solutions and
techniques inspired by biological evolution. In genetic
programming, the solutions are usually variable sized syn-
tax trees whose structure is defined by the solution lan-
guage. An example of such a language is regular
expressions where the set of terminals are the 20 amino
acid characters.

Our algorithm, which is based on the GP-component of
the GPboost algorithm [34], uses a standard tree-based

Table 3: Examples of GP motifs

Examples of GP motifs

Motif PTr NTr PTe Nte

{MEEIEII :p >= 3} 67 41 67 55
{IQIIIEE : p >= 3} 83 38 92 50
{(I|I)E(E|(I|E)) : p >= 4} 58 37 83 51
{TQ(D|H)(K|C)(D|H)((((D|H)|A)|A)|A)TQ((H|A)|A)TQ((D|H)|A)(I|A) :p >= 7} 33 20 33 23
{M(L|L)CARACAARAA(L|L)RACAA : p >= 6} 8 28 50 44
{AALAALA(A|M)AA.ILAL(A|M)AA(C|M)AV.IL(.|T)A.ILAAALA(.|(A|M)) 50 28 25 45
V.ILVAA.ILL(.|T).IA(A|M)AALA(A|M)V.ILV(R|M) : p >= 20}
{(L|(M|A))(L|(L|(M|A)))(L|(M|A))(L|((L|A)|A))M : p >= 5} 83 37 67 54

The table shows examples of the motifs evolved by the genetic programming process targeting the SCOP b.68 fold. In addition to amino acid
characters, the motifs are also made from the disjunction operator (|), the wildcard operator (.), and the Hamming distance operator {: p >= x} that
specifies the minimum number of characters that must match in the pattern. For each motif, the table shows the relative percentage of sequences
matched in the training and test sets. The positive training set has 12 sequences, the negative 3590 sequences. The positive test set also has 12
sequences; the negative set has 226 sequences.
Page 13 of 16
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
representation of individuals. It uses subtree swapping
crossover, tree generating mutation and reproduction as
genetic operators and uses tournament selection to select
individuals for the next generation.

Motif kernels
A motif kernel gives a sequence similarity measure based
on the motif content of a pair of sequences [19]. A
sequence x can in this context be represented in a vector
space indexed by a set of motifs M as Θ(x) = (θm(x))m∈M.
In the eMOTIF kernel, θm(x) is the number of occurrences
of the motif m in x. The motif kernel is then defined as a
linear kernel over the motif contents: K(x, x') = Θ(x) ·
Θ(x'). In most cases a motif appears only once in a
sequence so this kernel essentially counts the number of
motifs that are common to both sequences. This is always
the case for the GPkernel, as θm(x) here is 1 if the motif
occurs in x and 0 otherwise.

Results benchmarking
To benchmark our method we simulate the process of
remote homology detection and fold detection by using
the SCOP database [26] as a basis for two benchmarks.
The SCOP database aims to classify all proteins of known
structure in a hierarchy based on structural and evolution-
ary relatedness. At the lowest level of the hierarchy, pro-
teins clustered in a SCOP family have clear evolutionary
relationship, meaning that pairwise residue identities
between proteins are 30% and greater. Proteins in SCOP
superfamilies show low degrees of sequence identities,
but structural and functional features in the proteins give
them a probable common evolutionary origin, meaning
that proteins clustered in superfamilies are likely to be
homologues. Proteins have the same common fold if they
have the same major secondary structures in the same
arrangement and with the same topological connections.
This does not necessarily mean they have the same evolu-
tionary origin.

The first benchmark is the now classic benchmark where
the goal is to classify a new protein sequence to the correct
SCOP superfamily. Here, one family in the superfamily is
kept as a positive test set. The other families in the same
superfamily constitute the positive training set. The nega-
tive test set consists of one random family from each of
the other superfamilies and the negative training set has
the rest of the families in these superfamilies. Figure 8
illustrates the setup for this benchmark.

For the other benchmark, we follow that of Rangwala and
Karypis [18]. We move up one level in the SCOP hierar-
chy; the objective is to classify an unknown sequence to
the correct fold. One superfamily is used as positive test
set, while the others in the same fold constitute the posi-
tive training set. The negative test set consists of one ran-
dom superfamily from each of the other folds, and the
negative training set consists of the remaining sequences.

This benchmark is considerably harder than the super-
family benchmark is, as most of the sequences within a
fold have a very low degree of similarity.

We use sequences from SCOP version 1.67, filtered with
Astral [41] to remove sequences that share more than 95%
similarity. The data are further filtered according to the
principle that each classifier should have at least 10
sequences for testing and training, that is, every classifier
should have at least 10 sequences in its positive training
and test set. For the superfamily benchmark, this leaves us
with 4019 sequences in 392 SCOP families. 102 of these
families match the conditions above. The fold benchmark
has 3840 sequences from 374 superfamilies and classifiers
are made for 86 of these. Of the 3840 sequences in the
fold benchmark, 2076 do not participate in the super-
family benchmark. Note that the 102 families and 86
superfamilies tested in our superfamily and fold bench-
marks are almost twice the number of families and super-
families used in previous benchmark studies.

Our benchmark sets are available as online supplemen-
tary material (Additional files 1, 2, 3).

Performance measures
Because the test sets have many more negative than posi-
tive instances, simply measuring error-rates will not give a

SCOP superfamily benchmarkFigure 8
SCOP superfamily benchmark. The figure shows how
the SCOP database is divided into training and test sets. For
each classifier tested on the superfamily benchmark, the
sequences of the SCOP database are divided into positive
and negative training and test sets. One SCOP family is used
as a positive test set. The negative test set is made from one
random family from each of the other superfamilies. The pos-
itive training set is made from the superfamily of the classi-
fier, excluding the positive test set family. The negative
training set is made from the other superfamilies, excluding
the negative test sets.

SCOP

a.1 b.1

a.1.1 a.1.2 b.1.1 b.1.2

Fold

Super
family

Family
Pos
test

Positive
train

Negative test and train
Page 14 of 16
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
good evaluation of performance. Instead we evaluate our
results by computing the ROC and ROC-50 scores [42]. A
ROC curve is a plot of a classifier's sensitivity as a function
of its specificity for different classification thresholds. The
ROC score is the area under the ROC curve. The ROC-50
curve is the same as a ROC curve, except the curve only
shows the classifier's sensitivity for the first 50 negatives.

Statistical tests
To determine whether two methods have statistically dif-
ferent ROC or ROC-50 scores on a particular benchmark,
we use signed rank tests. All p-values reported are double-
sided p-values that have been Bonferroni-corrected for
multiple comparisons.

Other methods
We computed the eMOTIF kernel based on the eMOTIFs
generated from version 1.0 of the eBLOCKS database. This
database contains 522,321 motifs and is the same that
was used in the original article [19]. The mismatch kernel
is computed by extracting all subsequences of length 5
from the dataset and using the Interagon PMC to search
for these subsequences in the data sets, allowing for one
mismatch. We use Clustal W [43] version 1.83 to create a
multiple alignment of the positive training set and give
this as input to PSI-BLAST version 2.2.13. PSI-BLAST is
then run with standard parameter values for 1 iteration
against the test set. The e-value of the resulting alignments
are used to rank the test set. SVM-pairwise is calculated by
using the negative logarithm of pairwise BLAST e-values to
generate a radial basis kernel with the same parameters as
in the original article of Liao and Noble [12]. We use the
authors' default implementation [44] to compute the LA-
kernel.

The Gist package version 2.2 [45] is used to train and test
the kernels.

Authors' contributions
TH did the experiments and drafted the manuscript. AJHH
did the initial work on GPboost for remote homology
detection. PS conceived the GPkernel and the study and
helped prepare the final version of the manuscript. All
authors read and approved the final manuscript.

Additional material

Acknowledgements
We thank A. Ben-Hur for providing his eMOTIF kernel code and O. Snøve
Jr. for useful comments on the manuscript. PS receives support from the
National Program for Functional Genomics in Norway (FUGE) and the Leiv
Eriksson program of the Norwegian Research Council.

References
1. Ginalski K, Grishin NV, Godzik A, Rychlewski L: Practical lessons

from protein structure prediction. Nucleic Acids Res 2005,
33(6):1874-1891.

2. Dunbrack RL Jr: Sequence comparison and protein structure
prediction. Curr Opin Struct Biol 2006, 16(3):374-384.

3. Smith TF, Waterman MS: Identification of common molecular
subsequences. J Mol Biol 1981, 147:195-197.

4. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs. Nucleic Acids Res 1997,
25:3389-3402.

5. Pearson WR: Rapid and sensitive sequence comparisons with
FASTP and FASTA. Methods Enzymol 1990, 183:63-98.

6. Gribskov M, Lüthy R, Eisenberg D: Profile analysis. Methods Enzy-
mol 1990, 183:146-159.

7. Krogh A, Brown M, Mian I, Sjolander K, Haussler D: Hidden
Markov models in computational biology: Applications to
protein modelling. J Mol Biol 1994, 235:1501-1531.

8. Baldi P, Chauvin Y, Hunkapillar T, McClure M: Hidden Markov
models of biological primary sequence information. Proc Natl
Acad Sci USA 1994, 91:1059-1063.

9. Karplus K, Barrett C, Hughey R: Hidden Markov models for
detecting remote protein homologies. Bioinformatics 1998,
14(10):846-856.

10. Corinna C, Vapnik V: Support-Vector Networks. Mach Learn
1995, 20(3):273-297.

11. Jaakkola T, Diekhans M, Haussler D: Using the Fisher kernel
method to detect remote protein homologies. Proc Int Conf
Intell Syst Mol Biol AAAI 1999:149-158.

12. Liao L, Noble WS: Combining pairwise sequence similarity and
support vector machines for detecting remote protein evo-
lutionary and structural relationships. J Comput Biol 2003,
10(6):857-68.

13. Hou Y, Hsu W, Lee LM, Bystroff C: Efficient remote homology
detection using local structure. Bioinformatics 2003,
19(17):2294-2301.

14. Hou Y, Hsu W, Lee LM, Bystroff C: Remote homolog detection
using local sequence-structure correlations. Proteins 2004,
57:518-530.

15. Leslie CS, Eskin E, Cohen A, Weston J, Noble WS: Mismatch string
kernels for discriminative protein classification. Bioinformatics
2004, 20:467-476.

16. Kuang R, Ie E, Wang K, Wang K, Siddiqi M, Freund Y, Leslie C: Pro-
file-based string kernels for remote homology detection and
motif extraction. Proc IEEE Comput Syst Bioinform Conf
2004:152-160.

17. Saigo H, Vert JP, Ueda N, Akutsu T: Protein homology detection
using string alignment kernels. Bioinformatics 2004,
20:1682-1689.

Additional file 1
The SCOP 1.67 superfamily benchmark filtered by 95% sequence simi-
larity. The file is a tab-delimited table. The first column gives SCOP
sequence IDs; the first row identifies the positive test set for a particular
benchmark instance; values (1, 2, 3, or 4) identify whether the sequence
is in the positive test, negative test, positive training, or negative training
sets.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-23-S1.txt]

Additional file 2
The SCOP 1.67 fold benchmark filtered by 95% sequence similarity. The
file has the same format as Additional file 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-23-S2.txt]

Additional file 3
The SCOP 1.67 fold benchmark filtered by an E-value threshold of 10-25

The file has the same format as Additional file 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-23-S3.txt]
Page 15 of 16
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-23-S1.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-8-23-S2.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-8-23-S3.txt
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15805122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15805122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16713709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16713709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2156132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2156132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2314273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8302831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8302831
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9927713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9927713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15382242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15382242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16448009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16448009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16448009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988126

BMC Bioinformatics 2007, 8:23 http://www.biomedcentral.com/1471-2105/8/23
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

18. Rangwala H, Karypis G: Profile-based direct kernels for remote
homology detection and fold recognition. Bioinformatics 2005,
21(23):4239-4247.

19. Ben-Hur A, Brutlag D: Remote homology detection: a motif
based approach. Bioinformatics 2003, 19:i26-33.

20. Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch
A, Bucher P: PROSITE: a documented database using patterns
and profiles as motif descriptors. Brief Bioinform 2002,
3:265-274.

21. Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, Mitchell
A, Moulton G, Nordle A, Paine K, Taylor P, Uddin A, Zygouri C:
PRINTS and its automatic supplement, prePRINTS. Nucleic
Acids Res 2003, 31:400-402.

22. Henikoff S, Henikoff JG, Pietrokovski S: Blocks+: a non-redundant
database of protein alignment blocks derived from multiple
compilations. Bioinformatics 1999, 15(6):471-479.

23. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D,
Bradley P, Bork P, Bucher P, Cerutti L, Copley R, Courcelle E, Das U,
Durbin R, Fleischmann W, Gough J, Haft D, Harte N, Hulo N, Kahn
D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic I, Mad-
era M, Maslen J, McDowall J, Mitchell A, Nikolskaya AN, Orchard S,
Pagni M, Ponting CP, Quevillon E, Selengut J, Sigrist CJA, Silventoinen
V, Studholme DJ, Vaughan R, Wu CH: InterPro, progress and sta-
tus in 2005. Nucleic Acids Res 2005:D201-205.

24. Nevill-Manning CG, Wu TD, Brutlag DL: Highly Specific Protein
Sequence Motifs for Genome Analysis. Proc Natl Acad Sci U S A
1998, 95(11):5865-5871.

25. Su QJ, Lu L, Saxonov S, Brutlag DL: eBLOCKS: enumerating con-
served protein blocks to achieve maximal sensitivity and
specificity. Nucleic Acids Res 2005, 33:D178-D182.

26. Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: a structural
classification of proteins database for the investigation of
sequences and structures. J Mol Biol 1995, 247:536-540.

27. Koza JR: Genetic Programming: On the Programming of Computers by
Means of Natural Selection MIT Press; 1992.

28. Koza JR, Andre D: Automatic Discovery of Protein Motifs
Using Genetic Programming. In Evolutionary Computation: Theory
and Applications Edited by: Yao X. World Scientific; 1996.

29. Yuh-Jyh H: Biopattern discovery by genetic programming. In
Genetic Programming 1998: Proceedings of the Third Annual Conference
Edited by: Koza JR, Banzhaf W, Chellapilla K, Deb K, Dorigo M, Fogel
DB, Garzon MH, Goldberg DE, Iba H, Riolo R. University of Wiscon-
sin, Madison, Wisconsin, USA: Morgan Kaufmann; 1998:152-157.

30. Seehus R, Tveit A, Edsberg O: Discovering Biological Motifs
With Genetic Programming. In Proceedings of the 2005 confer-
ence on Genetic and evolutionary computation Volume 1. Edited by: Beyer
HG, O'Reilly UM, Arnold DV, Banzhaf W, Blum C, Bonabeau EW,
Cantu-Paz E, Dasgupta D, Deb K, Foster JA, de Jong ED, Lipson H,
Llora X, Mancoridis S, Pelikan M, Raidl GR, Soule T, Tyrrell AM,
Watson JP, Zitzler E. Washington DC, USA: ACM Press;
2005:401-408.

31. Olsson B: Using evolutionary algorithms in the design of pro-
tein fingerprints. In Proceedings of the Genetic and Evolutionary Com-
putation Conference Volume 2. Edited by: Banzhaf W, Daida J, Eiben AE,
Garzon MH, Honavar V, Jakiela M, Smith RE. Orlando, Florida, USA:
Morgan Kaufmann; 1999:1636-1642.

32. Ross BJ: The Evolution of Stochastic Regular Motifs for Pro-
tein Sequences. New Generation Comput 2002, 20(2):187-213.

33. Halaas A, Svingen B, Nedland M, Sætrom P, Snøve O Jr, Birkeland OR:
A Recursive MISD Architecture for Pattern Matching. IEEE
Trans on VLSI Syst 2004, 12(7):727-734.

34. Sætrom P: Predicting the efficacy of short oligonucleotides in
antisense and RNAi experiments with boosted genetic pro-
gramming. Bioinformatics 2004, 20(17):3055-3063.

35. Navarro G: NR-grep: a Fast and Flexible Pattern Matching
Tool. Software Practice and Experience (SPE) 2001, 31:1265-1312.

36. Meir R, Räsch G: introduction to boosting and leveraging. In
Advanced Lectures on Machine Learning Volume 2600. Edited by: Men-
delson S, Smola A. Springer-Verlag; 2003:118-183.

37. Supplementary data for "Combining pairwise sequence sim-
ilarity and support vector machines for remote protein
homology detection" and "Combining pairwise sequence
similarity and support vector machines for detecting remote
protein evolutionary and structural relationships" [http://
www1.cs.columbia.edu/compbio/svm-pairwise/]

38. Dong Qw, Wang XI, Lin L: Application of latent semantic anal-
ysis to protein remote homology detection. Bioinformatics
2006, 22(3):285-290.

39. Rigoutsos I, Floratos A: Combinatorial pattern discovery in bio-
logical sequences: The TEIRESIAS algorithm. Bioinformatics
1998, 14:55-67. [Erratum in Bioinformatics 1998;14(2):229]

40. Hansen LK, Salamon P: Neural Network Ensembles. IEEE Trans
Pattern Anal Machine Intell 1990, 12(10):993-1001.

41. Brenner SE, Koehl P, Levitt M: The ASTRAL compendium for
sequence and structure analysis. Nucleic Acids Res 2000,
28:254-256.

42. Gribskov M, Robinson NL: Use of receiver operating character-
istic (ROC) analysis to evaluate sequence matching. Comput
Chem 1996, 20:25-33.

43. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994,
22(22):4673-4680.

44. Protein homology detection using string alignment kernels
[http://sunflower.kuicr.kyoto-u.ac.jp/~hiroto/project/homology.html]

45. Pavlidis P, Wapinski I, Noble WS: Support vector machine classi-
fication on the web. Bioinformatics 2004, 20:586-587.
Page 16 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16188929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16188929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201190
http://www1.cs.columbia.edu/compbio/svm-pairwise/
http://www1.cs.columbia.edu/compbio/svm-pairwise/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16317074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16317074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16718863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16718863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://sunflower.kuicr.kyoto-u.ac.jp/~hiroto/project/homology.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990457
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Kernels based on profiles and sequence alignments
	Kernels based on discrete sequence motif content

	Results and discussion
	Genetic programming for protein motif discovery
	The GPkernel uses diverse motifs
	Boosted classifiers and an extended eMOTIF kernel
	The GPkernel performs significantly better than the other motif-based methods
	The GPkernel has better overall performance than most existing methods
	Motif based classifiers for fold detection perform better with many motifs of low specificity

	Conclusion
	Methods
	Genetic programming
	Motif kernels
	Results benchmarking
	Performance measures
	Statistical tests
	Other methods

	Authors' contributions
	Additional material
	Acknowledgements
	References

