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Abstract
Background: To understand the mechanism by which a protein transmits a signal through the cell
membrane, an understanding of the flexibility of its transmembrane (TM) region is essential.
Normal Mode Analysis (NMA) has become the method of choice to investigate the slowest
motions in macromolecular systems. It has been widely used to study transmembrane channels and
pumps. It relies on the hypothesis that the vibrational normal modes having the lowest frequencies
(also named soft modes) describe the largest movements in a protein and are the ones that are
functionally relevant. In particular NMA can be used to study dynamics of TM regions, but no tool
making this approach available for non-experts, has been available so far.

Results: We developed the web-application TMM@ (TransMembrane α-helical Mobility analyzer).
It uses NMA to characterize the propensity of transmembrane α-helices to be displaced. Starting
from a structure file at the PDB format, the server computes the normal modes of the protein and
identifies which helices in the bundle are the most mobile. Each analysis is performed independently
from the others and results can be visualized using only a web browser. No additional plug-in or
software is required. For users who would like to further analyze the output data with their
favourite software, raw results can also be downloaded.

Conclusion: We built a novel and unique tool, TMM@, to study the mobility of transmembrane
α-helices. The tool can be applied to for example membrane transporters and provides biologists
studying transmembrane proteins with an approach to investigate which α-helices are likely to
undergo the largest displacements, and hence which helices are most likely to be involved in the
transportation of molecules in and out of the cell.

I. Background
α-helical transmembrane (TM) proteins represent approx-
imately 20–30% of all open reading-frames in the
genome of complex organisms. They are involved in
many biological processes such as sight, smell, muscle
contraction, photosynthesis, etc [1]. Their signalling func-

tion is most often achieved by movements of the helices
constituting the transmembrane bundle; the movements
can be of different nature, involving the whole bundle like
in the case of the mechanosensitive channel [2] or indi-
vidual helices displacements such as those accomplished
by the Ca-ATPase to transport calcium ions through the
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sarcoplasmic reticulum membrane [3]. Even though the
structural changes involved are now pretty well under-
stood for these two proteins, there are still many for which
the available structural information is not sufficient to
understand the mechanism(s) by which signals are trans-
mitted along the transmembrane region.

Molecular modeling is the approach of choice to study
protein dynamics. Molecular Dynamics (MD) is perhaps
the most widely used technique but it is computer
demanding and simulations of slow protein dynamics
still take months even on high-performance computers.
Approximate Normal Mode Analysis (NMA) is the
method of choice to investigate the slowest motions in
macromolecular systems [4]. Because of its very modest
requirements in terms of computer power, it is especially
useful for large biomolecular assemblies. It has been
shown for many proteins that the vibrational normal
modes having the lowest frequencies describe the largest
movements in a protein and are the ones that are func-
tionally relevant [4-9]. In recent years, it has become avail-
able to non-specialists thanks to the development of
several web applications enabling traditional NMA
approaches [10-15] for the study of large amplitude
movements of protein domains.

NMA has proven useful in identifying mobile helices in
TM bundles and describing, for example, the structural
modifications accompanying the transport of calcium by
the Ca-ATPase or the opening/closing mechanism of the
mechanosensitive channel (MscL) [14,16,17]. Here we
present a novel unique web application, the TransMem-
brane α-helical Movement Analyzer (TMM@) that ana-
lyzes the mobility of α-helices in transmembrane bundles.
TMM@ performs a calculation of the normal modes and
analyzes the displacement of the TM α-helices by calculat-
ing the overlap between the modes and displacement vec-
tors describing movements with relevance to the transport
function. The outcome is a ranking of the TM helices
according to their mobility. For proteins where it is
believed that the transport function involves helices
movements, the characterization of their mobility will
help elucidating the way the signal is transmitted through
the cell membrane [18].

II. Implementation
The architecture of TMM@ is similar to that of WEBnm@
[13]. The web-interface is written using the DTML lan-
guage of the Zope [19] webserver. The analysis core, writ-
ten in Python, runs under the BIAZ application server
[20]. The calculation of the normal modes and the analy-
sis of the displacements of the helices are implemented in
Python and make extensive use of MMTK [21]. The nor-
mal modes are calculated on our server (AMD Opteron, 2
core, 2.4 Ghz, 8GB ram). The calculation of the whole set

of normal modes for a protein of 1000 residues (i.e. 3000
modes) is performed in about 10 minutes. Overlap plots
are generated using the R [22] package and the Rpy library
[23]. We have embedded Jmol [24], an interactive molec-
ular viewer (Java applet), into the web page to visualize
the protein. VMD [25] (1.8.1) is used to produce VMD
state files which can be downloaded if a more detailed vis-
ualization is preferred.

1. Normal modes calculations
A normal mode analysis (NMA) consists of the diagonal-
ization of the matrix of the second derivatives of the
energy with respect to the displacements of the atoms, in
mass-weighted coordinates (Hessian matrix). The eigen-
vectors of the Hessian matrix are the normal modes, and
the associated eigenvalues are the squares of the associ-
ated frequencies. We use the approximate normal modes
calculation method developed by Hinsen [26] and imple-
mented in the MMTK package [21]. This method repre-
sents the low-frequency domain motions very well at
negligible computational cost. The force field used has
been described in reference [27]. It uses only the Cα atoms
of the protein; each atom is assigned the weight of the
whole residue it represents.

Briefly, the functional form of the force field is

V (r) is the harmonic pair potential describing the interac-
tion between the Cα atoms:

where  is the pair distance vector (Ri - Rj) in the input

configuration and k is the pair force constant:

2. Identification of trans-membrane α-helices bundle
TMM@ uses DSSP [28] and its own filter algorithm to
produce a list of all α-helices present in the submitted pro-
tein structure and to identify the TM bundle. The filter
algorithm makes use of the following structural proper-
ties: helix length, distance between helices, hydrophobic-
ity, and the angle between helices. As the filter algorithm
is based on empirical parameters, we recommend that
each user review and correct if necessary the list suggested
by TMM@.
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3. Defining α-helical mobility
The projection of a normal mode vector onto a displace-
ment vector defines the contribution of the normal mode
to the given displacement. In TMM@ we define four dif-
ferent movements of relevance for the transport function:
(i) rotation and (ii) translation of individual helices
around and along their axis, respectively, (iii) slide of the
α-helices perpendicular to the helix axis towards/away
from the centre of the bundle, and (iv) tilt of helices per-
pendicular to the helix axis away from the centre of bun-
dle, and (v) rotation of the helices around the bundle axis.
The axis of a α-helix is defined as the principal axis of iner-
tia of the Cα-atoms of the amino acids forming the helix,
the axis of the bundle is defined as the principal axis of
inertia of the Cα atoms of all helices in the bundle. The
rotation vector on each Cα-atom of the α-helix is calcu-
lated as the cross-product between a unit vector collinear
to the helix axis and the distance vector between the Cα-
atom and the centre of mass of the α-helix. The translation
vectors of the α-helices have a component for each Cα-
atom, collinear to the axis. The rotation of the bundle is
defined by the cross product between the axis of the bun-
dle and the distance vector between the bundle centre and
the helix centre. The slide vector is the cross product
between the bundle rotation vector and the helix axis. The
tilt vector is calculated in the same way as the slide vector,
but with decreasing magnitude for residues closer to the
centre of the helix, and opposite direction on the other
side of the centre. Hence, we tilt the helix around the cen-
tre of the helix, directly away and towards the bundle axis.

The projections are defined by

pi = d·ei (4)

where ei is the normal mode vector of mode i, and d is the
displacement vector (i.e. rotation, translation, slide or tilt
of individual helices, bundle rotation). This satisfies the
relation

because the normal mode vectors form a basis of configu-
ration space (N is the number of atoms). Thus pi

2 is inter-
preted as the contribution of mode i to the motion
described by d. For each helix, the calculation of the
cumulative overlap of one given displacement vector and
all modes thus yields a curve that increases from 0 to 1 (y
axis) when it is computed over all modes (on the x axis).
The modes are ranked following increasing frequencies.
Frequency is inversely proportional to amplitude. If α-
helix H1 shows a plot (e.g. grey dotted line on Fig. 1) that
reaches an asymptotic behaviour for fewer modes than the
plot of another helix H2 (e.g. black plain line on Fig. 1), it

means that the movement of H1 following d is of higher
amplitude than H2 following d. As a consequence H1 is
considered to be more mobile than H2. This is illustrated
on Figure 1 where d is the rotation of each helix around
its own axis.

Song et al[29] recently described a new method to evalu-
ate the overlap between a set of normal modes and a given
transconformation. They point out that the global confor-
mation displacement is a finite motion, while the normal
mode motions are infinitesimal motions. Therefore, for
large conformational difference, the global direction may
have little to do with the initial direction. They thus pro-
pose to use an infinitesimal version of the transconforma-
tion instead of the global transconformation, and show
that it is more reliable than the usual difference vector,
especially when the displacement is large. However, our
program is meant to evaluate the contribution of the
modes to helices displacements that we define ourselves,
using only one structure. We thus avoid the problems
mentioned by Song et al.

III. Results and Discussion
TMM@ can be used by anybody with access to an internet
browser; all results are presented within the webpages of
TMM@ and no additional programs are needed on the
computer of the user. The user starts by defining which
structure is to be analyzed; from the main page, he/she is
offered the possibility to upload his/her own protein
structure file (in the Protein Data Bank format) or specify
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Cumulative squared overlapFigure 1
Cumulative squared overlap. Example plot for the rota-
tion of two helices (named H1 and H2) of the calcium pump 
around their own axis.
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a PDB code (a local copy of the PDB database is main-
tained on our server). A third field allows the user to enter
a job ID to continue working on a previously started cal-
culation. Pressing the submit button will launch the calcu-
lation of the normal modes. Then TMM@ identifies all α-
helices present in the protein and lists them on the next

page where it also suggests which ones are TM helices. The
user is offered the possibility to correct the definition of
the TM α-helices with the aid of a Jmol applet. Alterna-
tively the user can download a vmd state file [25] for a
more detailed visualization of the predicted TM helices.
For each TM helix in the bundle approved by the user,

Snapshots of an example calculation on the E1Ca form the SERCA I Ca-ATPase (1su4)Figure 2
Snapshots of an example calculation on the E1Ca form the SERCA I Ca-ATPase (1su4). a. The main page of 
TMM@ is a form where users can input a structure file in the PDB format. b. Identification of the TM α-helices (Cf. Table 1). 
c. Overview of the results of the overlap analyses. The user can download either ready-made plots (pdf or png formats) or an 
archive containing all the raw data and draw his own plots. d. The overlap plot for the rotation displacement of each helix 
around its own axis.
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TMM@ defines the displacement vectors and calculates
the overlap between each of them and the set of normal
modes. The overlaps are then plotted using the R package
and the Rpy library. The cumulative squared overlaps are
plotted against mode numbers, four plots are drawn

(available in the PDF and PNG formats); one for each type
of displacement. In addition, the user can retrieve the raw
results in a text file. Each curve on the plot corresponds to
a TM α-helix, which is identified with a unique identifier,
colour and line type. Displaying all helices on the same

Cumulative overlap for the helices of MscLFigure 3
Cumulative overlap for the helices of MscL. Plots for the rotation (a) and translation (b) displacements of each helix 
around and along its own axis, respectively. Overlap (c) and cumulative overlap (d) of the rotation of the TM bundle around its 
axis.
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plot helps comparing their mobility. It is reasonable to
believe that the most mobile helices will be involved in
the structural modifications accompanying, for example,
the transport of a molecule or ion through a tight TM bun-
dle. In many cases, the transport function is indeed a
dynamical process during which the protein undergoes
structural rearrangements.

We have tested TMM@ on more than 20 transmembrane
proteins taken from the PDB, and representing different
families. In what follows, we describe two examples and
use them to illustrate the different steps performed by
TMM@: the SERCA1 calcium ATPase and the mechano-
sensitive channel (MscL). Snapshots of the application are
given in Figure 2 and Figure 3, respectively. The calcium
pump (Ca-ATPase) transports calcium from the cytoplas-
mic side (outside cell) to the lumenal side (inside cell).
There is however no obvious channel in the protein lead-
ing to the lumenal side and it has been shown that the ion
transport implies movements of the α-helices. After
uploading the x-ray structure (1su4) of the E1Ca form of
Ca-ATPase (Figure 2a) the normal modes will be com-
puted. The filter algorithm outputs a list of 45 α-helices,
in which 13 of these are suggested to be in the TM region
(Figure 2b). However, since we know that only 10 of them
are TM helices, we wish to correct the definition given by
TMM@. The Jmol applet provided on the page aids in this
work. The predicted TM helices of the Ca-ATPase are listed
in Table 1. The next step is to submit the list of TM helices
so that the overlap calculation will be performed, result-
ing in 5 plots (Figure 2c and 2d) described above. The
overlap plot for the rotation of each helix around its indi-
vidual axis (Figure 2d) shows that less than 300 modes are
enough to describe 60% of the rotation of helices 3, 4 and
9 (M1-M3). Similarly, 60% of the rotation of helices 41
and 43 (M9 and M10) can be described with only 300

modes. Conversely, over 600 modes are needed to
describe 60% of the rotation for helices 12, 31, 32, 34, 38
(M4 to M8). This means that helices number M1 to M3
can undergo larger amplitude displacements than helices
M4 to M8. This leads to the hypothesis that they might
play a role in the uptake/release of calcium ions since it is
known that the ion transport requires displacements of
the TM α-helices. This result is in agreement with the
available x-ray structures of the calcium pump and in par-
ticular ref. [30] where Toyoshima et al. describe move-
ments of M1 to M3, and in particular that M2 and M1 are
pulled towards the cytoplasm by one and two turns of a α-
helix, respectively. These complex movements are a com-
bination of the rotation and translation around and along
α-helical axes that TMM@ investigates opportunely.

Figure 3 (a–d) shows the resulting overlap plots for MscL
(1msl). As expected, our calculations reproduce the sym-
metry of the molecule, i.e. all M2 helices have the same
mobility in rotation and translation (Fig. 3a and 3b)
around/along their own axis, the same applies to M1 hel-
ices. Therefore the plots show superimposed lines for
symmetrically equivalent helices. For a bundle without
that type of symmetry, like in the Ca-ATPase which con-
tains 10 TM helices, the corresponding plots should con-
tain 10 distinct lines. TMM@ also identifies the iris-like
movement described by others [2,16]. The plots on Figure
3c and 3d indeed reveal that a few low-frequency modes
(modes #1, #7 and #20) describe a rotation of the helices
around the bundle axis. The same type of movement was
identified for the calcium pump (Figure 2c and ref. [18]).

IV. Conclusion
We have successfully implemented and developed a
unique tool for analysing the mobility of α-helical TM
segments in proteins. We have tested it on a number of

Table 1: 

Helix id (TMM@) first aa – last aa Correction by user Name

3 55–79 48–79 M1
4 86–118 - M2
9 248–274 - M3
12 290–307 289–329 M4
17 440–453 Not in TM bundle
25 629–640 Not in TM bundle
31 740–782 - M5
32 789–800 788–808 M6
34 831–857 - M7
38 894–912 - M8
41 931–950 - M9
43 964–975 963–992 M10
44 976–992 Into helix 43

α-helices of the SERCA1 Ca-ATPase. List of α-helices identified by TMM@ as being transmembrane helices (Cf. Figure 2b); first and last 
residues are given in the second column. Corrections to be made by the user are listed in the third column. Correspondence with the usual 
nomenclature for the calcium pump (M1 to M10) is given in the fourth column.
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TM α-helical proteins and have compared the results,
whenever possible, with existing structural data. In these
cases, the helices that TMM@ identifies as being the most
mobile are known experimentally to be involved in the
protein function. We thus believe that this approach has a
strong predictive power.

Using normal mode calculations as the basis of the tool
makes it reliable, robust and fast. Providing the service in
a user friendly web interface will make it easy to use, even
for non-specialists. It thus provides biologists studying
transmembrane proteins a unique tool for determining
which helices undergo the largest displacements, and
hence which might be involved in the transportation of
molecules in and out of the cell. Considering that trans-
membrane proteins are of vital importance for cell life,
TMM@ might be a tool with great value. TMM@ is avail-
able from the website of the Norwegian Bioinformatics
Platform http://www.bioinfo.no/tools/tmma.

Availability and requirements
Project name: TMM@

Project home page: http://www.bioinfo.no/tools/tmma

Operating system: Platform independent; tested on Win-
dows XP (Firefox 2.0, MS Explorer 6.0 and 7.0), Mac OSX
(Firefox 2.0, Safari 2.0), CentOS and Ubuntu Linux (Fire-
fox 2.0, Opera 9.0)

Programming language: Python

Other requirements: Java
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