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Abstract
Background: Interpretation of transcriptomic data is usually made through a "standard" approach
which consists in clustering the genes according to their expression patterns and exploiting Gene
Ontology (GO) annotations within each expression cluster. This approach makes it difficult to
underline functional relationships between gene products that belong to different expression
clusters. To address this issue, we propose a transversal analysis that aims to predict functional
networks based on a combination of GO processes and data expression.

Results: The transversal approach presented in this paper consists in computing the semantic
similarity between gene products in a Vector Space Model. Through a weighting scheme over the
annotations, we take into account the representativity of the terms that annotate a gene product.
Comparing annotation vectors results in a matrix of gene product similarities. Combined with
expression data, the matrix is displayed as a set of functional gene networks. The transversal
approach was applied to 186 genes related to the enterocyte differentiation stages. This approach
resulted in 18 functional networks proved to be biologically relevant. These results were compared
with those obtained through a standard approach and with an approach based on information
content similarity.

Conclusion: Complementary to the standard approach, the transversal approach offers new
insight into the cellular mechanisms and reveals new research hypotheses by combining gene
product networks based on semantic similarity, and data expression.

Background
Interpretation of data resulting from high-throughput
analyses is a challenge in bioinformatics. Two major
information sources are usually used to make this inter-
pretation: expression data and biological annotations
mainly based on the Gene Ontology™ (GO) [1]. Accord-
ing to Eisen et al., expression data organize genes into

functional categories [2]. Genes that are expressed
together share common functions. Therefore, the interpre-
tation of microarray experimental data is usually per-
formed through the following "standard" approach: 1)
the genes are organized into clusters depending on their
differential expression pattern and, 2) for each cluster, the
main objective is to translate the list of genes into a func-
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tional profile able to offer insight into the cellular mecha-
nisms relevant in the given condition [3]. Several tools
have been proposed for ontological analysis of gene
expression data (for review see [4]). Among them, follow-
ing the standard approach used to interpret expression
data, Gibbons and Roth proposed to judge the quality of
the expression-based clustering methods using GO terms
[5]. However, as argued in [6,7], complex biological func-
tions emerge from interactions between gene products.
Integrated systems, defined as the assembling of individ-
ual gene products in such complexes, can collaborate in
broader biological processes. For example, in Bacillus sub-
tilis, an ABC transporter and a two-component regulatory
system, respectively involved in transport and signal
transduction, collaborate into a same biological process:
antibiotic resistance [8]. Therefore, if different functions
can be involved in a common biological process, we can
make the assumption that genes can be differentially
expressed in such a process. Consequently, the standard
approach makes it difficult to underline functional rela-
tionships between gene products when they belong to dif-
ferent expression clusters.

Complementary to the standard approach, we define a
transversal analysis that aims to predict functional net-
works of gene products based on the biological processes
they belong to. Simultaneously, genes involved in such
networks are clustered according to their expression pat-
terns. The combined visualization of functional networks
and expression clusters is expected to offer new insight on
the roles of the gene products. We propose to use the
ontological-based similarity to predict functional gene
product networks. Based on the GO term similarity, the
semantic similarity between gene products consists in the
comparison of the different terms assigned to a pair of
gene products. Typically, two approaches can be per-
formed to compute the term similarity into hierarchies.
The path based method relies on the edge-counting
approach defined in [9]. The shorter the path one node to
the other, the more similar they are. However, the seman-
tic distances between any two adjacent nodes are not nec-
essarily equal. Indeed, the distance shrinks as one
descends the hierarchy, since differentiation is based on
finer and finer details. The information content method is
based on Lin, Jiang and Resnik measures [10-12]. This
approach relies on the frequency of a concept in a large
corpus. Based on this approach, ongoing works propose
to establish functional relationships between gene prod-
ucts [13-16]. As discussed in [17], the information content
approach tends to give better results for the term similari-
ties than the path based method. However, applied to the
gene similarity, it does not always meaningfully estimate
similarity between genes because it does not take into
account the hierarchy organizing terms (e.g. [18]).

The transversal approach presented in this paper consists
in computing the semantic similarity between gene prod-
ucts in a Vector Space Model [19]. Gene products are
described as vectors of GO terms. The major contribution
of this approach is the possibility of using a weighting
scheme over the annotations. The comparison of such
annotation vectors results in a matrix of gene similarity.
Combined with expression data, the matrix is displayed as
a set of functional gene networks. Each gene-gene relation
is associated to the shared annotations. Hierarchy issues
are addressed by an 1) a priori selection of terms according
to a pre-determined level of abstraction and 2) a posteriori
refinement of data interpretation to focus on a particular
biological process. The transversal analysis was applied to
a set of differentially expressed genes related to enterocyte
differentiation. These genes were previously studied by a
standard approach [20].

This paper is organized as follows. First, biological results
and their comparison with the KEGG pathways are pre-
sented and discussed, then the transversal analysis meth-
odology is detailed.

Results
Overview of the transversal approach
The standard approach to interpret transcriptomic data
aims to retrieve the biological processes mainly involved
in a specific condition (for example, mitosis, oncogenesis
and proliferation processes are involved in cancer). For
this purpose, a collection of differentially expressed genes
(up-regulated or down-regulated genes) is characterized
by a set of ranked GO terms. Complementary to this
approach, the transversal analysis exploits the GO term
similarity to cluster the gene products. The behaviors of
the resulting networks are analyzed according to the gene
expression. Briefly, our method proceeds as follows (see
Figure 1):

- starting with a collection of gene products that have been
clustered according to their expression with an expression
clustering-based method;

- selection of GO terms associated with each gene product
according to an a priori level of abstraction (apLev) (Figure
1a);

- construction of a weighted term vector for each gene
product (Figure 1b);

- pairwise comparison of these vectors in a Vector Space
Model. This comparison results in a half-matrix of gene
product similarities (Figure 1c);

- selection of a similarity threshold to obtain the pairs of
gene products that have a high degree of similarity;
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- displaying the resulting pairs of gene products associated
with their corresponding expression clusters (Figure 1d).
A gene product pair is displayed as two nodes linked by an
edge. It results in a set of "transversal networks". The most
frequent terms are used to describe each network as a bio-
logical profile (Figure 1e).

At this step, the resulting networks are biologically inter-
preted. This analysis can be refined by performing several
runs at various levels of abstraction (named a posteriori
levels). Gene products that are associated with finer-
grained GO terms are then grouped together under more
general categories.

A detailed description of the methodology is provided in
the Methods section.

Dataset
The transversal analysis was applied to a set of genes
related to enterocyte differentiation. These genes were pre-
viously studied by a standard approach [20]. In this paper,
we refer to this set of genes as the Bedrine-Ferran gene set
(BF set). As CaCo-2 cells spontaneously differentiate in
enterocytes, this cell line was used to characterize genes
whose expression varies during differentiation by means
of microarray experiments. The authors performed a clus-
tering with Self-organized Maps (see Methods section)
and the resulting expression clusters are used in our
approach combined with the transversal networks. These

Transversal analysis stepsFigure 1
Transversal analysis steps. a) The GO terms are selected according to an a priori level of abstraction, b) From these 
selected terms, term vectors are obtained for each gene products through the application of the idf weighting scheme, c) The 
comparison of these vectors in a Vector Space Model results in a matrix of similarity, d) Standard expression clustering based 
methods result in the attribution of each gene products to an expression cluster (up-regulated cluster, down-regulated cluster 
and invariant cluster i.e. constant expression cluster), e) Based on higher pairwise similarity, the matrix of similarity is displayed 
as a biological network where the gene expression clustering corresponds to the shape and color of each node. Up-regulated 
and Down-regulated genes are represented respectively as red hexagons and green boxes.
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experiments led to the identification of 186 significant
genes through the in vitro differentiation process: 50 were
down-regulated, 80 up-regulated and 56 were "invariant",
i.e. their expression remained constant during the differ-
entiation stages. We have applied the transversal analysis
to the BF set. 187 distinct Biological Process terms related
to 119 gene products were extracted (the 67 remaining
gene products were not associated with any GO Biological
Process term). As these terms are located at various hierar-
chy depths, we compared the different levels of abstrac-
tion in order to compute, at the most appropriate level,
the semantic similarity between the gene products.

a priori level of abstraction
All the ancestors of the 187 terms are retrieved. The aug-
mented set of terms corresponds to 374 terms. For each
term, a level (Lev) is calculated using the conceptual dis-
tance metric approach presented in the Methods section.
Terms and consequently gene products are clustered into
ten classes, each class corresponding to a Lev interval e.g.,
the first interva1 corresponds to [0–1.4]. As illustrated in
Figure 2, the number of annotated gene products
decreases for higher values of Lev. According to our
method, an a priori level interval (apLev) is computed; it
corresponds to the fifth level interval which contains 89
terms associated to 105 gene products. The fifth interval is
then selected to compute the gene product similarity.

Computing semantic similarity
VSM is applied to the BF gene products that are character-
ized at the fifth GO interval. 105 vectors of GO terms are
compared pairwise. From the resulting half-matrix of sim-
ilarity, we have to select a similarity threshold from which
the gene pairs can be displayed in order to obtain the most
relevant networks. This selection must take into account
the distribution of the networks and the number of gene
products per network (see Methods Section). Therefore,
we compared the number of networks and the average
number of genes per network for different similarity
thresholds (see Figure 3). By combining these criteria, we
have selected a threshold of .65. We obtain 18 functional
networks corresponding to 79 distinct gene products
(66% of the BF set). Each network contains 2 to 12 nodes
(average of 4.4).

All the networks are functionally homogeneous, i.e. the
shared annotations are consistent and the presence of the
different gene products in each network has been vali-
dated by an expert (See additional file 1: the transversal
networks and their biological profiles). Within a given
network, some genes are overexpressed, other genes are
underexpressed or have an invariant expression (Table 1).
All the resulting networks can be visualised on our website
[21]. To illustrate our results, we have shown in Figure 4
three networks that have different topologies (e.g. clique

or subnetwork definition) and provide novel biological
results (such as the finding of a potential new pathway in
the enterocyte):

Network 1 is depicted in Figure 4a. Its biological profile is
protein metabolism/cellular biosynthesis. This network
corresponds to a clique and, as described in the Methods
section, this topology can be associated to a robust biolog-
ical network. Three translation initiation factors (EIF4A2,
EIF3S2, and EIF3S8), seven ribosomal proteins (RPS7,
RPL13A, RPL41, RPL35A, RPL39, RPS3, and RPL7A) and
two gene products involved in protein glycosylation
(ALG8 and MAN2A1) are involved in this network. With
three stages of the protein biosynthesis process – transla-
tion initiation, translation and post-translational modifi-
cation – this network is functionally homogeneous. One
might expect, in cellular proliferation, an overexpression
of the genes involved in protein biosynthesis. While this
is observed for the genes involved in translation initia-
tion, the genes encoding ribosomal proteins are either
invariant or down regulated. This down regulation pattern
might be related to additional functions (such as tran-
scription, RNA processing, DNA repair, inflammation) as
argued in [22,23]. Similarly to translation, initiation of
the protein glycosylation in the endoplasmic reticulum
might be activated in cell proliferation (down-regulation
of ALG8), whereas the later glycosylation steps occurring
in the Golgi apparatus might be invariant along the cell
differenciation (invariant expression of MAN2A1).

Network 2 is related to the amine metabolism biological
profile (Figure 4b). Eight gene products involved in
arginine metabolism (GLS, ASS, CPS1 and GLUL), creat-
ine biosynthesis (GATM), polyamine biosynthesis
(ODC1 and SMS), and Selenoaminoacid metabolism
(SEPHS2) are associated in this network. This network is
functionally homogeneous. Its heterogeneous expression
profile suggests that a specific biochemical pathway, lead-
ing to the creatine precursor (Guanidinoacetate), is acti-
vated during differentiation stages (up-regulation of GLS,
GATM, ASS and CPS1), while the polyamine biosynthesis
is repressed (down-regulation of ODC1 and SMS). For
instance, it was proved that only the arginine metabolism
is performed in the small intestine [24]. Through this net-
work, a potential NH3-detoxification role could be attrib-
uted to the enterocyte. The invariant expression of GLUL
is explained by its role – e.g. glutamine synthetase – that
is opposite to the GLS role – glutaminase – in the amine
metabolism. Moreover, the GLUL expression is in accord-
ance with the need of glutamate for complete CaCo-2 cell
differentiation [25].

Network 3 is divided into two subnetworks connected by
a specific gene product (MBTPS1) involved in both (Fig-
ure. 4c). The first subnetwork, lipid metabolism, is func-
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tionally homogeneous with nine gene products
characterizing the CaCo-2 cells, models for intestinal lipo-
protein synthesis and secretion [26]. Four apolipopro-
teins involved in lipid transport (APOA1, APOB, APOC
and APOM) and five gene products involved in choles-
terol metabolism (MBTPS1, HMGCS1, ACAS2), androgen
metabolism (UGT2B17) and arachidonic acid metabo-
lism (AKR1C3) are gathered through this subnetwork.
Seven genes belonging to lipid metabolism appear to be
up-regulated, due to the role of diffentiated enterocytes
that increase lipid uptake, metabolism and packaging
[27]. Conversely, HMGCS1, key enzyme of the cholesterol
synthesis, is down-regulated during the differentiation

stage. As argued in [28], this enzyme is transcriptionally
repressed by an increase of cholesterol in the cell.
MBTPS1, through a specific degradation role, is also
involved in the cholesterol biosynthesis [29]. The second
subnetwork is related to cellular catabolism with three
gene products involved in ubiquitine conjugaison
(UBE2D1), digestion (MEP1A), and apoptosis (RNF128).
MBTPS1, with its degradation role in cholesterol metabo-
lism, is involved in the two subnetworks and represents
the only connection between them. All the gene products
share a degradation function. Therefore, this subnetwork
could be considered as functionally homogeneous
according to the catabolism profile. The heterogeneity in
gene expression is due to the wide coverage of catabolism.
MBTPS1, with its specific role in cholesterol metabolism,
represents the only connection between the two subnet-
works.

a posteriori level of abstraction
Among the gene products belonging to the networks
obtained in the previous step, some may be involved in a
common broader biological process. For example, apoli-
poproteins, which can be involved in lipid transport, are
gathered in the lipid metabolism network (Figure 4c). All
would be related to transport along with ion transport
gene products (Figure 1e) in a wider network. Therefore,
to highlight broader transversal networks, the transversal
analysis was applied to GO terms that stand higher in GO
hierarchy. The level that is selected is then named a poste-
riori level. The transversal analysis performed with fourth
level terms and a threshold of .80 results in 13 biological
networks (representing 71 gene products). Among them,
a network of 26 gene products consists of two subnet-
works of 13 gene products. The first one corresponds to
Biosynthesis and the second one to Transport (Figure 5).
Only one edge links these subnetworks. Transport genes
are mainly up-regulated. According to Bedrine-Ferran et
al. [20], when CaCo-2 cells reach confluence and differen-
tiate, they acquire an enterocyte-like phenotype and, as
such, they develop the capacity to efficiently transport
water, ions, lipids and amino acids.

KEGG comparison
In order to evaluate the resulting transversal networks, we
compared them with the KEGG PATHWAY database
which is the reference database as regards the biochemical
pathways (including most of the known metabolic path-
ways and some of the regulatory pathways)[30]. KEGG
pathways are structured according to a three-level hierar-
chy including six major root classes: Metabolism, Genetic
Information Processing, Environmental Information Process-
ing, Cellular Processes, Human Diseases and Drug Develop-
ment. The third level of this hierarchy corresponds to the
KEGG pathways. A relation between a third level term and
a gene product in the KEGG pathway database is consid-

Selection of a similarity thresholdFigure 3
Selection of a similarity threshold. Number of networks 
(red curve) and average number of gene products per net-
work. (blue curve) according to each threshold. The combi-
nation of the criteria of selection, i.e. high degree of similarity 
and high number of gene products per networks, leads us to 
choose a threshold of .65.
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ered as a KEGG annotation. The second level terms corre-
spond to broader biological pathways.

A KEGG local relational database was built from the hier-
archy available from the KEGG website. The database was
used for querying and evaluating the transversal networks.
The comparison was manually done.

Each transversal network was compared with the KEGG
pathways. Among the 79 gene products resulting from the
transversal analysis, 43 are annotated with KEGG. These
gene products are associated with 49 pathways. Among
the 18 transversal networks, 10 can be evaluated, i.e. they
are composed of at least two gene products present in

KEGG. Six transversal networks were consistent with
KEGG: in four cases, KEGG annotations are identical or
correspond to sibling KEGG pathways (i.e. pathways are
subsumed by the same two-level term); for one network,
KEGG annotations correspond to closely related two-level
terms (Amino acid metabolism/Metabolism of others
amino acids); in one case, KEGG annotations are different
but reflect the composition of the networks into subnet-
works (in network 3, gene products are annotated with
Lipid metabolism and Folding, Sorting and Degradation).

The four remaining networks are heterogenous. However,
from a biological point of view, the KEGG annotations are
complementary. For example, the network 1 is associated

Results of transversal analysisFigure 4
Results of transversal analysis. (a) Protein biosynthesis network. While this network is a complete graph, for more clear-
ness, only the highest similarity links are represented. (b) Amine metabolism network. (c) Lipid metabolism and Catabolism. 
Up-regulated, Down-regulated and invariant genes are represented respectively as red hexagons, green boxes and yellow 
ellipses.

(a)

(b) (c)

Table 1: Biological profiles and gene expression related to the networks of more than two gene products

Number of genes Biological profile %Down %Up %Inv

12 cellular macromolecule metabolism; protein metabolism; macromolecule biosynthesis; cellular biosynthesis 33 25 42
12 cellular lipid metabolism; lipid metabolism; cellular catabolism 17 66 17
10 organelle organization and biogenesis; DNA metabolism 70 10 20
8 amine metabolism; amino acid and derivative metabolism 25 62.5 12.5
5 cellular macromolecule metabolism; protein metabolism 60 0 40
4 ion transport 25 75 0
4 cellular catabolism; generation of precursor metabolites and energy; carbohydrate metabolism 50 0 50
3 RNA metabolism 33 33 33
3 intracellular transport; protein transport; establishment of protein localization 75 0 25
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with Translation, Transcription and Glycan Biosynthesis and
metabolism. While the Translation and the Transcription
derive from Genetic Information Processing, the last one cor-
responds to Metabolism although this pathway is related to
the post-translation modifications.

An extract of the KEGG comparison is given in the Table
2. All the comparison results are given in the supplemen-
tary file 2: KEGG comparison.

Discussion
This paper presents a new approach to microarray data
interpretation which combines gene product interaction
networks with data expression and offers new insight into
the cellular mechanisms. The biological networks
obtained by this approach rely on ontology-based similar-
ity which is computed through the VSM. We first pre-
sented a preliminary study of this approach in [31] and we
have enriched it with the definition of a conceptual dis-
tance metric. This improvement of the path approach is
used to select the GO Biological Process terms in each
annotation vector. The transversal analysis was applied to
a collection of genes related to the enterocyte differentia-
tion. 18 functional networks involving 79 gene products
were obtained. The 26 unrepresented gene products

present a similarity degree that is under the selected

threshold. To measure the significance of the gene prod-
uct networks resulting from the transversal analysis, recall
and precision were calculated by comparing the gene
product classification resulting from our method against a
gold standard: the KEGG pathway database. We estimated
the precision to be 81.8% and the recall to be 83.7%.
Moreover, the "false positives" were judged biological rel-
evant by the experts, proving that our method provides
the biologists with valuable information. The "false nega-
tives" were due to the incompleteness of the Gene Ontol-
ogy annotation. Furthermore, the experts considered the
resulting networks to be functionally homogeneous. The
gene expression differs within each network (Table 1),
highlighting that some specific processes are activated
under some conditions. For example, network 2 suggests
a new potential pathway related to amine metabolism
that could be activated during the differentiation stage.
This result emphasizes the contribution of the transversal
analysis to suggest new research hypotheses. Furthermore,
while the transversal network 1 (protein biosynthesis)
presents an expression heterogeneity which is biologically
relevant, the standard approach did not highlight this
expression fluctuation during the cellular differentiation
process (See additional file 3: Standard approach compar-
ison). The graphviz software is used to visualize the result-

ing networks [32]. Coupling this software with web

Table 2: KEGG results for the three networks

Transversal analysis network Gene products KEGG classification

Network 1
Protein metabolism; Cellular biosynthesis

RPL13A-RPL7A-RPL35A-RPL39-RPL41-RPS3-RPS7
EIF4A2-EIF3S2-EIF3S8

ALG8-MAN2A1

Translation
Transcription
Glycan Biosynthesis and metabolism

Network 2
Amine metabolism

GLS-GLUL-CPS1-GATM-ASS-ODC1-SMS-SEPHS2 Amino Acid Metabolism Metabolism of Other Amino 
Acids

Network 3
Lipid metabolism; Cellular catabolism

HMGCS1-AKR1C3-UGT2B1-ACAS2
UBE2D1

Lipid Metabolism
Folding, Sorting and Degradation

Transport network resulting from an a posteriori level of abstraction run of the transversal analysisFigure 5
Transport network resulting from an a posteriori level of abstraction run of the transversal analysis.

Metabolism subnetwork
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technology assists the biological interpretation of trans-
versal networks by associating each node (gene product)
to its GO annotations and to the GO terms that are shared
by all the gene products (networks are presented on a web
page where the annotations are reachable by clicking on
each node). By using different values for GO interval and
threshold, the visualization of the networks is kept reada-
ble even if the number of studied gene products increases.
While our method aims to retrieve all the networks related
to dedicated microarrays, different strategies can be
achieved in the case of pangenomic microarrays. For
example, the method can be used to retrieve specific net-
works associated to fine-grained terms (by increasing the
Lev parameter). Moreover, a first run can select the net-
works of interest which can be refined by a second run.

The networks obtained by our method must contain
enough gene products to cover biological pathways. One
criterion used to select the similarity threshold is the
number of gene products per network. However, even
two-gene networks may be biologically relevant. For
example, the opposite expression of the two genes
involved in the network 15 (SLC2A3-down and SLC2A5-
up in additional file 1) is discussed in [33]. Other
approaches to compute gene product similarity based on
GO have been developed, e.g. the Bioconductor system
proposes an index which is similar to the Jaccard similar-
ity coefficient used for comparing the similarity of sample
sets [34,35]. Although these approaches are useful to
obtain a preliminary analysis of a set of proteins (as it is
the case in [35]), they lack in some widespread condi-
tions, such as intensive annotation of a gene product,
intensive use of a term to annotate a set of gene products
or difference in the term granularity associated with the
gene products to be compared. Among the more complex
approaches using GO to compute gene product similarity,
Azuaje et al. proposed a method based on the maximum
inter-set similarity between terms to address the hierarchy
limitation [18]. We have compared our networks to those
obtained by the Azuaje method applied to Lin's similarity
with a threshold of .65 (selected by combining the same
criteria as for our analysis. See the Results section for the
criteria and the additional file 4 for the selection). Ration-
ale for choosing Lin's similarity was that the results vary
from 0 to 1. The comparison between the Lin's networks

and the transversal networks has shown that the transver-
sal analysis gives better results. Indeed, among the result-
ing 12 Lin's networks, two are identical to those found
through the transversal analysis and seven combine sev-
eral distinct networks, resulting in heterogeneous net-
works (Table 3, network 1) and/or incomplete ones
(Table 3, network 2). While distance based on informa-
tion content depends on literature, VSM weighting
decreases the importance of processes that are over repre-
sented in the set. Therefore, the transversal analysis
appears more discriminant (See additional file 5: Azuaje
comparison).

To support the prediction role of the transversal approach,
we take into account all the GO terms that are associated
with gene products in annotation databases whatever the
evidence codes. Indeed, taking into account only non-IEA
(not inferred from electronic annotation) codes could
result in using only 40% of the annotations provided by
the Gene Ontology Annotation database (GOA; [36]).
Therefore, we have chosen to favor a high number of bio-
logical assumptions rather than the reliability of annota-
tions. In the same way, the GO interval addresses the issue
of the various GO branch depth by selecting annotations
independently of the tree depth.

The a posteriori level of abstraction section shows the
importance of selecting the granularity to study biological
processes. To our knowledge, this granularity is not taken
into account in other approaches based on the GO seman-
tic similarity. The way to restrict GO terms in our
approach is complementary to using a GO slim [37] to
perform analysis. Indeed, while GO slims are mainly
domain-dependent, the restriction that is performed in
our approach depends on the set of terms that annotate
the gene products and their level in the GO hierarchy.

The GO annotation is remarkably useful for the mining of
functional and biological significance from large datasets,
such as microarray results [38]. However, the transversal
analysis results reflect some gaps in GO annotation data-
bases. Indeed, the network 1 (protein metabolism/cellu-
lar biosynthesis) includes some ribosomal proteins.
While some publications confirm that these gene prod-
ucts can be involved in replication, DNA repair or inflam-

Table 3: Major results with Azuaje method. Azuaje approach results in 52 gene products categorized as 12 networks from two to 14 
gene products. The first Azuaje network merges two transversal networks. The gene products belonging to the transversal network 3 
are emphasized with bold-face.

Azuaje 
network

Gene products Transversal results GO profiles

1 RPL7A-RPL39-RPL41-RPS3-RPS7-EIF4A2-EIF3S2-EIF3S8-ALG8-
MAN2A1-HMGCS1-UGT2B17-AKR1C3-ACAS2

Network 1 + Network 3 Protein metabolism; Cellular 
Biosynthesis; Lipid metabolism

2 GATM-ODC1-SMS-SEPHS2 Partial Network 2 (50%genes products missing) Amine metabolism
Page 8 of 12
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mation processes, there is no relation between these
processes and the ribosomal proteins in GOA. The type of
process itself can also cause difficulty in network interpre-
tation. Some transversal high-level processes (e.g. catabo-
lism in the network 3), gather gene products that are
involved in several processes (e.g. apoptosis or digestion
for this network).

The KEGG hierarchy is used to classify the biochemical
pathways. However, the lack of relation between the
KEGG root classes can introduce a bias. Indeed, transla-
tion and post-translation modification correspond to
independent classes in the KEGG hierarchy (Genetic
Information Processing and Metabolism). With regards to
these results, we consider using the GO relations found in
the resulting networks to enrich our KEGG local database.
While 79 gene products are represented in the 18 transver-
sal analysis networks, 43 are present in 49 KEGG path-
ways. Whereas the relative high number of pathways is
partly due to a finer granularity of their description, some
of them are not present in the GO (such as the Human
Diseases class related pathways). Therefore, we consider
taking into account the KEGG data in the transversal
approach. In addition, we will have to evaluate the rela-
tive contribution of GO and KEGG vocabularies in order
to weight the terms during the VSM step of the transversal
analysis. By adding KEGG terms, we expect to improve the
definition of the transversal networks.

Currently, we are working on an improvement of the
transversal approach by weighting the levels according to
the local density of each node as suggested in [39]. Future
work will consist in comparing and possibly merging our
approach with literature networks as described in [40].
Furthermore, we plan to consider a measure of functional
diversity, as the functional entropy discussed in [41], in
order to support the evaluation of the transversal net-
works.

Conclusion
This paper presents a new approach to microarray result
interpretation which aims to combine gene product inter-
action networks with data expression. The resulting trans-
versal networks are proved to be biologically consistent
and offer new insight into the cellular mechanisms. Fur-
thermore, the comparison with a standard approach cor-
roborates the contribution of the transversal approach
and underlines the complementarity of these two
approaches.

Two major points reflect the novelty of the methodology
developed to construct the transversal networks: the selec-
tion of an annotation level and the use of a weighting
scheme over the annotations prior to compute the seman-
tic similarity. The former point avoids the artefact due to

the arbitrary fluctuation of the GO depth and in addition
takes into account the granularity of the studied biological
processes. The latter point considers the representativity of
the annotations associated with the set of studied gene
products. The comparison with gene products clustering
derived from an approach based on information content
highlights the contribution of the transversal approach to
the construction of gene product networks. Finally, the
comparison with the use of a biological vocabulary differ-
ently structured (i.e. KEGG hierarchy) proved that using a
weighting scheme over the GO annotations and comput-
ing the similarity between gene products in a VSM consti-
tute an efficient mean to construct gene product networks
and consequently to interpret microarray results.

Methods
The GO terms are organized according to three independ-
ent hierarchies: Biological Process, Molecular Function,
and Cellular Component. The transversal analysis uses the
Gene Ontology Annotation file (GOA; [36]) to provide
assignments of GO terms to gene products. It is restricted
to terms from the Biological Process hierarchy in order to
retrieve genes functionally related to a given biological
process.

Computing gene similarities
A Vector Space Model (VSM) is used to compute similarity
between pairs of gene products. VSM are essentially used
in information retrieval for computing the similarity
between documents described as vectors of keywords.
Recently, this method has been used to identify associa-
tive relations between terms in the GO [42]. The transver-
sal analysis uses VSM to compute the similarity between
gene products described as vectors of GO terms. A gene
product is represented by a specific vector g as follows:

g = (t1, t2,..., tn)

Where ti is the numeric value that the term i takes on for
this gene product and n is the number of GO terms asso-
ciated with the set of gene products. For example, ti = 0
when there is no association between the GO term and
the gene product in GOA. Since different terms have dif-
ferent importance for a gene product, a term weight is
associated with each term. Lower weights are assigned to
less important terms. In standard VSM, a common
approach uses the idf method in which the weight of a
term is determined by the way this term occurs in the
whole document collection (inverse document fre-
quency) [43]. In the case of a gene product collection, we
consider that a term is not representative of a gene product
if it annotates most of the gene products in the collection.
The term weight (wt) is inversely proportional to the ratio
of the number of gene products annotated by the term t
Page 9 of 12
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(nt) to the total number of annotated gene products in the
collection (N):

wt= idft= logN/nt

Once the term weights are determined, a gene product is
represented by the following specific vector:

g = (w1, w2,..., wn)

Figure 1b shows an example of weighted annotation vec-
tors. A vector inner-product function can be used to com-
pute term overlap between any two gene product vectors.
When gene products are associated with numerous differ-
ent GO terms, the similarity between these gene products
is higher than expected, compared to the similarity
between gene products that are annotated by fewer GO
terms. To compensate for this effect, normalization of
term weights is used. Normalization is a way of imposing
some penalty on the term weight for high annotated gene
products. Cosine normalization is an effective normaliza-
tion technique. It corresponds to the division of each gene
product vector by its Euclidean length [44]. Let n be the
number of terms that annotate the genes in the collection,
given a pair of gene products, g1 and g2, the semantic sim-
ilarity, Sim(g1, g2), is defined as follows:

The semantic similarity between two gene products varies
from 0 (no similarity) to 1 (complete similarity). Similar-
ity is computed pairwise for all the gene products of the
collection. It results in a half-matrix of gene product sim-
ilarity. A threshold must be chosen for the inner product
in order to select the pairs of gene products that present a
high degree of similarity. This threshold has to 1) select
the pairs of genes that have a high degree of similarity, 2)
result in a high number of networks and 3) have biologi-
cal significance: each network must contain enough gene
products to offer new insight into cellular mechanisms.
Each gene product involved in the half-matrix is associ-
ated with the expression cluster it belongs to. These
expression clusters can result from : 1) an expression clus-
tering-based method that can be combined with our
transversal approach (e.g. hierarchical clustering, k-means
clustering or Self-Organized Maps (SOM) which are the
most widely used in analysis of gene-gene expression data
(for review see [45]), 2) a specific database (as Gene
Expression Omnibus; [46]), or 3) the literature.

The gene product pairs that show a degree of similarity
higher than the threshold are displayed as two nodes
linked by an edge. This results in a set of functional net-
works. We use Graphviz [32], an open source software
developed at AT&T Labs, in order to visualize these net-
works. The node shape and color correspond to the
expression cluster each gene belongs to. An edge between
two nodes is associated with the degree of similarity
between two gene products according the given threshold.
Each edge is typed by the GO terms shared by the two
gene products. A biological profile is defined for each net-
work; it corresponds to the most frequent terms typing the
edges of a network. The network interpretation is firstly
based on graph theory, for example a network is named a
clique (or complete graph) if each pair of nodes is joined
by an edge. Applied to gene products, this graph property
highlights a robust biological network. On the other
hand, the biological profiles assist the evaluation of the
resulting networks.

Conceptual distance metric
VSM considers GO terms as independent. Therefore,
when two gene products are associated with terms that are
parent and child in the GO hierarchy (e.g. ATP7B and
SLC26A3 in Figure 1a), the hierarchical relation is not
taken into account. Moreover, the depth of the GO hierar-
chy varies from 2 nodes to 15 nodes depending on the
branches. Some of the variation is inherent in different
functional families, while some may be an artefact of the
uneven contribution by different groups participating in
GO's development [47]. Therefore, considering all anno-
tations assigned to a gene product within a hierarchy can
introduce a bias when two gene products are associated to
different-level annotations. In order to address this issue,
we have taken into account multiple-level GO annota-
tions, which derive from a recursive definition of ances-
tors, all the way to the top of the hierarchy. The ancestors
of each GO term associated with a gene product are
retrieved. An annotation level is then selected to compute
semantic similarity. However, as a GO term may have
more than one parent, the level of a term may be different
depending on the path toward the top of the hierarchy. To
assign a fixed level to each GO term, we use a metrics
based on the edge-counting approach defined in [9]. In
this approach, conceptual distance is calculated by count-
ing the number of nodes, each node representing a dis-
tinct term. As proposed in [11], terms in a deeper part of
the hierarchy should be ranked closer. Based on this
assumption, we use the formula described in [48] to
assign a level value to each term. Let depth(t) be the edge
distance from the root term to the term t. r is the number
of paths from the root term to a term t and mj the number
of terms in a path j. The level of a term t, Lev(t), is defined
as follows:
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Lev values are calculated for all the GO terms associated
with the collection of gene products. The space of Lev val-
ues is divided into ten intervals. Each interval must con-
tain only one value of Lev(t) in order to avoid the
integration of hierarchical related terms in the vectors
used to compute semantic similarity. The most informa-
tive level interval has to be selected to compute the
semantic similarity between the genes. While deepest lev-
els in the hierarchy contribute to a better characterization
of gene products, each specific category does not appear to
be significant because there are only few gene products
associated with it.

Therefore, we introduce the a priori level interval (apLev)
which corresponds to the best compromise between the
number of annotated gene products and the number of
terms per level interval. apLev is computed during a first
run of the transversal analysis. For a level interval j, let Tj
and Gj be respectively, the number of terms and the
number of gene products. We use the normalized Tj as a
weighting coefficient for the Gj. The a priori level interval
is the one for which the weighted Gj is maximum:

The transversal analysis can be refined by performing sev-
eral runs repeatedly, at various a posteriori levels of abstrac-
tion. Gene products that are associated with finer-grained
GO terms are then grouped together under more general
categories. In addition to retrieving more significant
terms, such a posteriori levels can be used to focus on
broader biological processes (e.g. ion transport rather
than cation transport, anion transport, etc.).
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