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Abstract
Background: Identification of the structural domains of proteins is important for our understanding of
the organizational principles and mechanisms of protein folding, and for insights into protein function and
evolution. Algorithmic methods of dissecting protein of known structure into domains developed so far
are based on an examination of multiple geometrical, physical and topological features. Successful as many
of these approaches are, they employ a lot of heuristics, and it is not clear whether they illuminate any
deep underlying principles of protein domain organization. Other well-performing domain dissection
methods rely on comparative sequence analysis. These methods are applicable to sequences with known
and unknown structure alike, and their success highlights a fundamental principle of protein modularity,
but this does not directly improve our understanding of protein spatial structure.

Results: We present a novel graph-theoretical algorithm for the identification of domains in proteins with
known three-dimensional structure. We represent the protein structure as an undirected, unweighted and
unlabeled graph whose nodes correspond to the secondary structure elements and edges represent
physical proximity of at least one pair of alpha carbon atoms from two elements. Domains are identified
as constrained partitions of the graph, corresponding to sets of vertices obtained by the maximization of
the cycle distributions found in the graph. When a partition is found, the algorithm is iteratively applied to
each of the resulting subgraphs. The decision to accept or reject a tentative cut position is based on a
specific classifier. The algorithm is applied iteratively to each of the resulting subgraphs and terminates
automatically if partitions are no longer accepted.  The distribution of cycles is the only type of information
on which the decision about protein dissection is based. Despite the barebone simplicity of the approach,
our algorithm approaches the best heuristic algorithms in accuracy.

Conclusion: Our graph-theoretical algorithm uses only topological information present in the protein
structure itself to find the domains and does not rely on any geometrical or physical information about
protein molecule. Perhaps unexpectedly, these drastic constraints on resources, which result in a
seemingly approximate description of protein structures and leave only a handful of parameters available
for analysis, do not lead to any significant deterioration of algorithm accuracy. It appears that protein
structures can be rigorously treated as topological rather than geometrical objects and that the majority
of information about protein domains can be inferred from the coarse-grained measure of pairwise
proximity between elements of secondary structure elements.
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Background
Investigation of the structural organization of proteins is
important for our understanding of the mechanisms of
protein folding and function, and for insights into protein
evolution. Direct determination of protein structures [1,2]
and comparative sequence analysis [3,4] indicate that pro-
teins have a modular structure, i.e., a polypeptide chain
may consist of several regions that can fold independently
and be inherited as discrete sequence fragments, which
recombine to produce novel sequence and spatial archi-
tectures. This level of protein organization is called
domain [5-7]. The notion of a structural domain of a pro-
tein may be associated with its physical compactness and
thermodynamical stability when excised or expressed
independently of other domains [8]. A formal definition
of a domain, however, is still an outstanding problem.

Several attempts have been made to identify the structural
domains of proteins. The most straightforward approach
is based on visual inspection of a structure by a human
expert. However, this approach is difficult to formalize,
and therefore it is not easily applicable for analysis of large
data sets. Another approach is to employ comparative
sequence analysis. This method benefits from the vast col-
lection of sequences from diverse organisms and high sen-
sitivity of database search and protein sequence
alignment. The shortcomings of this method is that, first,
it relies on sequence similarity and thus is not applicable
when the homologous sequences are not known; second,
that the problem of defining the exact borders of sequence
domains is itself difficult [9-11]; and third, that many
sequence rearrangements, such as permutations, are hard
to detect by these methods. Currently, the best results in
protein domain dissection are produced by joint applica-
tion of sequence analysis and examination of structure
when it is available. The authoritative databases of struc-
tural domains, such as SCOP [12] and CATH [13] are pop-
ulated in that manner.

A distinct category of approaches comprises fully auto-
mated methods [14], which define structural domains
based on various algorithmic ideas. In the rest of this
paper, we will restrict our discussion to those algorithms
that operate at the level of the known three-dimensional
structures rather than sequences. One example of such an
approach is the work of Taylor [15]. He applied a Potts
model [16] – Taylor describes his formalism as the Ising
model, however, his spin variables can have more than
two states, which is known in statistical physics as a Potts
model [17,18] – by representing a protein structure as an
undirected, weighted graph whose nodes correspond to
the amino acid residues and the weights of the edges are a
function of the spatial distance between residues. Spin-
like variables are assigned to each node, and the domains
of a protein are dynamically obtained as converging pat-

terns of these variables. Another program, DomainParser
[19,20], utilizes the Ford-Fulkerson algorithm [21], which
is a graph-theoretical method to find the minimal number
of weighted cuts that separate a graph into two partitions.
DomainParser appears to be the most accurate automated
method of protein dissection into structural domains [8].
In both these cases, however, the core formalisms of these
approaches (Potts model and Ford-Fulkerson algorithm,
respectively) need to be supplemented with several addi-
tional heuristics for adequate performance. For example,
the Potts model needs additional rules to, e.g., reassign
small domains, keep β-sheets intact and reclaim short
loops [15] and DomainParser uses heuristics about, e.g.,
the size and compactness of domains and the interface
between and segments within domains [19], to mention
just a few. We want to emphasize that none of these addi-
tional rules can be derived from the utilized formalism
(Potts model or Ford-Fulkerson algorithm) but needs to
be introduced ad hoc. Furthermore, these rules do not fol-
low the spirit of the utilized method, that means, are not
related to correlations between time series or graph-theo-
retical methods at all but are conceptionally completely
different.

In this article, we present a novel algorithm for the auto-
mated identification of domains in a protein of a known
three-dimensional structure. Our approach is based on
ideas from graph theory. First, we represent a protein as an
undirected, unweighted and unlabeled graph, which we
call a protein graph. The vertices of a protein graph repre-
sent secondary structure elements. Two vertices are con-
nected by an edge if the spatial distance between the
corresponding secondary structure elements is below a
certain threshold, and every pair of consecutive elements
is connected by an edge ('backbone connection') by defi-
nition. Second, we determine all cycles up to a predefined
length within this graph. A constrained partitioning of the
vertices of the graph in two subsets results in two different
types of cycles, pure and mixed cycles. The 'pure' type con-
tains vertices from only one partition, whereas the 'mixed'
type contains vertices from both partitions. Hence, there
are three disjoint subsets, one for 'mixed' and two for
'pure' cycles. We examine cycle distributions induced by
removal of each backbone connection in turn, and select
the constrained partitioning of vertices that mutually
maximizes the cycle distributions, thereby defining a ten-
tative cut position along the backbone of the protein.
Third, the decision to accept or reject the tentative cut
position is obtained by using a special classifier. If the ten-
tative cut position is accepted, the protein graph is split,
and the three-step procedure is repeated with each of the
two resulting subgraphs. Our algorithm stops automati-
cally if the tentative cut positions are no longer accepted,
and it does not rely on prior information about the
number of domains.
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Traditionally, approaches involving graphs use the Cα
atom of residues [15,19,20] as course-grained level of
description, and employ weighted [15] or even weighted
and directed graphs [19,20]. One novel idea of our algo-
rithm is to partition the graph on the basis of the cycle dis-
tributions. Another novelty is the representation of a
protein as an unweighted, undirected and unlabeled
graph whose vertices correspond to secondary structure
elements.

The representation that we employ is simple, and it does
not take into account a wealth of additional information
available in the protein structure data files, such as posi-
tion and interactions of amino acid side chains, interac-
tions with ligand and solvent, inherent disorder, and so
on. It was not an intention of this work to gain a few per-
centage points on the already quite high average accuracy
enjoyed by the methods that use all this information.
Rather, we were interested to see how far we can get in
protein domain dissection if we applied a more rigorous
algorithmic framework that relies on a topological point
of view and requires only a small number of assumptions.
Perhaps surprisingly, our algorithm's average perform-
ance was comparable with all but the most advanced
methods of heuristic domain dissection. The implications
of this high achievement of a simple approach to our
understanding of protein domain organization are dis-
cussed at the end of this work.

Results and discussions
We selected 2781 proteins from the ASTRAL database
[22], among which no pair shares more than 30%
sequence similarity. We randomly split this list of proteins
into a training set and a test set. The training set consists
of 910 and the test set of 1871 proteins. Random selection
of two sets was repeated several times, and results of the
work were quantitatively very similar in all cases, indicat-
ing that both sets were sufficiently large to be statistically
sound and more involved tests, such as cross-validation,
were not necessary.

Parameter optimization
Algorithm 2 depends on the following parameters: The
maximal cycle length L, the spatial distance Θ and the
parameters of the logical decision function α. First, we
determine the optimal value of Θ for a fixed value of L =
11, then we investigate the influence of L. We use a train-
ing set consisting of 571 one-domain and 153 two-
domain proteins to determine the parameters of the deci-
sion function Dα for the first cut. This assumption simpli-
fies the numerical simulations while being applicable to
more that 90% of all proteins with the known structure.
The function raised steeply to a maximum of Θ = 6.2Å, fol-
lowed by a slight, if any, decline to at least Θ = 8.0Å. This
order of distance between the Cα atoms, seems to be close

to the average between the backbones of secondary struc-
ture elements (often approximated by the order of 5Å
between beta-strands in a sheet, and 10Å between helices
in an alpha-helical layer [23]) and gives ample opportu-
nity to various sorts of interactions between amino acid
side chains. Analysis of different values of L gave qualita-
tively similar results.

We next investigated the influence of the maximal cycle
length L on the performance of our algorithm for optimal
Θ = 6.2Å. In Fig. 1, the histograms for all proteins in our
test set are shown. There is an increase in the mean
number of secondary structure elements going from one-
domain to four-domain proteins, but, notably, even some
one-domain proteins consist of more than 80 secondary
structure elements and, hence, give a very large protein
graph.

Most of our graphs have more than 30 nodes. The deter-
mination of the cycles in a graph is a NP-complete prob-
lem [24], and simulations show that determination of all
cycles up to the maximal possible length in graphs of this
size is computationally prohibitive. For this reason, we
would like to restrict the maximal cycle length L. In prac-
tice, cycles found in a protein graph tend to contain only
a subset of nodes, which is considerably smaller than the
total number of nodes in the graph. The protein graph of
1A79 is shown as an example in Fig. 2. 1A79 is a two-
domain protein that consists of 30 secondary structure
elements, but the longest cycles we found for 1A79 had L

Histograms for the number of secondary structure elements (#SSE) in a protein graphFigure 1
Histograms for the number of secondary structure elements 
(#SSE) in a protein graph. Top, left: One-domain proteins. 
Top, right: Two-domain proteins. Bottom, left: Three-
domain proteins. Bottom, right: Four-domain proteins.
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= 16. The maximum of Eobj is the same for even shorter
cycles, down to L = 4. Thus, even a L of intermediate size
appears to be sufficient to see the domain signature in an
extremum of Eobj. We found that L = 11 gives a good com-
promise between similarity to the case of Lmax, as, e.g.,
shown in Fig. 2 and execution time of a program. For
example, with L = 11 and Θ = 6.2Å it takes about 12 hours
to determine all cycles for all one domain proteins in our
test set using 15 computers with 4 processors each with
3.4GHz. We want to remark, that it is clear that not only
the number of nodes, but also the number of edges in a
graph influences the resulting number of cycles. This
means, there exist graphs with the same number of verti-
ces but a higher connection density for which L = 11
would be impractical. This implies that the concrete value
chosen for L is not universal in the sense that we can use
it for any possible graph to determine the cycles but it is a
characteristic for a graph class. Finally, for Θ = 6.2Å and L
= 11 we determine the parameters α of the decision func-
tion for the first, second and third cut separately. The first
cut separates one-domain and two-domain proteins, the
second cut separates two-domain and three-domain pro-
teins and the third cut separates three-domain and four-
domain proteins.

Results for multi-domain proteins
We used the test set consisting of 1871 proteins, which
contained one, two, three, or four domains (accounting
for 74.9%, 18.8%, 5.4% and 0.9% of all proteins, respec-
tively) and the optimized parameters of our algorithm
found from the training set. To evaluate the performance
of our algorithm, we applied the error measure suggested
in Jones et al. [25], which P determines the overlap of the

assigned domains and the predicted domains, or, more
precisely, the overlap of residues in these domains. P is
defined by

Here Lr is the number of residues of a protein and  and

 are the assigned and predicted cut positions for the d-

domain protein. Our level of description is at the level of
secondary structure elements, which leads to an inevitable
error on the order of half the number of residues of a sec-
ondary structure element divided by the total number of
residues. As in [8], if P > 0.75 we view the prediction as
right, otherwise as wrong. The prediction is also wrong if
the number of domains is different from the number of
the domains assigned by SCOP, even if the overlap of the
remaining domains is larger than 75%. The summary
result of our studies are shown in table 1. The accuracy of
our domain prediction was 84.9% for one-domain,
63.4% for two-domain, 30.7% for three-domain and
22.2% for four-domain proteins. This gives an overall pre-
diction accuracy of 77.3%. Table 2 compares our results
with the results from DomainParser. In Fig. 3 we show the
differences in the predicted and assigned cut positions for
the two-domain and three-domain proteins with correctly
assigned number of domains It is apparent that there are
only very few cut positions which are extremely inaccu-
rate. Most predicted cut positions are within ± 5 secondary
structure elements and have a domain overlap larger than
P > 0.8.

In Fig. 4 we show the normalized objective functions for
one three-domain protein (i.e, the original Eobj divided
by its maximum value). Notably, the distance from the
maximum of Eobj to the next highest value is usually
modest, indicating that the decision to cut or not to cut in
such a case is non-trivial. In the case of three-domain or
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Table 1: Results for the test proteins

number of domains 1 2 3 4

number of proteins 1402 350 101 18
number of overcuts 244 25 8 -
number of undercuts - 90 58 14
correctly assigned domain number 1191 235 35 4
correctly assigned proteins 1191 222 31 4

Objective Function Eobj for 1A79 chain AFigure 2
Objective Function Eobj for 1A79 chain A. The color corre-
sponds to different values of the maximum cycle length L. 
Black: L = 16, blue: L = 11, red: L = 6 and green: L = 4.
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four-domain proteins, the second highest peak of the
objective function upon the first cut may not be an indi-
cation of the second cut as can be seen for 1L8A, where the
second peak of the first-cut function is at i = 79, whereas
the correct second cut is i = 86. This implies that in general
our approach does not allow a shortcut in the partitioning
of the graph.

We also examined trends in structure and fold classes of
the proteins that were accurately dissected by DomainICA
and those that did not behave well. Among the 235 pro-
teins with correctly assigned number of domains, 16% of
the domains were from the SCOP class of all-alpha pro-
teins, 20% from all-beta, 38% from alpha/beta, and 26%
from alpha+beta classes. For the 90(25) proteins which
were undercut (overcut), 36(24)% were from all-alpha
class, 11(38)% from all-beta, 29(18)% from alpha/beta
and 24(20)% from the alpha+beta class. The fractions of
correctly partitioned two-domain proteins were 53% for

proteins with at least one all-alpha domain, 71% for the
proteins containing at least one all-beta domain, 74% for
the protein with at least one alpha/beta domain and 70%
for those with at least one alpha+beta domain. Appar-
ently, proteins with domains from the all-alpha class are
more prone to erroneous partitioning than proteins that
contain at least one beta-sheet. One possible explanation
for this may have to do with the mean number of contacts
in which a secondary structure element participates. A
helix has on average 1.9 contacts to other secondary stur-
ture elements, whereas a strand has 2.5, not including self-
contacts and multiple contacts between the same second-
ary structure elements (recall that our algorithm does not
use this information; the trend, however, is the same if
multiple contacts are also considered). Thus, all-alpha
domains are less connected on average, and the number
of cycles in these graphs is smaller compared to graphs
that represent proteins with beta-sheets. The other factor
may be the generally larger distance between packed heli-
ces than between strands in a beta-sheet, which makes Θ
= 6.2Å an adequate average but too small a value to deal
with the specific case of all-alpha proteins. Correction for
this latter factor should be easy to incorporate into auto-
mated algorithm, as it only requires the measure of pre-
ponderance of the alpha-helices in the structure; the
former factor, i.e., contact density, is not so easily taken
into account by our framework.

Proteins that include discontinuous domains, where one
domain is inserted into another, pose additional prob-
lems for our algorithm, because, for example, a two-
domain protein would need two cuts instead of one and
an additional step of fragment merging. Many such two-
domain proteins, however, can be partitioned "almost
correctly" if one part of discontinuous fragment is much
shorter than the other, and, hence, one correct cut predic-
tion is sufficient to fulfill P > 0.75. Among the 350 two-

Normalized objective function Eobj for 1L8A (left, first cut) and 1L8a (right, second cut)Figure 4
Normalized objective function Eobj for 1L8A (left, first cut) 
and 1L8a (right, second cut).

Table 2: Comparison of our results with the results from 
DomainParser ([19] old version, [20] new version)

DomainICA DomainParser 
(old version)

DomainParser 
(new version)

single-domain 84.9 87.4 93.0
two-domain 63.4 55.1 66.1
three-domain 30.7 38.4 52.5
four-domain 22.2 32.1 28.5

Top row: Results for two-domain proteinsFigure 3
Top row: Results for two-domain proteins. Left: Histogram 
of the differences from the predicted to the assigned cut 
position by SCOP. Right: Histogram of the overlap values. 
Bottom row: Results for three-domain proteins. Left: Histo-
gram of the differences from the predicted to the assigned 
cut position by SCOP. Right: Histogram of the overlap val-
ues.
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domain proteins that we examined, 28 had discontinuous
domains, 14 of which were assigned correctly.

We finish this results section by discussing several exam-
ples that illustrate the working mechanism of our algo-
rithm. In the following, the left figure shows always the
domains assigned by SCOP and the right figure shows the
predicted domains by DomainICA. In Fig. 5 we show the
two-domain protein 1H72 (homoserine kinase). Domai-
nICA does not cut homoserine kinase, because the helices
and especially the loops from the second domain make
multiple contacts with the secondary structure elements
in the first domain. The loop contacts are ignored by most
other algorithms, and may cause undersplitting by our
algorithm; on the other hand, our approach draws atten-
tion to interactions involving loops, and indeed inclusion
of loops as vertices in the protein graph improves the
overall performance of DomainICA (data not shown).
The next two-domain protein shown in Fig. 6 is 1CRK
(mitochondrial creatine kinase). In this case the second
domain (blue) is split resulting in a three-domain protein
predicted by DomainICA (right figure). Interestingly, the
split separates a β-sheet. This is due to the fact that, first,
all three secondary structure elements are treated equally,
second, the third-domain (right figure) has very few con-
tacts in addition to the contact provided by the β-sheet
and third, we do not count multiple contacts between two
secondary structure elements. In Fig. 7 we show the three-
domain protein 1HS6 (leukotriene A(4) hydrolase).
Again, the first domain (red, left figure) is split between
two strands of a β-sheet because of the lack of additional
contacts between other secondary structure elements of
these two domains. Large parts of the second domain
(blue, left figure) and the third domain (green, left figure)
are predicted as one domain (green, right figure) because
there exist several contacts between the beginning of
domain two (blue, left figure) and the end of domain
three (green, left figure) making a split less favorable than
separating the first part from domain two (blue, left fig-
ure). The last protein we show in Fig. 8 is the three-
domain protein 1GSO (glycinamide ribonucleotide syn-
thetase). Both SCOP and DomainICA dissect this protein
in three domains, but the second domain is significantly
smaller in our prediction than in SCOP. It is evident that
the domain in question consists of two subdomains, one
of which makes many contacts with the third domain as
defined by SCOP, whereas the other is spatially more iso-
lated.

Conclusion
In this work, we presented a graph-theoretical approach
for partitioning proteins into structural domains based on
two main new ideas. First, we represent proteins as
unweighted, undirected and unlabeled graphs whose ver-
tices correspond to the elements of secondary structure,

including loops. Second, we introduced the mutual maxi-
mization of cycle distributions found in the partitioned
graph as an approximate measure of domain compact-
ness.

Several other algorithms have been suggested for the
problem to identify the domains of a protein automati-
cally [15,19,20]. The main differences between our algo-
rithm and the most successful other algorithm,
DomainParser [19,20], is that the latter uses a graph-the-
oretical core to model proteins at the level of individual
residues, and it also cuts proteins on the basis of several
heuristic rules that draw from the knowledge of protein
physics and geometry not captured by their representation
as protein graph. In contrast, DomainICA employs only
information present in the graph-theoretical representa-
tion of the proteins. Another difference between Domai-
nICA and other approaches is that the former is not
employing any weighting scheme, where other
approaches use weighted [15] or even weighted and
directed [19,20] graphs.

In this work, we did not strive first of all to provide numer-
ical results about the identification of structural domains

A two-domain protein 1CRK (a.83.1.1, d.128.1.2)Figure 6
A two-domain protein 1CRK (a.83.1.1, d.128.1.2). Left: 
Domain assignment according to SCOP. 1:98 (red), 99:380 
(blue). Right: Domain assignment from DomainICA. 1–80 
(blue), 81–263 (red), 264–380 (green).

A two-domain protein 1H72 (d.14.1.5, d.58.26.1)Figure 5
A two-domain protein 1H72 (d.14.1.5, d.58.26.1). Left: 
Domain assignment according to SCOP. 5:167 (red), 168:300 
(blue). Right: Domain assignment from DomainICA. 5–300 
(blue).
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with better accuracy than DomainParser or other recently
available algorithms. If this was our main goal, the most
sensible approach might be to gradually refine the heuris-
tics of these already useful methods, gaining in accuracy a
few percentage points at a time. We set a radically different
goal, namely to cast parsing protein structures into
domains as an problem of optimization of a partition
function that emerges from an extremely simple topolog-
ical representation of a protein and requires the knowl-
edge of an extremely small number of parameters. If this
approach failed completely, this would not be of any
interest – if, however, it approached the best available
approaches in prediction accuracy, this would beg the
question of which properties of protein structures are
important in domain recognition and, by extension,
whether the simple model is telling us anything impor-
tant about protein structure and function.

The main conclusion from our study is, indeed, that
despite extreme paucity of information that is presented
by undirected, unweighted, and unlabeled protein graphs,
the performance of DomainICA is closely comparable to
DomainParser in the case of one-domain and two-

domain proteins, which account for more than 90% of all
proteins in the ASTRAL database and for a substantial frac-
tion of complete proteomes in many organisms, espe-
cially in prokaryotes. It appears that more detailed
information about protein structure, such as analysis of
interdomain interactions at the residue level or consider-
ations of protein physics and geometry, do not add much
structural signal to our coarse grained representation. A
corollary of this may be that proteins might be more prop-
erly treated as topological rather than geometrical objects,
as has been recently speculated (see [26-29] for the debate
of this and related issues). The success of our algorithm
also raises intriguing questions about the physical con-
straints on protein domains and may point out to the con-
tacts between secondary structure elements as the main
level at which protein domains attain their evolutionary
optimal structural design. We also feel that further analy-
sis of protein graphs may offer new venues into the prob-
lem of structural, if not evolutionary, classification of
proteins and protein domains.

Methods
Representation of a protein
We use the secondary structure elements of a protein – α-
helices, β-strands and loops – as a coarse-grained level of
description of protein tertiary structure. Each secondary
structure element is a node in a protein graph. The con-
nectivity of the graph is given by the following algorithm
that utilizes the structural information about a protein
from Protein Data Bank files [30].

Algorithm 1 Representation of a protein as a graph:

1. Determine the secondary structure elements of a protein and
enumerate them in consecutive order. We differentiate between
three types of secondary structure elements: helix, strand and
loop.

2. Each secondary structure element represents one node in the
protein graph.

3. Two nodes m and n in the protein graph are connected by an
edge e(m, n) = 1, if there exist two Cα-atoms, one from second-
ary structure element m and another from secondary structure
element n, whose spatial distance is below a threshold Θ

Additionally, we connect consecutive secondary structure ele-
ments along the backbone
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A three-domain protein 1GSO (b.84.2.1, c.30.1.1, d.142.1.2)Figure 8
A three-domain protein 1GSO (b.84.2.1, c.30.1.1, d.142.1.2). 
Left: Domain assignment according to SCOP. 2–103 (red), 
104–327 (blue), 328–426 (green). Right: Domain assignment 
from DomainICA. 2–115 (red), 116–192 (blue), 193–426 
(green).

A three-domain protein 1HS6 (a.118.1.7, b.98.1.1, d.92.1.13)Figure 7
A three-domain protein 1HS6 (a.118.1.7, b.98.1.1, d.92.1.13). 
Left: Domain assignment according to SCOP. 1:208 (red), 
209:460 (blue), 461–610 (green). Right: Domain assignment 
from DomainICA. 1–154 (red), 155–290 (blue), 291–610 
(green).
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e(m, m - 1) = e(m, m + 1) = 1 ∀ m ∈ {2, ..., N - 1}
(3)

and e(1, 2) = e(N, N - 1) = 1. All other entries in the adjacency
matrix of the protein graph remain zero.

There are several ways to obtain the secondary structure
elements of proteins. We use the assignment provided in
a pdb file [30]. Other programs can be also used to iden-
tify the secondary structure elements, e.g., DSSP [31] or
STRIDE [32]; this does not change the rest of the method,
though it might change the layout of some protein graphs.
Protein graph is an undirected, unweighted and unlabeled
graph. We do not preserve labels of the nodes representing
a helix, a strand or a loop, and we do not consider weights
of edges resulting from multiple pairs of Cα-atoms whose
reciprocal spatial distance is below the threshold Θ.

All connections determined by Eq. 2 are treated in the
same way, regardless of the physical nature of the interac-
tions (e.g., ionic, van der Waals, or other). We call an
unweighted, undirected and unlabeled graph obtained by
algorithm 1 a protein graph and denote it by GIII., for the
fact that we consider three types of secondary structure in
our approach. Indeed, loops are treated as distinct second-
ary structure elements and are represented as nodes, not as
edges. We found that this representation improves the
accuracy of the algorithm, presumably because interac-
tions between the loops and other elements contribute to
protein domain formation.

Partitioning of a protein graph
Structural domains of a protein are thought to be compact
in some way [33], and several suggestions to characterize
the compactness of a domain more precisely have been
made. For example, there are hypotheses that the domain
should stay folded if the protein is cut into its domains, or
that the number of contacts between domains should be
less than the number of intra-domain contacts [6,34].
Examining protein structures indicates that the notion of
domain compactness is much less rigorous than, e.g., the
compactness in inorganic crystal structures, where more
formalized definitions are possible. A common property
shared by well-folded domains is that the backbone
changes direction many times and brings secondary struc-
ture elements in contact with one another, often "folding
back", as can be seen most directly in the case of parallel
and anti-parallel beta-sheets. One well-defined entity
which distinguishes between a back-folded and a non-
backfolded backbone is a cycle, i.e., a closed path that
returns to its starting point in a graph. More generally, we
claim it is possible to bipartition a protein graph based on
the hypothesis that the resulting partition maximizes the
cycle distributions found in both subgraphs. In the fol-
lowing we give the mathematical details of our algorithm,

which we call DomainICA (domain identification and
cutting algorithm).

Algorithm 2 (DomainICA) Partitioning of a protein graph
GIII with N nodes.

1. Calculate the cycle set  consisting of all cycles found in
the graph GIII up to a length L.

2. Determine the cycle histograms CHL(i) and CHR(i) for i ∈
{1, ..., N - 1} by dividing the cycle set CS in three non-inter-

secting sets L, R and LR defined by

Here a cycle c is represented by a vector whose components cj are
the nodes in the cycle. We call i the boundary index of part L.
The cycle histograms are now defined for the i-th index by

3. Normalize the cycle histograms along the cycle length index

4. Determine an objective function Eobj (i) for i ∈ {1, ..., N -
1} by:

5. Determine the maximum of the objective function

6. Accept the suggested cut position, if the decision function Dα
is true



  

 L ji c c i j( ) { | , }= ∈ ≤ ∀ (4)

 R ji c c i j( ) { | , }= ∈ > ∀ (5)

   LR ( ) \{ ( ) ( )}i i iR L= ∪ (6)

CH i j c i c jL L( , ) { ( ) : }= ∈ = (7)

CH i j c i c jR R( , ) { ( ) : }= ∈ = (8)

CH i j
CH i j

CH i j
L

L

Li

( , )
( , )

( , )
=

′′∑ (9)

CH i j
CH i j

CH i j
R

R

Ri

( , )
( , )

( , )
=

′′∑ (10)

E i CH i j CH i jobj L R
j

L
( ) ( , ) ( , )= ∑ (11)

i E ic
i

obj= ′
′

argmax ( ) (12)

D i N E i E ic f obj c obj
r

cα ( , ( ), ( )) = 1 (13)
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In Fig. 9 the idea of algorithm 2 is shown. The backbone
consisting of N secondary structure elements is shown as
black line. One of N - 1 possible configurations for the
boundary index i is indicated. There are only N - 1 config-
urations, because each part has to contain at least one
node. The boundary index i determines uniquely two dis-
joint vertices sets VL(i) = {1, 2, ..., i} and VR(i) = {i + 1, i +

2, ..., N} separating the nodes on the "backbone" in a L
and R part. The boundary index i can be seen as the posi-
tion of a cut sliding along the backbone connections.
These vertex sets, together with the edges given by Eq. 2,
define subgraphs GL and GR of the original graph G. The

backbone connections are shown in black, connections
within part L in blue, connections within part R in red and
connections between the two parts in green. A separation
on the backbone at position i results in a deletion of the
backbone connection from node i to i + 1. Additionally,
all green connections are deleted. This results in two sep-
arate graphs, GL and GR. Note that the backbone intro-

duces a constraint to the bipartitioning of the graph – only
the edges corresponding to the backbone are considered
for a cut position. From these graphs, the histograms of
the cycle distributions are given, e.g., for the L part and
boundary index i, as the number of cycles of length j from

 which contain only vertices from VL(i). This is

denoted by CHL(i, j). Our objective function Eobj deter-

mines the dot product between the normalized cycle his-
tograms of the L and R part and measures by this their
mutual overlap. We use the normalized cycle histograms
along the cycle length index, because the absolute number
of cycles is of less interest than the relative number com-
pared to other potential cut positions. The normalization
transforms the absolute values into relative weights
between different cut positions. In the next subsection, we
discuss the decision function from Eq. 13.

Decision function
The crucial step in our procedure is the decision to accept
or reject the suggested cut position ic. We base this deci-
sion on the calculation of an objective function for a ran-
domized protein graph. The cut position is accepted if the
value of the objective function of the randomized protein
graph is significantly lower than the value of the real pro-
tein graph. The randomized protein graph is produced by
randomly alternating βrN entries of the graph adjacency
matrix, excluding diagonal and first off-diagonal entries.
This ensures that the resulting graph retains its backbone
connections and that secondary structure elements do not
acquire meaningless self-connections. The predicted cut
position can be viewed as statistically significant, if it is

stable against the averaged randomized objective func-
tions

of an ensemble of Nr randomized protein graphs at the
suggested cut position ic. Now we can define the decision
function for accepting the tentative cut position.

Definition 1 We call D α : I → {0, 1} the decision function
of a cut position ic ∈ I and define it by

Here  is the fraction of cycles either in the L

or in the R part, NL(NR) the number of cycles in the L (R) part

and Ntot is the total number of cycles found in the graph. The

three values αi ∈ {1, 2, 3} are free parameters of the decision

function.

The decision function given in definition 1 was found
empirically. The logical decision function Dα in Eq. 15 we
employ as binary classifier consists of two parts. The first
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A protein graph is split in two parts for a given boundary index i by deleting the backbone connection from node i to i + 1 and the connections between the two resulting parts (shown in green)Figure 9
A protein graph is split in two parts for a given boundary 
index i by deleting the backbone connection from node i to i 
+ 1 and the connections between the two resulting parts 
(shown in green).
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part evaluates as true if Nf is larger than a threshold α1.
This condition can be seen as a graph-theoretical analo-
gon to the idea of Rossmann et al. [6], who speculated
that a domain should have more intra-domain than inter-
domain connections (they, however, counted contacts
between all residues, not between secondary structure ele-
ments as we do). Here Nf ∈ [0, 1] is high if a cut does not
destroy many mixed cycles.

The second argument evaluates the breakdown of the ran-
domized objective function. Application of our algorithm
to proteins consisting of one or more domains indicates
that the set of parameters for {α1, α2, α3} has to be opti-
mized separately to obtain a better performance. For this
reason, we introduce for each cut a decision function Dα
with different parameters. This is possible because the
algorithm can keep track of the number of cuts and a spe-
cific form of the decision function can be applied auto-
matically and iteratively until the procedure ends.
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