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Abstract

Background: Gene-set analysis evaluates the expression of biological pathways, or a priori defined gene
sets, rather than that of individual genes, in association with a binary phenotype, and is of great biologic
interest in many DNA microarray studies. Gene Set Enrichment Analysis (GSEA) has been applied widely
as a tool for gene-set analyses. We describe here some critical problems with GSEA and propose an
alternative method by extending the individual-gene analysis method, Significance Analysis of Microarray
(SAM), to gene-set analyses (SAM-GS).

Results: Using a mouse microarray dataset with simulated gene sets, we illustrate that GSEA gives
statistical significance to gene sets that have no gene associated with the phenotype (null gene sets), and
has very low power to detect gene sets in which half the genes are moderately or strongly associated with
the phenotype (truly-associated gene sets). SAM-GS, on the other hand, performs very well. The two
methods are also compared in the analyses of three real microarray datasets and relevant pathways, the
diverging results of which clearly show advantages of SAM-GS over GSEA, both statistically and
biologically. In a microarray study for identifying biological pathways whose gene expressions are
associated with p53 mutation in cancer cell lines, we found biologically relevant performance differences
between the two methods. Specifically, there are 3| additional pathways identified as significant by SAM-
GS over GSEA, that are associated with the presence vs. absence of p53. Of the 31 gene sets, || actually
involve p53 directly as a member. A further 6 gene sets directly involve the extrinsic and intrinsic apoptosis
pathways, 3 involve the cell-cycle machinery, and 3 involve cytokines and/or JAK/STAT signaling. Each of
these 12 gene sets, then, is in a direct, well-established relationship with aspects of p53 signaling. Of the
remaining 8 gene sets, 6 have plausible, if less well established, links with p53.

Conclusion: We conclude that GSEA has important limitations as a gene-set analysis approach for
microarray experiments for identifying biological pathways associated with a binary phenotype. As an
alternative statistically-sound method, we propose SAM-GS. A free Excel Add-In for performing SAM-GS
is available for public use.
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Background

Some DNA microarray studies may target discovery of
individual genes whose expressions are associated with a
phenotype. Useful statistical approaches have been pro-
posed for such individual-gene analyses, for example, Sig-
nificance Analysis of Microarray (SAM) in [1]. In many
instances, however, the goal of studies is in the assessment
of biologic pathways, or a priori defined gene sets, in asso-
ciation with a phenotype, i.e., gene-set analyses. Compu-
tationally, gene-set analyses require an additional
consideration over individual-gene analyses, namely, the
incorporation of gene sets into an association measure.
Mootha et al. [2] proposed Gene Set Enrichment Analysis
(GSEA) for gene-set analysis, utilizing the Kolmogorov-
Smirnov statistic to measure the degree of differential
gene expression in a gene set across binary phenotypes.
GSEA was revised in 2005 by the same research team,
replacing the Kolmogorov-Smirnov statistic with its
weighted version to avoid certain deficiencies in the orig-
inal GSEA method [3]. Many methods have been pro-
posed since for gene-set analyses: see a recent excellent
review by Goeman and Bithlmann [4] and their criticisms
on the majority of the existing methods. Among the work
not covered by the review by Goeman and Bithlmann,
Tian et al. [5], in particular, made an important contribu-
tion by distinguishing different types of hypotheses in
gene-set analysis, and proposed a permutation-based
inference using the sum of t-statistic across genes in the
gene set as a test statistic. In spite of the large number of
gene-set analysis methods, however, GSEA remains by far
the most widely used gene-set analysis method to date.

We propose here an alternative, an extension of SAM, to
gene-set analysis, called hereafter SAM-GS. This is moti-
vated by our observation that GSEA, in both the original
and revised versions, fails to satisfy certain required prop-
erties that a gene-set analysis method should satisfy: for
example, a gene-set analysis should not indicate an asso-
ciation for a gene set in which no gene is associated with
the phenotype. In this paper, we first illustrate the behav-
ior of GSEA in relation to a few simple, required proper-
ties of a gene-set analysis method and compare it with the
behavior of SAM-GS, using a mouse-microarray kidney-
transplant dataset. We then re-analyze, by SAM-GS, three
DNA microarray datasets with which the application of
GSEA was illustrated in [3], showing appreciable differ-
ences in the analysis results. The differences of the results
are discussed from both biologic and statistical points of
view, pointing out clear advantages of SAM-GS over
GSEA.

Results and discussion

Gene-set simulation experiment

Using a mouse-microarray kidney-transplant dataset, we
assessed if GSEA and SAM-GS satisfy the following simple
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requisite properties for any methods designed to perform
a gene-set analysis:

(a) If the gene set S consists of genes whose expressions
are consistently not associated with the phenotype D, the
method should not indicate that S is associated with D.

(b) If the gene set S consists of a mix of genes with mod-
erate to strong and weak associations of expressions with
the phenotype D, such that an appreciable subset of the
genes in S are moderately or strongly associated with the
phenotype D, the method should indicate that S is associ-
ated with D.

(c) The size of the gene set S should not greatly alter the
statistical significance in (a) and (b).

We performed two tests using the mouse-microarray kid-
ney-transplant dataset with simulated gene sets. For Test 1
intended to assess property (a), the gene sets were ran-
domly generated from the null hypothesis region: the
expression of genes in these null gene sets were not asso-
ciated with the phenotype. A sensible gene-set analysis
method should not identify these gene sets as statistically
significant. For Test 2 intended to assess property (b), the
gene sets were generated randomly from an alternative
hypothesis region: the expressions of 50% of genes in
each gene set were associated with the phenotype either
moderately or strongly. A sensible gene-set analysis
method should identify these gene sets as statistically sig-
nificant.

Tables 1 and 2 show the percentages of 100 randomly-
generated gene sets whose expressions were found to be
associated with the phenotype with a p-value < 0.05, by
the gene-set analysis method of interest (GSEA or SAM-
GS), under each gene-set sampling region considered. In
Test 1, null gene sets were generated by randomly sam-
pling genes from genes with |r| <c, where r denotes the
Pearson correlation coefficient of the gene expression
with the phenotype and ¢ was 0.01, 0.02, 0.05, 0.1, 0.2,
0.3, 0.4, or 0.5. The results in Table 1 indicate that GSEA
does not satisfy requisite property (a), because it identi-
fied many of these null gene sets to be associated with the
phenotype with a p-value < 0.05. In Test 2, truly-associ-
ated gene sets were generated by randomly sampling half
of the gene set's genes from genes with |r| = ¢ and remain-
ing half from genes with |r| <¢c, where ¢ was 0.4, 0.5, 0.6,
0.7, 0.8, or 0.9. The results in Table 2 indicate that GSEA
does not satisfy requisite property (b), because it did not
identify many of these truly-associated gene sets as statis-
tically significant with a p-value < 0.05. Moreover, GSEA
does not satisfy property (c), as the performance of the
method varies greatly with gene-set size.
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Table I: Performance of GSEA and SAM-GS on Test |. Proportions of randomly generated null gene sets that are identified by each
method to be associated with the phenotype (p-value < 0.05) in a mouse-microarray study.

Correlation range Methods Set Size
from which gene-
set members were
selected (% of
individual genes in
the range) [% of
individual genes in
the range with FDR
<0.01]
10 30 50 100
|r] <0.01 (.9% of all GSEA 100% 100% 100% 100%
genes are in the
range) [0% with
FDR<0.01]
SAM-GS 0% 0% 0% 0%
|r] <0.02 (2% of all GSEA 100% 100% 100% 100%
genes are in the
range) [0% with
FDR<0.01]
SAM-GS 0% 0% 0% 0%
|r] < 0.05 (4% of all GSEA 100% 100% 100% 100%
genes are in the
range) [0% with
FDR<0.01]
SAM-GS 0% 0% 0% 0%
|r] < 0.1 (8% of all GSEA 100% 100% 100% 100%
genes are in the
range) [0% with
FDR<0.01]
SAM-GS 0% 0% 0% 0%
|r] <.2 (16% of all GSEA 96% 100% 100% 100%
genes are in the
range) [0% with
FDR<0.01]
SAM-GS 0% 0% 0% 0%
|r] <.3 (25% of all GSEA 13% 100% 100% 100%
genes are in the
range) [0% with
FDR<.01]
SAM-GS 0% 0% 0% 0%
|r] < .4 (36% of all GSEA 8% 100% 100% 100%
genes are in the
range) [0% with
FDR<.01]
SAM-GS 0% 0% 0% 0%
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Table |I: Performance of GSEA and SAM-GS on Test |. Proportions of randomly generated null gene sets that are identified by each
method to be associated with the phenotype (p-value < 0.05) in a mouse-microarray study. (Continued)

|r] < .5 (47% of all GSEA 0% 24% 100% 100%
genes are in the
range) [0% with
FDR<.01]

SAM-GS 0% 0% 0% 0%

The results of these tests illustrate two situations where  be statistically significantly associated with the pheno-
GSEA fails. One is where genes in a gene set cluster some-  type. Figure 1 illustrates this situation with one of the null
where other than in the strong-association region (e.g., all ~ gene sets of Test 1, where the gene set's genes clustered in
individual genes could have no or very weak association  the region of no or weak association with the phenotype,
with the phenotype) and GSEA identifies the gene set to  and yet GSEA p-value of this gene set was < 0.001. In

Table 2: Performance of GSEA and SAM-GS on Test 2. Proportions of randomly generated non-null gene sets that are identified by
each method to be associated with the phenotype (p-value < 0.05) in a mouse-microarray study.

Pearson Methods Set Size
correlation of
genes in the gene

set with the
phenotype
10 30 50 100
Half of genes with |r| > GSEA 1% 3% 0% 1%
4, the other half with
[r] < .4
SAM-GS 93% 100% 100% 100%
Half of genes with |r| > GSEA 3% 4% 3% 1%
.5 the other half with
[r| <.5
SAM-GS 100% 100% 100% 100%
Half of genes with |r| > GSEA 6% 7% 7% 18%
.6, the other half with
[r] <.6
SAM-GS 100% 100% 100% 100%
Half of genes with |r| > GSEA 12% 18% 31% 66%
.7 the other half with
[l <.7
SAM-GS 100% 100% 100% 100%
Half of genes with |r| > GSEA 20% 64% 88% 100%
.8, the other half with
[r] <.8
SAM-GS 100% 100% 100% 100%
Half of genes with |r| > GSEA 69% 100% 100% 100%
.9, the other half with
[l >.9
SAM-GS 100% 100% 100% 100%
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short, GSEA will indicate that gene sets with any clear clus-
tering are statistically significant, regardless of where the
clustering occurs. The other situation is where a gene set
has a mixture of moderately or strongly associated genes
and weakly associated genes. This mixture within a gene
set seems biologically plausible: not all genes in a pheno-
type-associated pathway will show changes in relation to
the phenotype. GSEA has very poor power for detecting a
differentially-expressed gene set under such mixed situa-
tions (Table 2), unless the clustering of some of the gene-
set members occur at the moderate-strong association
region (e.g., Table 2 with ¢ = 0.9)

To check whether SAM-GS satisfies the three requisite
properties of a gene-set analysis, the same tests were
applied as for GSEA, using the same randomly-sampled
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simulated gene sets. The results of Tests 1 and 2 displayed
in Tables 1 and 2 indicate that SAM-GS satisfies properties
(a) and (b). Moreover, SAM-GS satisfies property (c), as its
performance did not vary with the size of the gene set.

Gene-set analyses of the three datasets with biologically
defined gene sets

We compared the performance of the two methods, GSEA
and SAM-GS, on the analyses of biologically defined gene
sets using three microarray datasets considered in [3]: the
sex, p53, and leukemia datasets. The sex dataset consists of
mRNA expression profiles from lymphoblastoid cell lines
derived from 15 males and 17 females (the phenotype is
sex). The p53 dataset consists of expressions for 50 cell
lines from the NCI-60 collection of cancer cell lines, for
which mutational status of the p53 gene has been
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A statistically significant GSEA result. An illustration of a statistically-significant GSEA result with 100 genes selected at random
from genes with no or weak correlation of expression with the phenotype (|r| < 0.4).
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Table 3: Results of the analyses of three datasets by GSEA and SAM-GS.

Dataset % of individual genes with FDR* < 0.25 # of gene sets with FDR < 0.01 # of gene sets with FDR < 0.25  Sensitivity/Specificity (AUCTt) of
GSEA*
GSEA SAM-GS GSEA SAM-GS
Sex 0.1% 4 5 6 6 0.78/0.98 (0.94)
p53 0.3% 3 36 6 308 0.21/0.94 (0.68)
Leukemia 79.9% 0 182 5 182 0.06/NAS (NAS)

* FDR = False discovery rate estimate

T AUC = Area under the ROC curve

* Taking SAM-GS p < 0.05 as the target to be predicted

§ All gene sets in the leukemia dataset had SAM-GS p > 0.05

reported, with 17 being classified as wild-type, and 33 as
carrying mutations in the gene (the phenotype is the
mutation status of p53). The leukemia dataset consists of
gene expression profiles of cells from 24 acute lymphoid
leukemia (ALL) patients and 24 acute myeloid leukemia
(AML) patients (the phenotype is ALL vs. AML). The path-
ways are organized in two catalogs, C1 and C2. The C1
catalog includes gene sets corresponding to human chro-
mosomes and cytogenetic bands, while the C2 catalog
includes gene sets that are involved in specific metabolic
signaling pathways [3]. The results by GSEA and SAM-GS
are summarized in Table 3. In the sex-comparison analy-
sis, the two methods agreed on the associations (FDR <
0.01) with the three Y associated gene sets, the testis-
expressed gene set (GSEA FDR = 0.02), and the gene set
with genes that escape X inactivation. In addition, SAM-
GS established an association with the chrXp22 gene set
(SAM-GS FDR < 0.16 vs. GSEA FDR = 1.00). In the p53-
comparison analysis, SAM-GS and GSEA agreed on a sub-
set of gene sets with an FDR < 0.01 that included the gene
sets of hsp27, p53_UP (GSEA FDR = 0.013), p53 hypoxia,
radiation sensitivity (GSEA FDR = 0.07), and p53 (Bio-
Carta). However, SAM-GS identified additional 31 gene
sets with an FDR < 0.01, all of which had an FDR > 0.49
for GSEA. These gene sets are shown in Table 4. In the
leukemia-comparison dataset, the two methods gave even
more discrepant results than the p53-comparison analysis.
GSEA identified only five gene sets with an FDR < 0.25
(none with an FDR < 0.01), whereas all of the 182 gene
sets were statistically significant (FDR < 0.01) by SAM-GS.
Note that the individual-gene analysis showed that 80%
of the individual genes in this comparison had an FDR <
0.25, which is in line with the gene-set analysis results of
SAM-GS.

These discrepancies between the two methods are sum-
marized along with the sensitivity and specificity of the
GSEA p-value £ 0.05 and the area under the receiver oper-
ating characteristic curve of GSEA p-value in predicting
the SAM-GS p-value < 0.05 (Table 3). Specifically, sensi-
tivity was calculated as the proportion of gene sets with
GSEA p-values < 0.05, out of all gene sets with SAM-GS p-
values < 0.05. Specificity was calculated as the proportion

of gene sets with GSEA p-values > 0.05, out of all gene sets
with SAM-GS p-values > 0.05.

GSEA

Our Tests 1 and 2 suggest that GSEA does not meet some
simple requisite criteria for a gene-set analysis method. In
particular, Test 1 results suggest that, in a typical microar-
ray experiment involving genes with different degrees of
association with the phenotype, GSEA would frequently
identify gene sets as statistically significant when all of its
genes have observed expressions completely uncorrelated
with the phenotype (e.g., Pearson correlation between -
0.1 and 0.1). This is not a logical behavior for a gene-set
analysis method. Biologically, if a gene set is identified as
having expressions that are significantly associated with a
phenotype, the gene set should contain at least some
genes whose observed expressions are associated with the
phenotype. Statistically, the false discovery rate of GSEA
for a truly null gene set, tested among truly non-null gene
sets, would be appreciably elevated because the observed
correlations of the null-gene-set genes with the phenotype
would tend to cluster near zero. Although the gene sets in
Tests 1 and 2 are randomly-sampled simulated sets, they
are not unrealistic gene sets. For example, a Test 1 situa-
tion was encountered in the analysis of the sex dataset,
where GSEA gave the "cell-cycle arrest genes" a p-value of
0.015 in association with sex (SAM-GS p-value = 0.84).
No gene in this gene set has an absolute value of the Pear-
son correlation of 0.33 or greater, or the SAM p-value <
0.06: this clustering is thus identified incorrectly by GSEA
as showing a significant association, failing Test 1. A Test
2 situation was encountered, for example, in the analysis
of the leukemia dataset, where GSEA failed to identify the
gene set "chr10q24", even though 13 of the 43 genes in
the gene set had absolute values of the Pearson correlation
of 0.5 or greater (4 genes greater than 0.7) and the chro-
mosomal location of the gene set is biologically relevant
given the role of HOX11 in T-cell ALL. The use of GSEA is
subject to appreciable false positive and negative findings,
as illustrated by the two tests and the results shown in
Table 4.
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Table 4: The 31 gene sets for which SAM-GS and GSEA strongly disagreed (SAM-GS FDR < 0.01, GSEA FDR > 0.49) in the p53

analysis.
Gene Set GSEA SAM-GS p53 link
FDR p-value FDR p-value
ATM Pathway 0.87 0.21 <0.01 <o0.00l Pathway member
BAD Pathway 0.57 0.04 <0.0l1 <o0.00l Apoptosis
Calcineurin Pathway 0.84 0.13 <0.01 <o0.00! p53-induced proline oxidase mediates apoptosis via a calcineurin-
dependent pathway (12)
Cell cycle regulator 0.90 0.29 <0.01 <o0.00l Cell cycle
Mitochondria pathway 0.88 0.32 <0.0l <0.001 Apoptosis
p53 signaling pathway 0.51 0.01 <0.01 <0.00l Pathway member
Raccycd Pathway 0.83 0.56 <0.0l <0.001 Cell cycle
SA_TRKA_RECEPTOR 0.83 0.34 <0.0l <0.00l Integrated negative feedback loop between Akt and p53 (1)
bcl2family and reg. network 0.83 0.42 <0.0I 0.001 Apoptosis
Cell cycle arrest 0.98 0.49 <0.0l 0.001 Cell cycle
Ceramide Pathway 0.88 0.30 <0.0I 0.001 Apoptosis
DNA DAMAGE SIGNALLING 0.85 0.23 <0.0lI 0.002 Pathway member
SIG_IL4ARECEPTOR IN_B_LYMPHOCYTES 0.93 0.27 <0.01 0.002 Cytokines; JAK/STAT signaling
Cell cycle Pathway 0.89 0.72 <0.0l 0.003 Pathway member
G2 Pathway 0.8l 0.50 <0.0I 0.003 Pathway member
Chemical Pathway 0.53 0.04 <0.01 0.005 Pathway member
Drug resistance and metabolism 0.86 0.08 <0.0I 0.005 Pathway member
G| Pathway 0.8l 0.37 <0.0l 0.005 Pathway member
Breast cancer estrogen signaling 1.00 0.85 <0.0I 0.006 Pathway member
Ca_nf_at_signaling 0.78 0.08 <0.01 0.007 Apoptosis (and cytokines)
Cytokine Pathway 0.53 0.05 <0.0I 0.007 Cytokines
ST_Interleukin_4_Pathway 0.84 0.07 <0.0l 0.007 Cytokines; JAK/STAT signaling
CR_DEATH 0.86 0.31 <0.01 0.008 Pathway member
MAPO00860: Porphyrin & chlorophyll metabolism  0.92 0.29 <0.01 0.010 CPO regulated by p53 (13)
Ckl Pathway 0.49 0.02 <0.01 0.011 Cdk5 phosphorylates p53 (9)
Hivnef Pathway 0.95 0.48 <0.01 0.011 Apoptosis
Ets Pathway 0.79 0.45 <0.0I 0.012 Ets| required for p53 transcriptional activation in UV-induced apoptosis
ST_Wnt_Ca2_cyclic. GMP_Pathway 0.80 0.13 <0.01 0.012 At least one known link between wnt and p53 (14)
Chrebp Pathway 0.84 0.42 <0.01 0.013 unknown
GPCRs_Class_A_Rhodopsin-like 0.60 0.04 <0.01 0.013 unknown
ST_Fas_Signaling_Pathway 0.80 0.52 <0.01 0.013 Pathway member

Another critical problem of GSEA is its relative ranking of
genes in a gene set in relation to the other genes outside of
the gene set. The use of a relative measure in GSEA, rather
than an absolute measure, means that important informa-
tion on the degree of association between each gene and
the binary phenotype is discarded. For example, the leuke-
mia dataset had 80% of its 10,056 individual genes with
an FDR < 0.25. Regardless of whether such clear differ-
ences in gene expression across the binary phenotype are
determined by biology, or by more mundane (and biolog-
ically irrelevant) differences in sample collection or han-
dling, a gene-set analysis of this dataset should find that
many gene sets are associated with the phenotype. GSEA,
however, found only five gene sets with an FDR < 0.25 in
the leukemia-comparison analysis, inconsistent with the
individual-gene analysis results. The cause of the incon-
sistency is the use of the relative ranking in GSEA. In con-
trast, SAM-GS found all gene sets in the leukemia dataset
to have an FDR<0.01.

A related, perhaps less serious, issue with GSEA is that,
when an individual gene set is of biologic interest, the
SAM-GS analysis requires measurement only of the
expression of the genes in the gene set to construct the test
statistic (except the calculation of s;), whereas GSEA
requires measurement of the expression of all genes to
provide a relative ranking of all genes. The expression lev-
els of the other genes should not affect the inference on an
individual gene set of interest, if the individual set is,
indeed, the only biologically relevant variable.

Another problematic aspect of GSEA is that its enrichment
score considers genes with positive and negative associa-
tions with the phenotype separately, even when they have
the same degree of associations with the phenotype. Thus,
a gene set with a mix of genes with positive and negative
associations with the phenotype, although biologically
plausible (for instance, due to feedback loops in path-
ways), is not appropriately evaluated for association with
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the phenotype by the enrichment score and, therefore, has
an improperly low probability of being detected as a phe-
notype-associated gene set by GSEA.

A gene-set analysis utilizes existing biologic knowledge
that maps individual genes into gene sets or pathways.
Because of the utilization of existing knowledge in the
analysis, a well conducted gene-set analysis can be
remarkably powerful. The p53 analysis illustrates this
point. Although a very small proportion of individual
genes had low p-values in the p53 dataset, SAM-GS indi-
cated larger proportions of gene sets with low p-values.
This is because a valid gene-set analysis would take into
account a tendency among multiple genes in a gene set.
Thus, even if the association of each gene with the pheno-
type is only moderate, a collection of such genes can be
indicated as a phenotype-associated gene set; genes in a
gene set need not have the same degree and direction of
association with the phenotype for the gene set to be iden-
tified as statistically significant by SAM-GS.

In addition to the leukemia-comparison analysis dis-
cussed above, which showed an advantage of SAM-GS
over GSEA empirically through the consistency of the
gene-set analysis results with the individual-gene analysis
results, the other two DNA-microarray analyses (sex- and
p53-comparison analyses) provided empirical biologic
evidence supporting the advantage of SAM-GS over GSEA.
Regarding the sex-comparison analysis, Subramanian et
al. [3] specifically argue that they would not expect to find
enrichment for bands on the X chromosome because
most X-linked genes are randomly silenced in females
and, therefore, are unlikely to show a male-female (gene-
dose) difference. This argument has general merit; how-
ever, in the specific case of the chrXp22 gene set, it does
not hold because, on the distal portion of the short arm of
X, there is a cluster of genes that escape X-inactivation.
Indeed, the top five genes of the chrXp22 gene set escape
inactivation: two of the five are members of the X-inacti-
vation-escape gene set whose FDR was < 0.01 by both
methods; and the other three have been reported to
escape X-inactivation [6-8].

The differences in the results of the p53-comparison anal-
ysis illuminate biologically relevant performance differ-
ences between the two methods. It is appropriate to ask
whether the 31 additional pathways identified by SAM-GS
over GSEA are plausibly associated with the presence vs.
absence of p53. Of the 31 gene sets, 11 actually involve
p53 directly as a member. A further 6 gene sets directly
involve the extrinsic and intrinsic apoptosis pathways [9],
3 involve the cell-cycle machinery, and 3 involve
cytokines and/or JAK/STAT signaling [10]. Each of these
12 gene sets, then, is in a direct, well-established relation-
ship with aspects of p53 signaling. Of the remaining 8

http://www.biomedcentral.com/1471-2105/8/242

gene sets, 6 have plausible, if less well established, links
with p53. In the Ck1 pathway, cdk5 phosphorylates p53 so
the presence vs. absence of p53 is likely to modify pro-
foundly the effectiveness of this pathway [11]. Ets1 (ets
pathway) has been shown to be essential, in mouse
embryonic stem cells, to maintain the ability to undergo
UV-induced, p53-dependent apoptosis. Etsl, more
broadly, may be necessary for p53-dependent gene trans-
activation [12]. Akt and p53 are, respectively, essential to
the transduction of anti-apoptotic and pro-apoptotic
pathways. There is an integrated negative feedback loop
whereby p53-dependent down regulation of Akt promotes
cell death but cell survival signals will recruit Akt, leading
to activation of Mdm?2 and the inhibition of p53-depend-
ent apoptosis [13]. This may account, in part, for the asso-
ciation between the presence vs. absence of p53 and
differences in the SA-TRKA receptor pathway. Proline oxi-
dase is induced by p53 and mediates apoptosis via a cal-
cineurin-dependent pathway [14]. Coproporphyrinogen
oxidase (CPO) is a key compound of the MAP 00860 por-
phyrin/chlorophyll metabolism gene set. It catalyzes a
rate-limiting step in heme biosynthesis and may contrib-
ute to mitochondrial redox balance. It has recently been
shown to be regulated by p53 [15]. Finally, the Wnt and
p53 pathways have also been shown to be linked via pro-
apoptotic Dkk1, a wnt antagonist [16].

SAM-GS
N )
Regarding the form of SAMGS test statistic, Zdi is sim-
i=1
ply the L,-norm of the t-like-statistic vector d = (d,, d,, U,
dy,)), the length of the line segment joining the two pheno-

types' mean gene-expression vectors of a gene set S. Our
null hypothesis is that the mean vectors of expressions of
genes in a gene set S do not differ by the phenotype of
interest (i.e., this line-segment length is zero), a two-sam-
ple multivariate mean test in statistics. The classical mul-
tivariate statistics method for a two-sample mean test,
Hotelling's T2, addresses this question, but it cannot be
applied when |S| > 1, + n, - 2, where n, and n, are the sam-
ple sizes in the two groups defining the phenotype D. We
would like to emphasize that this condition is often
unmet in gene-set analyses of DNA microarray data.
Dempster [16,17] introduced a test statistic for comparing
highly multivariate samples of two groups, an alternative
for Hotelling's T2, when the number of multivariate meas-
urements is large, relative to the sample sizes. Using
Dempster's test in the context of microarray data, a poten-
tial candidate for a test statistic to be used in Step 2 of
SAM-GS, would be the weighted Dempster's (WD) statis-
tic:
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S| S|
WD = %dﬁ /E[ﬁdﬂ,
i=1 i=1
.38l
where E[Z diz] in the denominator is the average of (n; +
i=1
n, - 2) statistically-independent quantities that have the
N
same mean and variance as the numerator Zdlz under
i=1
the null hypothesis, created by an orthonormal transfor-
mation of multivariate gene expressions in the set S. This
test statistic seems to have the advantage of taking into
account the multivariate structure of the gene expression
measurements in a gene set by dividing the numerator,
the L,-norm of the mean-vector difference, by its approxi-
mate expectation. However, since a permutation-based
test is used, the denominator of WD statistic is unneces-
sary: as Dempster [18] stated, a permutation test based on
the numerator only is equivalent to using the quotient.
Given the computational simplicity and the use of permu-
tation in SAM-GS, the L,-norm used in SAMGS is pre-

ferred over WD.

S|
The L;-norm of d = (d;, dy, U, d)), 2| d; | can be consid-
i=1
ered, similar to Chung and Fraser [19] who proposed the
L,-norm as an alternative to Dempster's use of the L,-

norm. While one might expect the two norms to give sim-
ilar performances overall, since the L,-norm would be less

sensitive to extreme values than the L,-norm, the L;,-norm

may be less powerful in detecting a gene-set with a small
number of genes being strongly associated with the phe-
notype. Test 2 simulation above confirmed this point: as
the proportion of genes in a gene set that are correlated
with the phenotype (|r| = 0.6) becomes smaller than
approximately 30%, the two norms performs differently
and the L;-norm is less powerful in detecting the gene set

being associated with the phenotype (data not shown).

To account for multiple comparisons (statistical testing of
many hypotheses) when multiple gene sets are to be
tested, SAM-GS takes the same approach as SAM, estimat-
ing a gq-value, an upper limit for the FDR, for each gene set.
The g-value of a gene set can be determined solely from
the p-values of all gene sets tested [20]. The collection of
p-values of all gene sets contains information, not only on
the statistical significance of each gene for its association
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with the phenotype, but also on the proportion of gene
sets that are not associated with the phenotype, the "null
gene-set proportion." Note that the null gene-set propor-
tion is determined by biology: the phenotype is either bio-
logically associated or not associated with each gene set.
However, the p-value is a function of sample sizes and
noise levels in gene-expression measurements as well as
the degree of underlying biological associations. Thus,
even if a strong biologic association between a gene set
and the phenotype exists, because of small sample sizes
and/or high measurement noise levels (features of many
DNA microarray observations and experiments), the p-
value of the gene set can be large. This is another aspect of
the p53 analysis discussed above, where many gene sets
have low FDR estimates in spite of the fact that the p-val-
ues are not correspondingly low: this is due to an esti-
mated small null gene-set proportion which lowers FDR
estimates.

Conclusion

In conclusion, GSEA is subject to some serious problems
as a method for gene-set analysis, potentially leading to
unnecessarily high false-positive and false-negative dis-
covery rates. SAM-GS, based on the SAM t-like statistic, is
proposed as an alternative gene-set analysis method that
is statistically sound and has advantages, as illustrated in
this paper, from both statistical and empirical biologic
perspectives.

Methods

GSEA for gene-set analyses

A gene-set analysis for an a priori defined set of genes S in
atotal of N genes, on a DNA microarray is a test of the null
hypothesis that the expression pattern of S is not associ-
ated with a phenotype of interest, D. To simplify the dis-
cussion, we will consider only a phenotype with two
categories, {0, 1}: e.g. presence or absence of a disease. As
biologists are often interested in testing multiple gene-sets
{S; ... S}, we will also consider a gene-set analysis for
multiple gene-sets, following our discussion of an individ-
ual gene-set.

The revised version of GSEA by [3], for an individual gene-
set, proceeds as follows.

GSEA Steps

1) Compute the Pearson correlation (or another metric)
between each of the N genes with a phenotype D, where
the correlation or another metric of the ith gene is denoted
by r;.

2) Order the N genes by their correlation values from the
maximum to the minimum (the ordered list is denoted by
L).
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3) Compute the Enrichment Score (ES): start with ES = 0;

walk down the ranked list L, from the top rank (i = 1) to

the last rank (i = N), increasing ES by | 7; | /2| 1j | if the ith
jes

gene belongs to the gene set S, and decreasing ES by 1/(N

- |S|) otherwise, where|S| is the number of genes in the set

S.

4) Take the absolute value of the maximum deviation
from zero of the ES values among the N genes as the test
statistic for the gene set S.

5) Permute the labels of the phenotype D and repeat steps
1)- 4). Repeat until all (or a large number of) permuta-
tions are considered.

6) Statistical significance for the association of § and D is
obtained by comparing the observed value of the test sta-
tistic from 3) and its permutation distribution from 5).

The initial version of GSEA proposed in Step [2] used 1/
|S], instead of | 7; | /Z| 1j |, for increasing the ES for each
jes
gene in S. The use of |r; |/2|rj|, or more generally
jes

| P/ 2| 7', was motivated by the need to reduce the
jeSs

ES values and the statistical significance of sets clustered
near the middle of the ranked list (see Figure 1 and Table
1 in [3]). Although the modified version of GSEA was
aimed at reducing the statistical significance of sets not
exhibiting biologically relevant correlation with the phe-
notype, serious problems remain with GSEA as demon-
strated here. To run GSEA, we used the Desktop
application downloaded from [21], and the options spec-
ified in [3], that is, the Pearson correlation of the gene
expressions with the phenotype to rank the genes, and
weighted ES.

The proposed method, SAM-GS

The main aim of analyzing an individual gene-set is to dis-
tinguish between the two biologic conditions (pheno-
type) based on multivariate measurements of the
expression of genes in the gene set. GSEA tests a null
hypothesis that rankings of the genes in a gene set accord-
ing to an association measure with the phenotype catego-
ries (e.g., correlation) are randomly distributed over the
rankings of all genes, using Kolmogorov-Smirnov statistic.
SAM-GS, on the other hand, tests a null hypothesis that
the mean vectors of expressions of genes in a gene set does
not differ by the phenotype of interest.
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Our proposed SAM-GS method is based on individual t-
like statistics from SAM, addressing the small variability
problem encountered in microarray data, i.e., reducing
the statistical significance associated with genes with very
little variation in their expressions. SAM-GS for an individ-
ual gene-set can be summarized in a few steps.

SAM-GS Steps
1) For each of the N genes, calculate the statistic d as in
SAM for an individual-gene analysis:

4 ()= x2()
' s(i) + s

where the 'gene-specific scatter' 5(i) is a pooled standard
deviation over the two groups of the phenotype, and s, is
a small positive constant that adjusts for the small varia-
bility encountered in microarray data [1].

2) Compute the SAMGS test statistic corresponding to set
S:

N
SAMGS =Y d?
i=1
3) Permute the labels of the phenotype D and repeat 1)
and 2). Repeat until all (or a large number of) permuta-
tions are considered.

4) Statistical significance for the association of S and D is
obtained by comparing the observed value of the SAMGS
statistic from 2) and its permutation distribution from 3).

Note that SAM-GS initially measures the gene-expression
difference across the binary phenotype in each gene i of
the gene set S using d;, where the differences are standard-
ized across the genes for their degrees of scatter with the
denominators of d;'s, {s(i) + s,}. It then summarizes these
standardized differences in all the genes in the gene set S
by SAMGS. The analysis of multiple gene sets can be
accommodated in SAM-GS by estimating false discovery
rates (FDRs) from p-values of individual sets using the g-
value method of [20].

Gene-set simulation experiment

To illustrate the differences between SAM-GS and GSEA,
we compared them on the simple requisite properties (a),
(b), and (c), described in Results and Discussion, for any
method designed to perform a gene-set analysis. We per-
formed two tests using mouse-microarray data, simulat-
ing gene sets.

Test 1: Sample n genes by a simple random sampling as a
hypothetical gene set from a group of genes with no or
weak association with the phenotype, i.e., genes with |r]|
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<c¢, where ¢ is 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, or 0.5.
Test the association of this n-gene set with the phenotype.
Repeat 100 times to check property (a) for each value of c.

Test 2: Sample n genes by a stratified random sampling as
a hypothetical gene set such that half of the genes in the
set are moderately or strongly associated with the pheno-
type with |r| <¢, and the other half with |r| <c where ¢ is
0.4,0.5,0.6,0.7, 0.8, or 0.9. Test the association of this n-
gene set with the phenotype. Repeat 100 times to check
property (b) for each value of c.

In Test 1, our simple random sampling from the no-or-
weak association region creates gene sets that approximate
to the null hypothesis such that their members are con-
sistently not associated with the phenotype (e.g., they
have a mixture of genes with correlations between -0.01
and 0.01 when ¢ = 0.01) or are variably weakly associated,
or not associated (e.g., correlations between -0.4 and 0.4,
including many around zero, when ¢ = 0.4). These gene
sets should not be called significantly associated with the
phenotype. In Test 2, as half of the genes in the gene set
are moderately or strongly associated with the phenotype,
these gene sets should be identified as significantly associ-
ated with the phenotype.

The two tests were performed based on the data from the
mouse-microarray kidney transplant study. In this study,
we compared two experimental groups of mouse kidney
transplants: fully MHC mismatched allografts and MHC
identical isografts. A more detailed description of the
study is given in the Appendix. Briefly, in both groups, the
kidneys have undergone the same surgical procedure of
transplantation, but in addition the allograft develops the
histologic lesions of rejection due to the immune
response by the host, while the isograft does not develop
these lesions due to an identical genetic background. We
have studied a full timecourse between days 1 and 42 post
transplant; the alloimmune response is fully developed at
days 5-7, and the injury response in the isografts also
peaks at days 5-6. To simplify the comparison between
rejecting allografts and non-rejecting isografts, we have
therefore selected the data from days 5 and 7 as the basis
of this analysis. A total of 12 samples were analyzed: 3
samples each at day 5 and day 7 in allografts, 4 samples in
day 5 isografts, and 2 samples in day 7 isografts. The
microarray data were obtained by hybridizing mRNA to
Affymetrix MOE 430 2.0 microarrays. These arrays con-
tain 45,099 probe sets whose expression was reduced
from the probe level to the gene level of 16,612 unique
genes by a method described in the GSEA website, by tak-
ing the maximum probe set expression of each gene in
each sample. We considered a gene set size n of 10, 30, 50,
and 100. We ran the same gene-set simulation experiment
using the three datasets (sex, p53, leukemia). Results and
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relevant discussions are given separately as an additional
file [see Additional file 1].

Gene-set analyses of three datasets with biologically
defined gene sets

We compared the performance of the two methods, GSEA
and SAM-GS, on the analyses of biologically defined gene
sets using three microarray datasets considered in [3]:
male vs. female lymphoblastoid cells; p53 wild-type vs.
mutant cancer cell lines; and ALL vs. AML leukemia cells.
The comparison used GSEA results for the three examples,
downloaded from GSEA web-page, [21]. We used the
datasets and gene-set subcatalogs C1 and C2 from the
above web address to be exactly comparable with the
GSEA paper [3]. The same datasets and subcatalogs were
used for both GSEA and SAM-GS, only including gene sets
with sizes between 5 and 500, following the GSEA paper

3]

We did not analyze the lung adenocarcinoma data of
three studies (Boston, Michigan, and Stanford studies) in
[3] as such an analysis is methodologically problematic:
the Michigan study included only patients with stage I or
III lung adenocarcinoma, whereas the Boston and Stan-
ford studies did not restrict the stages; the binary pheno-
type of interest, death, was defined using censored
survival data, where the length of follow-up to ascertain
death varied appreciably both by patient and across stud-
ies (the median follow-up was 49.9, 29.5, and 17.5
months in the Boston, Michigan, and Stanford studies,
respectively), leading to inconsistent ascertainment of the
binary phenotype (death) across patients and studies
(patients with a longer follow-up had a higher chance of
being ascertained to have died); and no adjustment was
applied to control for possible differences across the stud-
ies in treatment, tumor characteristics, and demographics
of the patients.

Abbreviations
Gene Set Enrichment Analysis (GSEA)

Significance Analysis of Microarray for Gene Sets (SAM-
GS)
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Appendix

Mouse-microarray kidney transplant study

A histogram of Pearson correlation with the phenotype
for 16,612 individual genes in the mouse-microarray kid-
ney-transplant study is given separately as an additional
file [see Additional file 2].

Mice

Male CBA/] (CBA) and C57Bl/6 (B6) were obtained from
Jackson Laboratory (Bar Harbor, ME). Mice were main-
tained in the Health Sciences Laboratory Animal Services
at the University of Alberta. All maintenance and experi-
ments conformed to approved animal care protocols.

Transplants

Non-life-supporting renal transplants were performed
across full MHC and non-MHC disparities as previously
described [22] using wild-type CBA mice as donors and
wild-type B6 or wild-type CBA as recipients. Hosts did not
receive immunosuppression. Naive kidneys of the appro-
priate strain and isografts served as controls. Kidneys were
harvested on days 1, 2, 3, 4, 5, 7, 14, 21 and 42 post trans-
plant as previously described [22], snap-frozen in liquid
nitrogen and stored at -70°C until further analysis. CBA
allografts rejecting in wild type hosts (B6) at days 1, 2, 3,
4,5,7,14, 21 and 42 were designated allo.CBA D1-D42;
isografts (CBA into CBA) named iso.CBA. Our mouse
model of renal transplants across MHC disparities (CBA
into B6), studied over the timecourse between days 1-42
simulates the development of the lesions of T cell medi-
ated rejection that we observe in human biopsies. The iso-
grafts (CBA into CBA) serve as controls that have
undergone the same surgical procedure without evoking
an alloimmune response.

Microarrays

We performed microarray analysis on normal mouse kid-
neys (NCBA), in allo.CBA D1-D42, and isografts D1-21.
RNA extraction, dsDNA and cRNA synthesis, hybridiza-
tion to MOE430 2.0 oligonucleotide arrays (GeneChip,
Affymetrix®), washing and staining were carried out
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according to [24] and as previously described[25]. Equal
amounts of RNA from 3 mice (20-25 pg each) were
pooled for each array. Data was normalized using RMA
using GeneSpring™ software (Version 7.2, Silicon Genet-
ics, CA, USA) as described previously [25].

Additional material

Additional file 1

Gene-set simulation experiment results with the sex, p53, and leukemia
datasets. The results of the gene-set simulation experiments using the three
datasets are given.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-242-S1.pdf]

Additional file 2

Histogram of Pearson correlation with the phenotype in the mouse-micro-
array kidney-transplant study. Histogram of Pearson correlation with the
phenotype for 16,612 individual genes in the mouse-microarray kidney-
transplant study.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-242-82.pdf]
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