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Abstract
Background: Uncovering cellular roles of a protein is a task of tremendous importance and complexity that
requires dedicated experimental work as well as often sophisticated data mining and processing tools. Protein
functions, often referred to as its annotations, are believed to manifest themselves through topology of the
networks of inter-proteins interactions. In particular, there is a growing body of evidence that proteins
performing the same function are more likely to interact with each other than with proteins with other functions.
However, since functional annotation and protein network topology are often studied separately, the direct
relationship between them has not been comprehensively demonstrated. In addition to having the general
biological significance, such demonstration would further validate the data extraction and processing methods
used to compose protein annotation and protein-protein interactions datasets.

Results: We developed a method for automatic extraction of protein functional annotation from scientific text
based on the Natural Language Processing (NLP) technology. For the protein annotation extracted from the
entire PubMed, we evaluated the precision and recall rates, and compared the performance of the automatic
extraction technology to that of manual curation used in public Gene Ontology (GO) annotation. In the second
part of our presentation, we reported a large-scale investigation into the correspondence between communities
in the literature-based protein networks and GO annotation groups of functionally related proteins. We found a
comprehensive two-way match: proteins within biological annotation groups form significantly denser linked
network clusters than expected by chance and, conversely, densely linked network communities exhibit a
pronounced non-random overlap with GO groups. We also expanded the publicly available GO biological process
annotation using the relations extracted by our NLP technology. An increase in the number and size of GO groups
without any noticeable decrease of the link density within the groups indicated that this expansion significantly
broadens the public GO annotation without diluting its quality. We revealed that functional GO annotation
correlates mostly with clustering in a physical interaction protein network, while its overlap with indirect
regulatory network communities is two to three times smaller.

Conclusion: Protein functional annotations extracted by the NLP technology expand and enrich the existing GO
annotation system. The GO functional modularity correlates mostly with the clustering in the physical interaction
network, suggesting that the essential role of structural organization maintained by these interactions.
Reciprocally, clustering of proteins in physical interaction networks can serve as an evidence for their functional
similarity.
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Background
Modularity in biological networks was proposed more
than a decade ago as a way for a cell to organize functional
blocks and maintain specificity of cellular regulation [1].
Since then, numerous attempts to detect modules in bio-
logical networks have been described [2-4]. In many of
these studies, the Gene Ontology [5] (GO) has been used
as the "gold standard" to validate the functional relevance
of the found network clusters [6,7]. Being the de facto
international standard for protein functional annotation,
GO constantly evolves, changing both classification hier-
archy and description of individual proteins. Structurally,
GO is a directed acyclic graph of terms (nodes) connected
with links representing two types of term relations: "is-a"
and "part-of." GO has three major branches covering cor-
responding aspects of protein functions: biological proc-
ess, molecular function, and cellular components. The
approaches for assigning GO terms to proteins can be
grouped in two major classes.

The first class uses predictive methods to transfer existing
annotation to new or experimentally uncharacterized pro-
teins. These methods utilize different learning techniques
(Bayesian networks, decision trees, rule learning, etc.) to
assign GO annotation (GOA) based on: i) similarity of
sequence or sequence features, including amino acid and
domain composition of proteins and 3D structure [8-16],
ii) similarity of expression profiles derived from high-
throughput microarray experiments [17-21], and iii) anal-
ysis of protein interaction networks [22,23].

The second class of approaches determines protein's func-
tion by dedicated experiments. The experimental facts,
describing additional functions of known proteins as well
as roles of the uncharacterized proteins, are collected and
systematized by reading and analyzing scientific litera-
ture. The sheer number and the rate of production of sci-
entific publications make a comprehensive manual
analysis of scientific literature nearly impossible [24].
Therefore, various text-processing techniques for auto-
matic extraction of protein function information from sci-
entific publications have been proposed. Raychaudhuri et
al. [25] used a two-step approach: assigning GO terms to
PubMed abstracts based on the abstracts' similarity and a
training set of pre-annotated abstracts, and then assigning
identified GO terms to proteins based on statistical analy-
sis of their occurrences in PubMed abstracts. Chiang et al.
[26] proposed another technique, in which GO terms
were first detected in text, and then GO-to-protein associ-
ations were extracted by unsupervised learning of linguis-
tic patterns from a training set and employing Bayesian
statistics. A more sophisticated approach is described by
Koike et al. [27], in which GO terms were detected in raw
text and, by using shallow parsing techniques, protein-GO
associations were extracted. This approach also included

extensive augmentation of GO terms prior to the detec-
tion step.

So far, it has not been comprehensively demonstrated
whether these two approaches to annotate protein with
GO terms yield mutually consistent results. The purpose
of our study is to obtain such cross-validation and to
establish the accuracy and credibility of the machine-
based assignment of protein function. Reciprocally, we
want to confirm conclusions about protein function
drawn from microarray experiments and protein network
analysis that use the GO annotation. Our paper first
describes a new, fully automated method for literature-
based annotation of proteins with "biological process"
GO terms and its consistency with existing GO annota-
tion. Other two GO branches "Cellular component" and
"Molecular function" have smaller number of groups and
can be annotated with high accuracy by methods based on
sequence homology. Second, we show a match between
the GO groups and putative functional complexes, deter-
mined as clusters in protein networks.

In the first part of our work, we developed advanced lin-
guistic tools for detecting GO terms in text and extracting
protein-GO associations with accuracy more than 90%
compared to the manual text processing. When applied to
the entire PubMed database, it has extracted more than
400,000 individual protein-GO associations. We present
the results of a comparison of the extracted annotation to
the existing public annotations that supports the validity
of the former one. To validate our NLP approach, we
uncover a significant overlap between the newly obtained
and existing GO annotations and also discuss possible
reasons for discrepancies between them. In the second
part of our work we demonstrate that proteins belonging
to a GO group are much more likely to interact with each
other than expected by pure chance (in random network
re-wiring). The observed correlation is further confirmed
by the complementary observation that virtually every
densely linked network community has a strongly non-
random overlap with one or several corresponding GO
groups.

Results
Evaluation of protein-GO association extracted by 
MedScan technology
The extension of the MedScan natural processing technol-
ogy to detect GO terms and protein-GO association is
described in the Methods section and in Additional file 1.
We have applied our GO term matching algorithm to the
entire 2004 release of Medline and have identified 3.3
million instances that represent 3,562 unique "Biological
process" GO terms. Interestingly, 380 of the most fre-
quent GO terms are responsible for 90% of all matches,
while 1,128 GO terms were responsible for 98% of all
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matches. We have manually inspected several thousand
randomly selected matches and determined that GO
terms are identified with an accuracy above 98%.

We have obtained 407,044 individual protein-GO associ-
ations from Medline 2004 release using the existing Med-
Scan dictionary for mammalian proteins and new GO
term dictionary described in the Methods section. Because
many associations were extracted multiple times, we have
compressed them into 72,390 unique protein-GO associ-
ations for 8,400 mammalian proteins. After compression,
we assigned each association a reference count indicating
the number of times this association was extracted. 62%
of associations had only one reference; 10.6% associa-
tions had more than five references.

To estimate the accuracy of protein-GO association extrac-
tion, we have randomly selected 193 sentences, which
contain at least one pair of a protein and a GO term and
manually extracted 107 protein-GO associations from
them. MedScan extracted 94 protein-GO associations
from the same sentences. Upon comparison with manu-
ally extracted associations, we found that only nine rela-
tions were incorrect. This limited evaluation put the
precision of the automatic extraction at 90.4% and recall
at 79.4%. Hence the standard F-score for our extraction

method calculated as  is equal to 0.85.

To better measure the accuracy of MedScan extraction we
have manually counted the false positives in two random
samples of associations extracted by MedScan. First sam-
ple had 13.6% false positive rate (41 out of 301 associa-
tions), second sample had 15.3% false positive rate (46
out of 300 associations). This made the average MedScan
precision 87.2 ± 2.9 %.

We then compared the entire set of extracted annotations
with the complete publicly available annotation for mam-
malian proteins. GO annotations for human, mouse, and
rat provided by EBI was obtained from the Gene Ontology
Website and combined together. For comparison with our
extracted annotation, we retained only annotations repre-
senting the "Biological process" branch of the ontology.
We have mapped 69,255 out of 100,478 protein annota-
tion records from public annotation to Entrez Gene iden-
tifiers that are also used by MedScan. We found that the
majority of the remaining 31,223 unmapped associations
belonged to unverified protein records (TREMBL, pre-
dicted transcripts, etc.). The 69,225 annotation records
were further reduced to 44,254 unique [protein ID, GO
ID, evidence code] triplets. To compare public and MedS-
can annotation, we expanded both GOAs by adding every
parent GO group of the original annotation to a protein.

We found that 78,346 protein-GO associations were iden-
tical between expanded public and MedScan GO annota-
tions. This constituted 20% of public expanded
annotation and 24% of MedScan expanded annotation.
We also determined that 6,986 proteins had at least one
identical annotation and on average each protein had
43% of annotations identical between public and MedS-
can GOAs. The expanded public annotation had on aver-
age twenty GO groups per protein covering 19,946
proteins, while MedScan GOA had 39 GO groups per pro-
tein covering 8,246 proteins. The distributions of the GO
annotations among proteins for public, MedScan, and
combined GOAs are shown in Figure 1.

Significant portion of public GO annotation was created
by human curators reading scientific articles. This allowed
us to compare MedScan performance with results of
human annotation using the same literature corpus. We
have identified 2,864 references that were used by EBI
curators to produce 14,544 protein-GO group associa-
tions annotating 6.694 proteins with 1,977 biological
processes. MedScan has extracted 8,437 protein-GO
group associations from the same abstracts annotating
2,655 proteins with 590 biological processes. The under-
performance of MedScan is easy to explain because EBI
curators used full-text articles while MedScan extracted
annotation only from the abstract text. We have focused
further comparison only on 512 GO groups that were rec-
ognized by both MedScan and EBI curators. This allowed
us to correct for the absence of full article text during Med-

2 ⋅ ⋅presision recall
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Distribution of the number of protein-GO association for three GO annotationsFigure 1
Distribution of the number of protein-GO association for 
three GO annotations. Horizontal axis, GO degree – 
number of GO associations; Vertical axis, Probability of GO 
degree – fraction of proteins with a given GO degree; Red 
line – public GOA, green – MedScan GOA, black – combined 
GOA.
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Scan extraction as well as for the absence of some GO
groups in MedScan dictionaries. We found that MedScan
has extracted 4,649 unique protein-GO associations,
while EBI curators extracted 1,138 protein-GO associa-
tions for the same set of GO groups. Thus, EBI curators
extracted three times less protein-GO associations than
MedScan did from the same set of articles and GO groups.
This number surprises even more if we remember that EBI
curators read the entire article while MedScan used only
abstract text for extraction. To prove that human curators
miss many true protein-GO associations we have identi-
fied 317 protein-GO associations that were identical
between EBI and MedScan annotations and were
extracted from the same set of 2,864 articles by both
approaches. Again, 821 associations missing from MedS-
can annotation among 1,138 associations extracted by
curators can be attributed in large to the fact that MedScan
extracted information from abstract text only. Surprisingly
however, only 180 out of 317 identical associations were
derived from the same article by both MedScan and cura-
tor. Thus, EBI curators missed at least 137 true protein-GO
associations when reading the 2,864 articles.

The comparison with EBI manual curation has also
allowed us to compare MedScan with other NLP methods
for automatic extraction of protein-GO associations that
were evaluated in BioCreAtIvE task 2.2. According to the
original article "the purpose of sub-task 2.2 resembled the typ-
ical human annotation procedure, in the sense that the partic-
ipants had to return the annotations derivable from a given
protein-article pair. The annotations which are contained
within the articles should thus be automatically identified and
the corresponding GO-term returned together with the support-
ing text passage"[28]. Assuming the worst case scenario the
137 true protein-GO associations were not simply missed
but rejected by EBI curators. For example, they could have
dismissed ambiguous and hypothetical statements that
MedScan interpreted as true positives (see discussion sec-
tion for more details about MedScan sources of errors). In
this case, we can add MedScan performance results to
table 5 from Blaschke et al [28] using the numbers from
the aforementioned comparison with EBI curation:

Participant: Daraselia et al.; Run: 1; Evaluated results: 317;
Perfect prediction: 180 (56.8%).

Because these numbers assume the worst case scenario
they give the lower estimate for MedScan performance rel-
ative to other NLP methods. Using this numbers we posi-
tion MedScan relative to other methods for automatic GO
annotation on Figure 2.

Measuring identical records, however, is not adequate for
comparing two hierarchical annotations due to ambiguity
in the annotation process (see the Discussion section for

more details). We therefore developed a hierarchical eval-
uation measure as described in the Methods section. This
method evaluates the similarity between two hierarchical
annotations by a score ranging between zero and one. Fol-
lowing the guidelines provided by the GO Consortium,
44,254 unique GO annotation records were split in three
groups, reflecting the quality of annotation according to
their evidence code:

1) A high-confidence group containing the manual anno-
tation with evidence codes TAS, IDA, and IC;

2) An average-confidence group containing mainly the
annotation derived from high-throughput experiments
with evidence codes IMP, IGI, IPI, ISS, IEP, and NAS;

3) A low-confidence group containing sequence-similar-
ity-based "electronic" annotation with evidence codes
IEA, ND, and NR.

Table 1 shows hierarchical similarities among the three
classes of public annotation and to the MedScan annota-
tion. In addition, we have measured the similarity of all
annotations to a randomized annotation in order to esti-
mate the statistical significance of the similarities. We
found that all annotations, including the annotation gen-

Comparison of MedScan performance with other methods for automatic protein annotation reported in Blaschke et al [28] for BioCreAtIvE task 2Figure 2
Comparison of MedScan performance with other methods 
for automatic protein annotation reported in Blaschke et al 
[28] for BioCreAtIvE task 2.2. The figure is copied from Fig-
ure 4 of Blaschke et al [28] and MedScan performance added 
as one more method. Each point represents a single run sub-
mitted by the participants of task 2.2. User 1: Chiang et al. 
[45], 2: Couto et al. [46], 3: Ehrler et al. [47], 4: Ray et al. 
[48], 5: Rice et al. [49], 6: Verspoor et al. [50]. MedScan per-
formance was estimated by comparison with the protein-GO 
annotation extracted by human curators from European Bio-
informatics Institute (EBI).
Page 4 of 17
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:243 http://www.biomedcentral.com/1471-2105/8/243
erated by MedScan, are similar to each other with a score
of 0.51 on average, while the average similarity score to
randomized GOA was 0.275. This result is discussed fur-
ther in the Discussion section.

Construction of pathways using GO annotations
To investigate network clustering within the functional
modules and to further validate MedScan GO annotation,
we have constructed several collections of pathways for
three GOAs: public biological processes GOA (public
GOA), MedScan biological processes GOA (MedScan
GOA), biological processes GOA combining MedScan
and public annotation (combined GOA). A pathway con-
tains only those proteins from a GO group that interact
with each other; the protein-protein interactions were
taken from the ResNet 4.0 database described previously
[29]. Further details of pathway composition procedure
can be found in the Methods section. The manual inspec-
tion of pathways built from Biological processes GOAs
showed that interactions used for their construction are
relevant to the corresponding biological processes. The
interactions describe the formation of protein complexes
involved in a biological process, as well as regulatory
events between complexes and upstream regulators such
as cytokines or transcription factors. The cytokines also
appear as downstream molecules regulated as a result of a
biological process.

More than half of GO groups did not contain any pro-
teins. Upon inspection we found that the majority of
empty GO groups were irrelevant for the mammalian spe-
cies. Because we have used only the mammalian protein
names dictionary for extraction of protein-GO associa-
tions, while GO terms have been identified in the text
regardless organism specificity, we believe that this obser-
vation provides additional support for the validity of
annotations extracted by MedScan.

Summary of the pathways' characteristics is shown in
Table 2. About 65% of GO groups containing more than
one protein produced a pathway in all three GOAs. We
found that the MedScan GOA allows construction of
about the same number of pathways as the public GOA.
However, the number of pathways increased 1.5 times
when these two GO annotations were combined. This

number indicates that MedScan GOA adds functionally
relevant proteins to the public GO groups, and allows the
construction of higher number of biological processes
pathways. The utility of these pathways for analysis of the
high-throughput biological data is detailed in the Discus-
sion section.

Higher-than-average number of protein interactions 
within GO annotations
To check the hypothesis that cellular functional modular-
ity is achieved by the increased link density in the molec-
ular interaction network and to further study MedScan
extraction accuracy, we then investigated whether proteins
within a GO group had an increased probability to inter-
act with each other than with arbitrary network proteins.
Since the experimentally obtained physical interaction
networks have been already shown to cluster within GO
groups, we have analyzed the interaction networks
extracted from the literature. Networks of both physical
and regulatory protein interactions were taken from our
ResNet 4.0 database, described previously [29]. Unlike
pathways described in the previous section, the networks
contained all possible relations of only one type between
proteins in a GO group. In addition to three Biological
process GOAs described above, we analyzed two other
publicly available annotations, Cellular Components and
Molecular Function. We have compared the number of
links of each type between proteins within each GO group
to the number of links spanning the same set of proteins
in the randomized network. The degree-preserving net-
work randomization was accomplished by reconnecting
pairs of links, avoiding the steps leading to double links
and self-interactions [30]. The results of our analysis for
six types of protein networks, corresponding to different
relation types in ResNet 4.0, and for five Gene Ontology
branches are illustrated in Figure 3 and summarized in
Table 3. Our main conclusion is that the large fractions of
GO groups have the link density that is significantly
higher than expected by pure chance. This indicates a
strong correlation between functional annotation and
network link density, i.e., clustering, in ResNet 4.0 (Table
3).

We also found that the addition of MedScan GOA to the
public GOA did not affect the fraction of the GO groups

Table 1: Similarities of the three classes of GO public annotation to each other and to the GO annotation extracted by MedScan.

Annotations High confidence GOA Average confidence GOA Low confidence GOA MedScan GOA

High confidence GOA 1.0 0.46 0.52 0.52
Average confidence GOA 0.46 1.0 0.48 0.52
Low confidence GOA 0.53 0.45 1.0 0.51
Randomized GOA 0.25 0.23 0.27 0.35

The GO annotation classes are described in the Results section.
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that are densely linked, keeping it around 60% for the
physical interaction network. Thus, the addition of MedS-
can GOA does not affect the average quality of GO groups
as judged by the physical interaction link density. This fur-
ther validates the GO annotation extracted by MedScan.

Fraction of densely linked GO groups is higher in physical 
interaction network than in regulatory network
We investigated how the GO functional annotation mod-
ules clustered in each of the five types of relations in Res-
Net 4.0 and for ResNet 4.0 as a whole. The interactions in
ResNet 4.0 can be divided into direct physical (binding
and protein modification) and the remaining indirect reg-
ulatory links. Table 3 shows that the GO groups correlate
best with clusters from the direct physical interaction net-
work. The Regulation network has on average 2.2 times

fewer GO groups with high link density than the Physical
interaction network. For example, in the biological proc-
ess GOA obtained by combining public and MedScan
annotations, 59.2% of the GO groups had a number of
relations significantly higher than expected in the rand-
omized physical interaction network. For the Regulation
relations this number was only 21.5%. The number of sta-
tistically significant densely linked GO groups is even
smaller for the other types (Expression, Molecular transport,
and Promoter Binding) of regulatory networks.

Even more, the number of public GO groups with signifi-
cantly higher Regulation link density is almost three times
higher than that of the MedScan (Table 3). As a conse-
quence, the combined public and MedScan GO annota-
tion also shows the reduced correlation with link density

Table 2: Number of biological processes pathways constructed using different GO annotations

Annotation Number of proteins Number of connected proteins Number of groups with at least one protein/two proteins Number of 
pathways

Biological process GOA (public) 19,460 8,272 4,194/3,280 1,994
Biological process GOA (MedScan) 8,246 6,303 3,102/2,602 1,862
Biological process GOA (combined) 20,722 8,963 5,210/4,251 2,858

Pathways were constructed as described in the Methods section. The Public Biological process GOA is publicly available GO annotation; MedScan GOA – GO annotation 
obtained by MedScan technology, combined GOA – GO annotation combined from public and MedScan annotations; Cellular component GOA and Molecular function GO. 
The number of connected proteins is the number of proteins with at least one relation to another protein in the same pathway. The number of groups is the number of GO 
groups that contain not less than the specified number of proteins not necessarily connected to each other. The number of pathways is the number of such GO groups that 
contain at least two proteins connected to each other by one or more relations from the ResNet 4.0 database.

Table 3: Correlation between GO functional annotation and link density in networks from ResNet 4.0 database

Network 
Annotation

ResNet 4.0 Physical Regulation Expression Molecular 
Transport

Promoter Binding

Biological process 
GOA (public)

62.9% (1247/
1982)

64.1% (1247/
1946)

48.0% (909/1895) 28.8% (527/1833) 25.7% (383/1491) 8.3% (103/1234)

Biological process 
GOA (MedScan)

41.8% (777/1858) 56.2% (1026/
1825)

14.2% (262/1851) 7.4% (136/1836) 22.6% (389/1722) 7.6% (121/1595)

Biological process 
GOA (combined)

47.6% (1363/
2861)

59.2% (1662/
2809)

21.5% (595/2762) 13.8% (376/2722) 21.6% (524/2428) 6.6% (142/2166)

Cellular 
component GOA 
(public)

80.9% (361/446) 78.7% (351/446) 43.0% (165/384) 34.6% (128/370) 43.1% (118/274) 1.0% (2/209)

Molecular function 
GOA (public)

56.6% (489/864) 53.3% (434/815) 35.1% (269/767) 27.3% (196/719) 19.5% (99/507) 2.5% (9/357)

Table 3 shows the percentage of GO subnetworks with high link density for six network types in ResNet 4.0 for five GOAs. A GO sub-network 
was created by connecting all proteins within a GO group by all possible links from the given network type. All proteins that form child groups 
were included into the parent group recursively. The numbers in bold face indicate the fraction of these subnetworks that are densely linked, 
while the numbers in brackets show how this fraction was calculated. The first number in brackets indicates the total number of densely linked sub-
networks and the second number shows the total number of all GO sub-networks. ResNet 4.0 contains Physical interaction relations (Binding + 
Protein Modification) and regulatory relations (Regulation, Expression, MolTransport, PromoterBinding). The statistics for all networks was described 
previously [29] and is summarized in Table 5. Regulation network was considered without DirectRegulation relations indicating the regulation by 
means of physical interaction.
To compute the number of densely linked GO sub-networks, we have randomized corresponding network using the algorithm that preserves the 
number of interaction partners of each protein [30]. After 10 randomizations, we calculated the average number of relations and their standard 
deviation in every GO sub-network and compared them to the number of the original network relations in every GO group. We then counted 
number of GO groups for which the number of actual links is greater than the number of randomized links by at least five standard deviations. 
Assuming that the randomized number of links in a GO group is normally distributed, this means that the selected GO groups could have such 
elevated number of links by pure chance only with a p-value less than 10-6.
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in the Regulation network. This finding can be explained
by the observation that MedScan annotates highly cited
proteins with many different GO groups. The highly cited
proteins, such as insulin, MAPK1 or p53, are often hubs in
the regulatory network, being linked to many different
proteins including those in the GO groups different from
its own. This effectively reduces the relative number of in-
group links and, conversely, increases the connectivity
between the groups. To further support this explanation,
we found that the top 100 most connected proteins are
present in 51% of all pathways built from the public GOA,
in 88% of all pathways built from MedScan GOA, and in
77% of all pathways built from the combined GOAs. That
MedScan adds highly connected proteins to GO groups is
clearly visible in Figure 4, showing how the number of GO
annotations for a protein depends on the number of its
regulatory interacting partners. The regulatory hubs, how-
ever, are not necessarily hubs in the physical interaction
network and therefore do not reduce the density of phys-
ical links in the MedScan GO groups. This effect is exem-
plified by hormones and cytokines that physically interact
only with the corresponding receptors or extracellular car-
rier proteins yet regulate or are being regulated by many
biological processes and many proteins.

A comprehensive match between network clusters and 
functional annotation
To further support our claim that GO groups are usually
strongly intralinked, we looked at the correspondence
between the densely linked network clusters and GO
pathways from the other direction. We studied how well
the densely linked Binding network clusters, obtained
using solely the network topology information, matched
with the GO groups. The network clusters are produced
using an annealing in the network Potts model (see Meth-
ods and [31,32]). A typical single annealing run on the
ResNet binding network produces 40-100 densely linked
communities, each consisting of 8-80 proteins. We found
a perfect overlap between more than 90% of all found net-
work communities and corresponding GO groups, or
often whole hierarchical trees of them (Table 4). The
examples of strong correspondence between network
clusters and functional annotation are shown in Figures 5,
6, 7.

Discussion
MedScan performance for automatic GO annotation
We used the hierarchical evaluating measure (HM) sug-
gested in [33] to compare different annotation systems
(see Methods for more detail). The shortcomings of a
commonly-used alternative, the lowest common ancestor
measure [34], are summarized in [33]. A thorough inspec-
tion of the similarities between various GO terms shows
that the HM score appears to be strong and biologically
meaningful when it is above 0.7. A similarity score below
0.4 is almost biologically meaningless. Thus, the similar-
ity of 0.5, observed during comparison between the differ-
ent public and MedScan annotations, represents a
relatively weak correlation between two annotations. This
result was unexpected, given the apparent 90% accuracy
of protein-GO associations. To investigate the reasons for
the moderate level of similarity between the extracted and
public annotations, we identified GO groups that were
systematically mis-assigned between two annotations. To
identify these groups, we calculated the average similarity
of every GO group in the automatically extracted annota-
tion to its closest counterpart in public annotation. We
found that GO terms which correspond to a specific cellu-
lar process have the highest similarity between annota-
tions, while the frequently mis-assigned terms correspond
to either items deleted from the MedScan GO dictionary
or generic GO terms describing high-level signal transduc-
tion or transcriptional regulation processes, such as "pro-
tein amino acid dephosphorylation," "adenylate cyclase
activation," etc. These high-level functions are rarely
described directly in scientific literature, but can be
inferred from molecular classification of a protein. For
example, "regulation of transcription," "regulation of
transcription, DNA-dependent," or "positive regulation of
transcription from polymerase II promoter" can be

A scatter plot of the number of links of a randomized versus real binding network in the public cellular component GOAFigure 3
A scatter plot of the number of links of a randomized versus 
real binding network in the public cellular component GOA. 
All GO groups below the diagonal line have the number of 
randomized links lower the real ones. The error bars corre-
spond to the p-value 10-6 for normal distribution; that is, if 
the top of an error bar lies below the diagonal line, the prob-
ability that the corresponding GO group has this number of 
links by pure chance is equal or less than 10-6. It appears that 
only a few small GO groups are not linked densely enough to 
satisfy the 10-6 threshold.
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assigned to all transcription factors. These annotations do
not specify the biological process affected by a protein.
Therefore, we conclude that GO annotation extracted by
MedScan is biased towards proteins functions associated
with more specific cellular processes.

The limited similarities between different GO annotations
were documented at the BioCreAtIvE inter-annotator
experiment (Critical Assessment of Information Extrac-
tion systems in Biology) [35]. Their results showed that
there was a 39% chance of curators interpreting the text
exactly and selecting the same GO term, a 43% chance
that they extract a term from new/different lineage, and a
19% chance that they annotate a term from the same GO
lineage. Our evaluation of the GO annotation by MedS-
can is equivalent to the BioCreAtIvE task 2.2 [28]. The
NLP methods evaluated by BioCreAtIvE showed on aver-
age a 14% recall rate when compared with the manual

annotation. The marked difference between MedScan and
the NLP methods evaluated by BioCreAtIvE can be
explained by the following cumulative reasons:

1) Automatic extraction methods are developed by teams
of scientists who have their own standards in regards to
how to interpret statements in scientific texts for GO
annotation. Since the inter-annotator agreement test
revealed only a 40% concordance between two human
annotators, the 14% recall rate can be adjusted upwards
by the inter-annotator accuracy. This adjustment makes
the actual accuracy of NLP methods closer to 22%.

2) In our case, the human annotator was the developer of
the NLP algorithm for the GO annotation. Therefore, the
concordance between MedScan results and human evalu-
ation is much closer. The MedScan GO annotation recov-
ery rate adjusted downwards by the results of BioCreAtIvE
inter-annotator agreement experiment is about 31%. We
anticipate that a group of independent curators will report
this rate upon inspection of MedScan results. This down-
ward correction makes MedScan recovery rates closer but
still superior to other NLP methods.

In light of the 40% concordance in the BioCreAtIvE inter-
annotator experiments, one should not expect that the
objective recall of any NLP method including MedScan
will exceed 40% as well if measured against a the same lit-
erature corpus. We have confirmed this estimate by com-
paring MedScan performance with the performance of
Gene Ontology curators from EBI. We found 28% overlap
(317 out of 1,138) between protein-GO associations
extracted by MedScan and associations found by human
curators for the same set of GO groups in the same articles.
We also showed that human curators miss at least 10% of
the true facts described in the articles (137 out of 1,138).

Speed is a major advantage of the NLP methods. They can
process a vast amount of literature that cannot be read by
human annotators in a timely way. Our experience with
MedScan shows that the estimates based on the process-
ing of a limited number of articles can significantly under-
estimate the "global" recovery rate of the NLP technology.
This happens due to the high redundancy of scientific lit-

Dependence of protein degree in ResNet 4.0 (i.e. the number of regulatory interactions with other proteins in the database) on the GO degree (i.e. number of GO annotation for a protein)Figure 4
Dependence of protein degree in ResNet 4.0 (i.e. the 
number of regulatory interactions with other proteins in the 
database) on the GO degree (i.e. number of GO annotation 
for a protein). Red pluses – public Biological processes GO 
annotation; black circles – combined public and MedScan 
GOA. The plot shows that MedScan GOA adds highly con-
nected proteins to GO groups from public annotation.

Table 4: Overlap between clusters in physical interaction network and GO annotation

Biological process (public 
GOA)

Biological process 
(MedScan GOA)

Biological process 
(combined GOA)

Cellular component (public 
GOA)

Molecular function (public 
GOA)

54 50 54 49 54

A total of 54 network clusters, each containing between 8 and 82 proteins were obtained in the given realization of Potts network clustering 
method [31]. The statistical significance of the overlap between every cluster and every GO group of a given annotation was evaluated using Fisher's 
Exact Test by computing the probability that the cluster and a GO group, drawn from the same set of ~10000 proteins at random, have the overlap 
not less than the observed one. The table shows the number of network clusters overlapping with at least one GO group in a given annotation with 
a p-value less than 0.001.
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erature that helps to overcome the incomplete "local"
recovery rates [29]. A statement about a protein-GO asso-
ciation can be missed in the first article, but has a strong
chance to be recovered from other articles that express the
same fact in different linguistic forms. We showed that
even on the relatively small literature corpus the MedScan
recall rate was four times higher than that of human cura-
tors (4,649 annotations vs. 1,138 annotations). It
exceeded manual curation recall rate even taking into
account a reasonable correction for MedScan accuracy.
Intrigued by the apparent superior performance of MedS-
can to human curators on the same literature corpus we
have manually inspected the relations extracted by MedS-
can and missed by the human curators. We found that
human curators tend to ignore sentences indirectly imply-
ing involvement of a protein in a cell process or where a
protein-GO association is not the major statement, but is
mentioned as an auxiliary fact. Additionally, the sentences
describing the changes in expression level of a protein
during a cell process were mostly ignored by human cura-
tors, while MedScan has interpreted them as true state-
ments. Human curators also missed a lot of facts
describing very generic cell processes such as "cell prolif-
eration", "apoptosis" or "cell differentiation". During this
evaluation we also found that MedScan tends to interpret
some hypothetical, ambiguous or intent statements as a
true statement about protein-GO association. Such state-
ments usually summarize the findings of a paper in the
discussion section and are highly important for compre-
hensive automatic extraction.

One more possible reason for superior MedScan perform-
ance over human curation is MedScan's protein names
dictionaries. The efficiency of extracting protein-GO asso-
ciation depends not only on the correct recognition of GO
terms in the text but also on the efficient protein name rec-
ognition. MedScan benefits from the four years of devel-
opment that have produced highly accurate and
comprehensive dictionaries of protein names and aliases.
The MedScan performance to recognize and assign pro-
tein names far exceeds capabilities of any human curator
because its dictionaries are manually curated and contain
hundreds of thousands of protein names synonyms [36].

A human curator is incapable of memorizing all possible
protein names and must use additional automated refer-
ence source to verify and assign protein names. Thus, if
the computerized protein names resource available to
human curators is not comprehensive enough they may
not find a protein and disregard the protein-GO associa-
tion. Because of this deficiency human curator tend to
keep focus only on the main protein or main set of pro-
teins described in a paper while ignoring statements about
miscellaneous proteins that were made in support of the
main conclusion of the article. MedScan extraction com-
pletely lacks this disadvantage and will pick up any state-
ment from any section of the paper about any protein as
long as the statement clearly points in the correct gram-
matical form to the involvement of a protein in a biolog-
ical process.

The maturity of MedScan technology also explains its
apparent superiority over other methods for automatic
extraction (Figure 2). All six methods evaluated in BioCre-
AtIvE task 2.2 [28] relied on the statistical approach for
fact extraction. The superior accuracy of the full-sentence
parsing over statistical approach is well documented
[24,40]. The recovery rate of the full-sentence semantic
parsing is usually 2-3 times lower than in statistical meth-
ods. MedScan, however, has the best reported recovery
rate for extracting protein-protein interactions among
other full-sentence parsing NLP approaches [24]. This
superiority is attributed to the quality of protein name dic-
tionaries as well as to the developed ontology of linguistic
patterns used by MedScan. While the set of linguistic pat-
terns for extracting protein-GO associations is new and
was developed for this work, we relied on existing MedS-
can dictionaries and algorithms for protein name recogni-
tion. Most likely, MedScan has outperformed other
automated methods for extracting protein-GO association
for the same two reasons: use of full-sentence semantic
parsing and mature protein name dictionaries.

Correlation of network clustering with functional 
modularity
Currently, the correlation between protein annotation
and network clustering was demonstrated only for the

Table 5: ResNet 4.0 networks statistics

Name Count

Number of proteins with a link of any kind 10,739
Binding links 30,448
Regulation links 58,263
Expression links 24,293
MolTransport links 5,481
PromoterBinding links 3,201

The number of proteins and various types of relations between proteins in ResNet 4.0 database as of January 21, 2006, generated by MedScan 
technology version 1.8.2 after automatic curation described in [29].
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An overlap between a network cluster obtained by the Potts model algorithm [31] and the best-matching GO groups from the public cellular component GOAFigure 5
An overlap between a network cluster obtained by the Potts model algorithm [31] and the best-matching GO groups from the 
public cellular component GOA. The cluster contains 11 proteins: 10 subunits of RNA polymerase II and a Vpr protein from 
Human immunodeficiency virus 1. RNA polymerase II is a well-characterized and stable multi-subunit complex that is formed 
due to the physical interactions of its subunits. RNA polymerase II is involved in the mRNA synthesis for all eukaryotic protein-
coding genes. Vpr protein from HIV has diverse function and regulates the expression of many cellular genes during HIV infec-
tion as well as accelerates the production of viral proteins. A – The portion of GO classification overlapping with network 
cluster. The figure shows the part of the GO classification hierarchy with the bottom node being the GO group that has the 
statistically the best overlap with the Potts cluster. GO groups are depicted as rectangles and the parent-child relation in the 
GO tree is shown as a line with an arrow. Only those parent GO groups that have a statistically significant overlap with the 
Potts cluster are shown. The numbers above the line show the number of proteins common with the Potts cluster (before the 
slash) and the total number of proteins in the GO group. The Δc value below the arrow is the number of standard deviations by 
which the overlap is bigger than the overlap expected by random chance. B – The network cluster overlapping with GO classi-
fication from Figure A. Highlighted proteins belong to the best overlapping GO group from cellular component classification 
DNA-directed RNA polymerase II, core complex (GO:0005665).
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An overlap between a network cluster that was obtained by the Potts algorithm [31] and the best matching GO groups from the molecular function GOAFigure 6
An overlap between a network cluster that was obtained by the Potts algorithm [31] and the best matching GO groups from 
the molecular function GOA. The cluster contains eight proteins: five heterodimerizing proteins from the ionotropic glutamate 
receptor family, syndecan binding protein SDCBP, gamma subunit 2 of voltage-dependent calcium channel (CACNG2), and 
protein kinase C alpha binding protein (PRKCABP). The molecular function GOA shows the smallest correlation with network 
clustering among all GOAs (see Results section for details). Nevertheless, the correlation is still significant and provides addi-
tional confirmation to the observation that paralogous proteins tend to interact with each other more often than non-paralo-
gous proteins [39]. The picture shows the example of the paralog heterodimerization that form a cluster in the physical 
interaction network. A – The portion of GO classification overlapping with network cluster. The GO classification tree depic-
tion is the same as in Figure 5A. B – The network cluster overlapping with GO classification from Figure A. Highlighted pro-
teins belong to the best overlapping GO group from molecular function classification – alpha-amino-3-hydroxy-5-methyl-4-
isoxazole propionate selective glutamate receptor activity (GO: 0004971). The proteins selected by the blue line belong to the 
second best overlapping GO group from molecular function classification – potassium channel activity (GO:0005267). Gray 
links indicate DirectRegulation relation, violet links indicate Binding relation.
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An overlap between a network cluster obtained by Potts algorithm [31] and the best matching GO groups from the biological function GOA combined from MedScan annotation and public annotationFigure 7
An overlap between a network cluster obtained by Potts algorithm [31] and the best matching GO groups from the biological 
function GOA combined from MedScan annotation and public annotation. The cluster contains nine proteins involved in DNA 
repair and telomere capping: ATM – ataxia telangiectasia mutated homolog (human) (mapped); PRKDC – catalytic polypeptide 
of DNA activated protein kinase; NBS1 – nibrin; CHEK2 – protein kinase Chk2; XRCC5 – X-ray repair complementing defec-
tive repair in Chinese hamster cells 5; H2AFX – dolichyl-phosphate (UDP-N-acetylglucosamine) N-acetylglucosaminephospho-
transferase 1 (GlcNAc-1-P transferase); G22P1 – thyroid autoantigen; NFBD1 – mediator of DNA damage checkpoint 1; 
TREX1 – three prime repair exonuclease 1. The ataxia-telangiectasia mutated (ATM) kinase signals the presence of DNA dou-
ble-strand breaks in mammalian cells by phosphorylating proteins that initiate cell-cycle arrest, apoptosis, and DNA repair. The 
Mre11-Rad50-Nbs1 (MRN) complex acts as a double-strand break sensor for ATM and recruits ATM to broken DNA mole-
cules [42]. Activated ATM phosphorylates its downstream cellular targets H2AFX and Chk2 as well as proteins directly 
involved in DNA repair: XRCC5, TREX1 and NFBD1. G22P1 and PRKDC are subunits of DNA activated protein kinase that 
can be induced by DNA damage to promote DNA end joining [43]. It also can attenuate CHK2 control of the damage check-
point [44]. A – The portion of GO classification overlapping with network cluster. The GO classification tree depiction is the 
same as in Figure 5A. B – The network cluster overlapping with GO classification from Figure A. Highlighted proteins belong 
to the best overlapping GO group from molecular function classification – telomere capping (GO:0016233). The proteins 
selected by the blue line belong to the second best overlapping GO group from combined biological processes classification – 
double-strand break repair (GO:0006302). Gray links indicate DirectRegulation relation, violet links indicate Binding relation, and 
green arrows represent ProtModification relations.
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physical interaction networks generated by high-through-
put two-hybrid screens and mass-spectrometry experi-
ments [2,37,38]. We have shown that a high degree of
correlation exists between functional Gene Ontology
annotation and clusters in both physical and regulatory
networks automatically extracted from scientific literature
by the NLP technology. The correlation was detected in
both "directions": GO pathways had a higher than ran-
domly expected link density, and densely linked network
clusters significantly overlapped with GO groups.

The correlation between physical interaction clusters and
GO groups was observed for all three branches of GO clas-
sification: biological processes, cellular component, and
molecular function. The cellular component annotation
provided the highest correlation. This suggests that the
integrity of cellular organelles and complexes described
by this GO branch, in addition to the specific "structural"
interactions that define organelle topology, is maintained
by the increased density of protein-protein interactions
within an organelle. The network clustering within bio-
logical processes groups supports the view that the exist-
ence of functional modularity in a cell is primarily
maintained by means of protein-protein physical interac-
tions. We demonstrate this correlation by using both the
complete GO classification as well as solely the annota-
tion automatically extracted from the PubMed database.
The Molecular function GO classification has the smallest
number of densely linked GO groups: 54% in the physical
interaction network and 44% in the Regulation network.
Such a low correlation for the Molecular function classifi-
cation is expected since this type of annotation does not
relate to cellular processes and is based purely on protein
sequence similarity. Still, the observed non-negligible cor-
relation indicates that homologous proteins tend to par-
ticipate in similar biological processes. Additionally, it
may be due to the fact that protein paralogs tend to inter-
act with each other more often than the evolutionary non-
related proteins [39].

We found that clusters in all regulatory networks have a
smaller correlation with GOA than the physical interac-
tion clusters. Thus, it appears that the functional modules
exchange regulatory signals between each other almost as
often as signals propagate inside the functional modules
themselves. Faster signal propagation within a module, as
compared to the signaling between modules, is the only
apparent reason of having functional clusters or modules
in the physical interaction network without regulatory
clustering. This ensures that an execution of a function
happens first within the module and then the higher-level
information exchange between modules takes place. The
information exchange between modules can be viewed as
an integration of signals from several processes by the cell.

Biological significance of pathways built from GO 
annotation
Proteins in a pathway built from a Biological process GO
annotation are involved in the same cellular process and
are linked to each other by physical interactions and regu-
latory relations that are described in the literature and
therefore have been thoroughly measured by dedicated
experiments. Even though some of these relations can be
conditional upon time, tissue and cellular localization,
the majority of the interactions occur at all times and
therefore represent the plausible mechanism for the regu-
latory and physical interaction events that mediate corre-
sponding biological process. The fact that proteins in a
pathway both belong to the same GO group and interact
with each other increases the confidence of both GO
annotation and protein-protein relations in a pathway.
Generally, a GOA pathway contains fewer proteins than
the corresponding GO group as it includes only the pro-
teins linked into a connected network. Therefore, annota-
tion of the proteins included into a pathway can be
considered of a higher confidence than the annotation of
the proteins that were left outside due to the absence of
interactions.

The automatically constructed pathways can be used
directly for the analysis of high-throughput data such as
microarray gene expression. That in principle could pro-
duce results different from the standard GO group analy-
sis and of a higher confidence. In addition, GOA pathways
can be used as initial data for further manual curation, sig-
nificantly simplifying this procedure. Similar GO path-
ways can be built for other type of protein annotations
such as Protein Disease Ontology, Gene Ontology for
other organisms, or proteins identified in whole genome
genetic association studies.

Conclusion
The GO annotation extracted by the NLP technology
described here expands and enriches the existing manual
GO annotation. Two principal attributes of a protein's cel-
lular role, its functional annotation and its place in the
topology of a cellular protein-protein network, are signif-
icantly related to each other and, therefore, should com-
plement each other when used for the interpretation of
high-throughput experiments. The GO functional modu-
larity correlates most strongly with the clustering in the
physical interaction network, which is another manifesta-
tion of the fact that any biological process requires a cer-
tain supporting structural molecular organization in a
cell.

In future, we plan to improve the precision and recall rates
of the GO extraction by NLP by thoroughly analyzing the
cases of its incorrect interpretation or ignoring of the rele-
vant parts of the text. Redundancy of scientific literature
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and its effect on global NLP performance is another possi-
ble topic of our future research. We also plan to use the
correlation between the GOA and protein network clus-
tering to improve the quality of both the GO and protein
interaction datasets by automatically rectifying strong
mutual contradictions.

Methods
Preparation of the GO dictionary for MedScan
As a first step, we constructed the dictionary of GO term
descriptors suitable for efficient identification in text. We
narrowed the set of terms from the "Biological processes"
of GO to a reasonably informative and consistent subset
of cellular-level biological processes by removing some
terms that we considered inappropriate, too general, or
too detailed. In particular, the following terms were
removed from the dictionary:

• GO terms representing positive or negative regulation of
another GO term; GO terms referencing individual pro-
teins; GO terms representing organism-level behavioral
processes

• GO terms representing steps of protein metabolism

• High-level GO terms with high frequency of occurrence
and low informational content (e.g., "transcription",
"transport", "development")

• GO terms for highly specific biochemical processes.

In addition, we preprocessed the GO terms containing
chemical names using the MedScan preprocessing algo-
rithm for tagging chemical names in text [40]. Identified
names were replaced with numerical identifiers unique
for each chemical substance. This replacement allowed us
to detect variations of GO terms containing synonyms of
chemical names in the text and point them to the original
GO term.

Similarly, we have created a small dictionary of word syn-
onyms, containing names of tissues and cell types, fre-
quently used names of cellular components, and
notations of high-level processes often used in GO terms,
e.g., transport, synthesis/degradation, movement, and
assembly/disassembly. Finally, we have manually added
commonly used synonyms to our dictionary of GO term
descriptors. The synonyms were taken from the existing
MedScan dictionaries as well as by adding adjective forms
of the noun synonyms such as "mitosis-mitotic," for
example. In the end, the dictionary contained 6,318
descriptors representing 5,764 unique GO terms from the
"biological process" category.

Detection of GO terms in scientific text
Our detection of GO terms in the scientific text involves
the following steps.

1. Input text is scanned for the names of mammalian pro-
teins [36] and chemical substances and all found sub-
strings are tagged with corresponding numerical
identifiers.

2. The GO term dictionary is loaded. During loading, it is
normalized in a manner described in step 5 of this proc-
ess, and each word in each GO term descriptor is replaced
with the corresponding numerical identifier. This identi-
fier is first searched for in the synonym dictionaries for
chemicals, tissues, cell types, and compartments. If a word
is not found in the synonym dictionaries, a new identifier
is assigned to each unique word. The main purpose of this
step is to normalize terminological variations in text.

3. Input text is split into individual sentences, and each
word in a sentence is replaced with the corresponding
numerical identifier the same way as it is done for the GO
term dictionary in the previous step. The algorithm split-
ting text into sentences uses the following token as a sep-
arator: a period followed by any number of whitespaces
and then a capital letter.

4. The minimal noun phrases (MNPs) are detected in
every sentence, using regular expression over the syntactic
categories assigned by the dedicated Part of Speech (POS)-
tagging program. We used the following regular expres-
sion for MNP detection:

(DET|Pron|D)* ((COMMA|AND|OR|BUT_NOT)? J)* N
N*

where DET is determiner, Pron is pronoun, J is adjective,
D is adverb, and N is noun. Other symbols are introduced
in Additional file 1.

5. MNPs separated by prepositions are normalized. The
main purpose of this step is to disregard prepositional var-
iations in a noun phrase structure. Normalization is done
by flipping the order of MNPs and removing prepositions
separating MNPs. The MNP order is changed so the phrase
"MNP1 preposition MNP2 preposition MNP3" becomes
"MNP3 MNP2 MNP1". For example:

"rapid de-differentiation of hepatocytes from human liver
into fat cells"

is normalized into

"fat cells human liver hepatocyte rapid de-differentiation"
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During the normalization, the information about "head"
word from each MNP is preserved. In the preceding exam-
ple, the words "de-differentiation", "liver", "hepato-
cytes" and "cells" are marked as head words.

6. Finally, normalized GO term descriptors are linearly
matched over a noun phrase by sequentially comparing
the numerical identifier of each word in a GO descriptor
with numerical identifiers of words in the normalized
noun phrase. A successful match is allowed to contain any
number of gaps between the words in the GO descriptor,
but all words of the descriptor have to be matched. In
addition, the following two constraints must be satisfied:

• The entire match must occur within the borders of a sin-
gle MNP, or

• If a match spans more than one MNP within a normal-
ized NP, the "head" words of all spanned minimal NPs
must be matched.

Initially, all possible matches of different GO terms
within each normalized NP are considered and each
match is assigned a simple score: S = L - G - H, where L is
the number of words in a GO term, G is the total length of
gaps between GO term words, and H is the distance (in
words) from the end of a match to the "head" of a normal-
ized noun phrase. In the end, the set of the highest-scoring
non-intersecting matches is selected and matches in the
text are tagged with the corresponding GO identifier.

Automatic extraction of protein associations with a GO 
term
Associations between proteins and GO terms are extracted
using a small set of linguistic patterns (defined using reg-
ular expression-like notation) matched over a linear
sequence of sentence words. The matching is done by
automatically constructed deterministic finite automaton
(DFA), which will be described in detail elsewhere. Fol-
lowing are some of its features that are relevant for GO
annotation. First, our DFA recognizes protein names and
GO terms tagged in the text by the MedScan preprocessor
and treats them as variables. Second, it can match words
in all grammatical forms using morphological word-form
reduction [41]. The DFA runs over individual input sen-
tences and attempts to match all regular expression pat-
terns in Additional file 1. Once a match is encountered,
the corresponding relation between two pattern variables
is extracted.

Pairwise comparison of different GO annotations
To compare public and automatically extracted annota-
tions, we chose the method described in Kiritchenko et al.
[33]. Briefly, each GO term is augmented with all of its
parents along all possible paths to this term from the root

of the ontology. (The root node itself is not included.)
When comparing GO terms, two metrics are introduced:
K1 and K2. If a protein is annotated differently in two
annotations (i.e., it belongs to two different GO groups)
K1 is equal to the number of the common parental nodes
between two GO groups divided by the total number of
parental nodes for the first group. K2 is equal to the
number of the common parental nodes between two GO
groups divided by the total number of parental nodes for
the second group. The local similarity between two GO
terms is then calculated as F-score: 2*K1*K2/(K1+K2)).

Given the local similarity between two GO terms, we can
define the asymmetric similarity between two GO annota-
tions. Let the first annotation A contains terms {A1, A2,
A3... An} terms and the second annotation B for the same
protein contains terms {B1, B2, B3... Bm}. The similarity
between two annotations can be defined as an average
similarity among N pairs of GO terms, where each pair
contains one term from the set {A1, A2, A3... An} and its
most similar GO term among B1, B2, B3... Bm:

Finally, we define the global similarity between two anno-
tations sharing many common but differently annotated
proteins as an average similarity between two alternative
sets of GO terms from every protein present in both anno-
tations.

ResNet database
The protein networks used in this work were extracted
from the ResNet 4.0 database of mammalian protein rela-
tions, described in detail in [29]. The number of proteins
and the number of most commonly used interactions
accumulated in ResNet 4.0 are shown in Table 5. The data-
base is constructed from relations extracted automatically
by the full-sentence parsing NLP technology called MedS-
can [24]. MedScan extracts about 1,000,000 relations
between mammalian proteins, chemicals and protein
functional classes from the entire Medline and 43 full-text
journals. The extracted facts are automatically curated as
described previously [29]. It takes the MedScan technol-
ogy three days to processes the entire Medline on a regular
personal computer. The ResNet database is re-generated
every year, following the change of the baseline in
Medline database.

Construction of biological process pathways
The biological process pathways were built by connecting
all proteins that belong to the same GO group with rela-
tions from the ResNet 4.0 database. All proteins anno-
tated by the child GO group were included into the parent
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GO group recursively for all child groups. Types of rela-
tions between proteins and their abundance in ResNet 4.0
are listed in Table 5. In the first step, proteins of the puta-
tive pathway (GO group) were connected by physical
interactions. The remaining unconnected proteins in the
group were linked to the emerging pathway by indirect
regulatory relations such as MolTransport-indicating regu-
lation of molecular translocation, Expression and Promoter-
Binding-both indicating regulation of a target via gene
expression; and Regulation-indicating the regulatory event
of an unknown mechanism. If a protein could not be con-
nected to any protein in the pathway by any of those rela-
tions, such protein was removed from the pathway at the
end of the algorithm run. This order of connecting pro-
teins does not effect the protein selection and was
designed to give a priority to direct physical interactions
over indirect regulatory relations for labeling links with
dual identity. A collection of automatically generated
pathways for the GO Biological Processes annotation is
freely available from the Ariadne Genomics Webpage and
it can be accessed by downloading the free demo version
of Pathway Studio software.

Finding network communities

To find clusters in the physical interaction network, we
used annealing of the network-based ferromagnetic Potts
model with an adjustable antiferromagnetic term [31].
This clustering method is a generalization of the approach
suggested in [32] that allows more flexibility in defining
the size and link density of the network communities we
wish to determine. A variable (often called spin) is
assigned to each network vertex; linked pairs of vertices
with spins in the same state are energetically favored. Ini-
tially, spins are assigned at random, the number of possi-
ble spin states q is usually of order of the number of
vertices N, we used q = N/5. The model is allowed to
evolve by changing spins of randomly selected vertices
according to the Metropolis algorithm with a gradually
lowered temperature. Usually, each vertex is allowed to
sample all q spin states several times after which the tem-
perature is decreased by a small fraction (1%). To prevent
condensation of all vertices into the same state, an antifer-
romagnetic energy penalty that depends on the number of
vertices ni in each state state is introduced

[31]. An aligned link defines the unit of

energy, that is, two linked vertices in the same spin state
contribute -1 to the total energy of the system. For finding
communities in the ResNet 4.0 protein-protein binding

network we used γ = 0.005–0.02 and α = 1 – 1.5.

When the evolution stops at a sufficiently low tempera-
ture, linked vertices in the same state are declared network
communities. This method allows one to find an a priori
unknown number of possibly overlapping mesoscopic
clusters in a sparse network with a low link density con-
trast.
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