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Abstract

Background: Interest is growing in the application of syntactic parsers to natural language
processing problems in biology, but assessing their performance is difficult because differences in
linguistic convention can falsely appear to be errors. We present a method for evaluating their
accuracy using an intermediate representation based on dependency graphs, in which the semantic
relationships important in most information extraction tasks are closer to the surface. We also
demonstrate how this method can be easily tailored to various application-driven criteria.

Results: Using the GENIA corpus as a gold standard, we tested four open-source parsers which
have been used in bioinformatics projects. We first present overall performance measures, and test
the two leading tools, the Charniak-Lease and Bikel parsers, on subtasks tailored to reflect the
requirements of a system for extracting gene expression relationships. These two tools clearly
outperform the other parsers in the evaluation, and achieve accuracy levels comparable to or
exceeding native dependency parsers on similar tasks in previous biological evaluations.

Conclusion: Evaluating using dependency graphs allows parsers to be tested easily on criteria
chosen according to the semantics of particular biological applications, drawing attention to
important mistakes and soaking up many insignificant differences that would otherwise be reported
as errors. Generating high-accuracy dependency graphs from the output of phrase-structure
parsers also provides access to the more detailed syntax trees that are used in several natural-
language processing techniques.

Background

In the last few years, natural language processing (NLP)
has become a rapidly-expanding field within bioinformat-
ics, as the literature keeps growing exponentially [1]
beyond the ability of human researchers to keep track of,
at least without computer assistance. NLP methods have
been used successfully to extract various classes of data
from biological texts, including protein-protein interac-
tions [2], protein function assignments [3], regulatory
networks [4] and gene-disease relationships [5].

Although much headway has been made using text
processing methods based on linear pattern matching
(e.g. regular expressions), the diversity and complexity of
natural language has caused many researchers to integrate
more sophisticated parsing methods into their biological
NLP pipelines [6,7]. This enables NLP systems to take into
account the grammatical content of each sentence, includ-
ing deeply nested structures, and dependencies between
widely separated words or phrases that are hard to capture
with superficial patterns.

Page 1 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/8/24
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254351
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:24

General-purpose full-sentence parsers fall into two broad
categories depending on the formalisms they use to
model language and the corresponding outputs they pro-
duce. Constituent parsers (or treebank parsers) recursively
break the input text down into clauses and phrases, and
produce a tree structure where the root represents the sen-
tence as a whole and the leaves represent words (see Fig-
ure 1). Dependency parsers model language as a set of
relationships between words, and do not make wide-
spread use of concepts like 'phrase' or 'clause'. Instead
they produce a graph for each sentence, where each node
represents a word, and each arc a grammatical depend-
ency such as that which holds between a verb and its sub-
ject (see Figure 2).

While constituent parsers are closer to the theoretical
models of language employed in mainstream linguistics,
dependency parsers are popular in applied NLP circles
because the grammatical relationships that they specify
are not entirely unlike the semantic relationships encod-
ing logical predicates to which an NLP developer would
like to be able to reduce a sentence. However, there is no
such thing as a standard grammar for dependency parsers.
Each parser uses a different set of dependency types and a
different set of attachment rules, meaning that there is
often disagreement between dependency parsers regard-
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ing graph topology and arc labels [8,9]. This means that
evaluating dependency parsers, and comparing the results
of one to another, can be somewhat fraught with com-
plexity.

Due to the impact on computational linguistics of the
Penn Treebank (PTB) [10], a vast collection of hand-
annotated constituent trees for many thousands of sen-
tences drawn mostly from news reports, there is on the
other hand a de facto standard for constituent parsers to
follow. This means that there are several high-perform-
ance parsers available, trained on the PTB, which produce
a pre-defined set of clause, phrase and word category
(part-of-speech or POS) labels. There are also standard-
ised evaluation measures by which these parsers are
benchmarked against a set-aside portion of the original
treebank. The most frequently published scores for parser
performance use precision and recall measures based on
the presence or absence of constituents in each parser's
output, compared to the gold standard. These are some-
times referred to as GEIG or PARSEVAL measures, and
although their limitiations are well known [11,12] - for
example, they have problems distinguishing between gen-
uine errors which would affect the output of NLP applica-
tions, and minor differences of convention (see Figures 3
and 4) which would not - they are still in wide use.

NP VP
/NP\ PP VBP ADVP VP
C|D Nll\IS IN NP have R|B V]|3N V|P
Two  homologues 0|f /’\ now been VBN
DT NN NN . |
| | | isolated
the  rhombotin  gene
Figure |

A constituent (phrase structure) tree. The phrase structure of the sentence "Two homologues of the rhombotin gene
have now been isolated" from the GENIA treebank. The definitions of the linguistic labels used in this and all other diagrams

are given in the List of Abbreviations section.
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A dependency graph. The dependency graph of the sen-
tence in Figure I.

The impact of the PTB is also such that both the major lin-
guistic annotation projects for molecular biology corpora
[13,14] employ largely PTB-like conventions, although
the amount of annotated biological text is currently at
least an order of magnitude less than that which is availa-
ble in the general-English domain. Although the quanti-
ties available are insufficient for retraining parsers,
evaluation of the performance of parsers for bioinformat-
ics applications is possible given a meaningful evaluation
technique.

Although a dependency graph for a sentence will not, typ-
ically, contain as much information as a constituent tree
for the same sentence, it is possible to transform the tree
structure into a dependency graph by employing a set of
deterministic mapping functions [9]. The mapping proce-
dure often results in the elimination of redundant infor-
mation found in the tree structure, and thus tends to level
out many of the insignificant differences in convention
between alternative constituent parses (see Figures 5 and
6).

This process therefore provides a convenient way to eval-
uate constituent parsers on those aspects of their output
that most affect meaning, as well as forming a useful inter-
mediate representation between phrase structure and log-
ical predicates. Furthermore, given such a framework, it
becomes easy to define application-specific evaluation cri-
teria reflecting the requirements that will be placed upon
a parser in a biological NLP scenario. Using this approach,
we have evaluated several leading open-source parsers on
general syntactic accuracy, as well as their ability to extract
dependencies important to correct interpretation of a cor-
pus of texts relating to biomolecular interactions in
humans. The parsers are scored on their ability to correctly
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generate the grammatical dependencies in each sentence,
by comparing the corresponding dependency graphs from
their output and from the constituent structure of the orig-
inal treebank. The results are presented below.

Results and Discussion

The software packages used in our evaluation are the Bikel
parser [15], the Collins parser [16], the Stanford parser
[17,18] and the Charniak parser [19] - including a modi-
fied version known herein as the Charniak-Lease parser
[20]. All of these are widely used by the computational
linguistics community, and have been employed to parse
molecular biology data (see Related Work section),
despite having been developed and trained on sentences
from the Penn Treebank. While it may be the case that,
over the coming years, enough consistently-annotated
biological treebank data becomes available to make
retraining parsers on biological text a feasible proposition,
this is by no means true yet. Furthermore, when choosing
which parser to retrain with such data as and when it
becomes available, one would wish to pick one which had
already demonstrated good cross-domain portability,
since the biomedical domain in fact encompasses multi-
ple subdomains with distinct sublanguages [21].

We tested at least two versions of each parser as it is by no
means certain a priori that the best-performing version on
the PTB will likewise perform best on biological text. Our
gold standard corpus was 1757 sentences from the GENTA
treebank [13], which were mapped from their original tree
structures to dependency graphs by the same determinis-
tic algorithm from the Stanford toolkit that we used to
convert the output of each parser [9]. See the Methods sec-
tion for more details of our parsing pipeline.

Overall parse accuracy

For each parser, we calculated two scores, constituent
effectiveness (F,,,) and dependency effectiveness
(F4ep)against the original constituent trees in the treebank,
and their dependency graph equivalents, respectively (see
Tables 1 and 2). These scores are measures of tree or graph
similarity between the parser output and the gold stand-
ard corpus, penalising false negatives and false positives —
see the Methods section for the formulae used to calculate
them. When comparing the parsers' output in terms of
dependency graphs rather than raw trees — that is, using
Fyep rather than F,,,, - there is a much less gradual spread,
with the three front-runners being clearly separated from
the rest.

Note that the F;,, scores given in Table 2 use the strictest
criterion for a match between a dependency in the parse
and the corresponding dependency in the gold standard.
A match is only recorded if an arc with the same start
node, end node and label (dependency type) exists. This
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Figure 3
Adverbial attachment conventions. In (a), the lexicalised version of the Stanford parser attaches the adverb (RB) "consti-
tutively" via an adverbial phrase (ADVP) to its parent verb phrase (VP). In (b), the unlexicalised Stanford parser skips this step

and attaches the adverb directly to the verb phrase. These two representations are semantically equivalent.
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NNS CC NNS
| | |

monocytes and  macrophages

Co-ordinating conjunction conventions. Two alternative ways of joining two nouns with a conjunction ("and") — the
GENIA corpus uses convention (a), while all of the parsers tested use (b). The additional level of noun phrase (NP) constitu-

ents however makes no difference to the meaning.

is important as the type of a dependency can be crucial for
correct interpretation, discriminating for example
between the subject and direct object of a verb. However,
many assessments of dependency parsers use a weaker
matching criterion which disregards the dependency type,

and thus only takes into account the topology of the graph
and not the arc labels. For comparison purposes, the
mean scores using this weaker untyped criterion are given
in Table 3 (see also the Related Work section). Note that
the rank order of the parsers is the same when using the

binds
’A U BJ\)‘OBJ
sequence factor
ﬁ%\m &N DET \RCM OD
The kappa B a found
NSUBJPASS AUXPASS|ADVM ODN\DEP N
that is constitutively only lymphocytes
NN
B
Figure 5

Adverbial attachment using dependencies. Either of the representations in Figure 3 result in this graph.
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EP

monocytes DEP

AND

macrophages

Figure 6

Co-ordinating conjunctions using dependencies.
Either of the representations in Figure 4 result in this graph
fragment.

less strict matching criterion, apart from some slippage by
the lexicalised version of the Stanford parser, suggesting
that this parser's scores on the strict test are boosted by
comparatively good dependency type identification. All
scores in this paper use the strict matching criterion unless
otherwise specified.

Table I: F_,, ., score, all sentences

Parser Feonst
Charniak-Lease 80.2
Bikel (0.9.8) 79.4
Bikel (0.9.9¢) 794
Charniak (Aug 05) 78.1
Collins (model 2) 77.8
Collins (model 3) 772
Collins (model I) 76.4
Stanford (unlexicalised) 723
Stanford (lexicalised) 71.1

Parser effectiveness based on comparison of constituent trees to the
GENIA treebank, summed over entire corpus.

http://www.biomedcentral.com/1471-2105/8/24

The overall effectiveness scores for some of the parsers are
distorted, however, by the fact that they encountered sen-
tences which could not be parsed at all (Table 4). It is use-
ful to separate out the effects on the mean scores of
complete parse failures as opposed to individual errors in
successfully-parsed sentences. The F,,, scores in Table 5
show the mean effectiveness for each parser averaged only
over those sentences which resulted in a successful parse.
The Bikel parser version 0.9.9¢ claims in its release notes
that the parser has a new robustness feature meaning that
it "should always produce some kind of a parse for every
input sentence" (original emphasis) [22], but this does
not appear to be true for biological texts. However, it is an
improvement over version 0.9.9 (not featured in this
investigation) which we found to suffer from 440 failures
(25% of the corpus) on the GENIA treebank [12]. The
parse failures for all of the parsers tended to occur in
longer, more complex sentences.

The highest-scoring parsers overall, the Charniak-Lease
parser and the Bikel parser, achieve very similar scores.
Therefore, we decided to subject these two parsers to a
series of tests designed to determine where the strengths
and weaknesses of each lay when assessed on tasks impor-
tant to biological language processing applications. We
used the older version of the Bikel parser (0.9.8) as it suf-
fered only one failure, as opposed to two by version
0.9.9c.

Prepositional phrase attachment

One problem that is frequently cited as hard for parsers is
the correct attachment of prepositional phrases - modifi-
ers attached to nouns or verbs that convey additional
information regarding time, duration, location, manner,
cause and so on. It is important to correctly attach such
modifiers as errors can alter the meaning of a sentence
considerably. For example, consider the phrase "Induc-
tion of NF-KB during monocyte differentiation by HIV
type 1 infection." Is it the induction (correct) or the differ-
entiation (incorrect) which is caused by the infection?
Furthermore, the targets of many biological interactions
are expressed in prepositional phrases, e.g. "X binds to Y"
- the bold section is a prepositional phrase. However this
problem is non-trivial because correct attachment relies
on the use of background knowledge (for humans), or an
approximation of background knowledge based on fre-
quencies of particular words in particular positions in the
training corpus (for parsers). These frequencies are often
sparse, and for previously unseen words (e.g. many of the
technical terms in biology) they will be missing alto-
gether.

To assess the potential impact of this phenomenon, we
tested the two best parsers on their ability to correctly gen-
erate dependencies between prepositions and both the
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Table 2: F,,,, score, all sentences
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Parser Foep
Charniak-Lease 77.0
Bikel (0.9.8) 77.0
Bikel (0.9.9¢) 77.0
Stanford (lexicalised) 70.5
Charniak (Aug 05) 68.5
Stanford (unlexicalised) 68.5
Collins (model 2) 68.0
Collins (model 1) 68.0
Collins (model 3) 67.0

Parser effectiveness based on comparison of dependency graphs to the graphs generated from the GENIA treebank, summed over the entire

corpus.

head words of the phrases they modify and the head
words of the modifying phrases, by calculating F,, scores
over just these arcs. (We did not penalise the Bikel parser
for missing dependencies in the one sentence it failed to
parse at all, in any of these tasks.) For example, in the
phrase "inducing NF-KB expression in the nuclei," the
modifying phrase of the preposition "in" is "the nuclei" -
"nuclei" being the head of this phrase - and the modified
word is "inducing". The results are given in Table 6. Sur-
prisingly, both parsers scored slightly higher on the harder
portion of this task (attaching prepositions to the appro-
priate modified words) than they did across all depend-
ency types, where both achieved an F,,, of 77.0 as shown
in Table 5. On the easier portion of this task (attaching
prepositions to the appropriate modifying words), both
scored considerably higher. This ran contrary to our
expectations, and indicates that the conventional 'folk
wisdom' that prepositional phrase attachment is a partic-
ularly hard task is not necessarily true within the con-
strained environment of biological texts.

Reconstructing co-ordinating conjunctions

Another syntactic phenomenon that is problematic for
similar reasons is co-ordinating conjunction - the joining

Table 3: Fy,,, score, all sentences, loose matching criterion

Parser Faep
Charniak-Lease 81.0
Bikel (0.9.8) 81.0
Bikel (0.9.9¢) 81.0
Charniak (Aug 05) 78.0
Stanford (unlexicalised) 74.5
Collins (model 2) 72.5
Collins (model 1) 72.5
Stanford (lexicalised) 72.5
Collins (model 3) 715

Parser effectiveness based on comparison of dependency graphs to
the graphs generated from the GENIA treebank, summed over the
entire corpus, disregarding dependency types.

on an equal footing of two equivalent grammatical units
(e.g. two noun phrases) by a conjunction such as 'and' or
‘or". Since the scope of the conjunction relies on extra-lin-
guistic knowledge or assumptions, there are often several
equally grammatical but semantically quite different read-
ings available. An example of this is given in Figures 7 and
8. The correct reading (Figure 7) refers to the cloning of
GATA-1 genes from mice and humans - "mouse" and
"human" are both attached directly to "genes". An alterna-
tive, grammatical, yet incorrect reading is shown in Figure
8, where "human" is attached to "genes", but "mouse" is
attached directly to "cloned", implying that some human
genes and a whole mouse were cloned.

To measure the ability of the parsers to make the right
choices in these situations, we recalculated the Fg,,, score
over only those subgraphs (in the parse or the gold stand-
ard) whose root words are at either end of a conjunction
dependency. For example, if we were comparing the
incorrect parse in Figure 8 to the sentence in Figure 7, our
gold standard would consist of all the dependencies from
Figure 7 that go to or from the words "mouse" and
"human", as these are connected by the conjunction
AND. Our test set would consist of all the dependencies in
Figure 8 that connect to any of the words "the", "mouse",

Table 4: Parse failures

Parser Failures
Charniak-Lease 0
Charniak (Aug 05) 0
Stanford (unlexicalised) 0
Stanford (lexicalised) 0
Bikel (0.9.8) |
Bikel (0.9.9¢) 2
Collins (model 1) 12
Collins (model 2) 25
Collins (model 3) 40

Number of sentences which completely failed to parse, out of a total
of 1757 in the whole corpus.
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Table 5: F,,, score, successfully parsed sentences only

Parser Foep
Charniak-Lease 77.0
Bikel (0.9.8) 77.0
Bikel (0.9.9¢c) 77.0
Collins (model 3) 71.0
Collins (model 2) 705
Stanford (lexicalised) 705
Collins (model 1) 69.5
Charniak (Aug 05) 68.5
Stanford (unlexicalised) 68.5

Parser effectiveness based on comparison of dependency graphs to
the graphs generated from the GENIA treebank, summed over the
sentences for which each parser returned a successful parse.

"human", "GATA-1" and "genes", as the conjunction joins
the words "mouse" and "genes" upon which the words
"the", "human" and "GATA-1" depend. True and false
positive counts, and thus precision, recall and Fy, (see
Methods section) can then be calculated over just these
dependencies. It would not be sufficient to compare the
conjunction dependency alone between the two graphs as
this would not measure the extent of this initial error's
consequences. In some circumstances, such as nested co-
ordinations involving complex multiword phrases - e.g.
"the octamer site and the Y, X1 and X2 boxes" - these con-
sequences can be particularly far-reaching. Both parsers'
scores on this task (Table 7) were slightly lower than their
averages of 77.0 across all dependency types, but not spec-
tacularly lower.

Detecting negation

Reliably distinguishing between positive and negative
assertions and determining the scope of negation markers
are perennial difficulties in NLP, and have been well stud-
ied in the medical informatics context [23,24]. It is not
uncommon in information extraction projects to skip sen-
tences containing negation words [4], but 'not' appears in
10% of the sentences in our test corpus, and this figure
does not count all the other ways of negating a statement
in English. Thus a case should be made for attempting to
tackle the problem in a more methodical way. In order to
gain some initial insight into whether dependency parses
might be of use here, we calculated the Fg,,, score for all
dependency arcs beginning or ending at any of these
words: 'not', 'm't, 'mo', 'mone', 'negative', 'without’,

Table 6: F,,, for prepositional phrase attachment

http://www.biomedcentral.com/1471-2105/8/24

'‘absence', 'cannot', 'fail', 'failure', 'never', ‘'without’,
‘unlikely’, 'exclude’, 'disprove’, 'insignificant'. The results
(Table 8) are encouraging and the use of dependency
graphs in resolving negations warrants further investiga-
tion. The difference between these two parsers is much
clearer in this task than in any of the others, and demon-
strates that the Charniak-Lease parser may be particularly
suited to tackling this problem, as it scores higher than its
all-dependencies average while the Bikel parser scores
considerably lower.

Verb argument assignment

Although there are uncountably many ways to express
most logical predicates in natural language, molecular
biology texts and abstracts in particular are generally
rather constrained and essentially designed for the effi-
cient reporting of sequences of facts, observations and
inferences. As a result, much of the important semantic
content in this genre is encoded in the form of declarative
statements, where a main verb expresses a single predicate
more or less exactly, and its syntactic arguments (the sub-
ject, direct object and any indirect or prepositional
objects) correspond to the entities over which the predi-
cate holds. This being the case, it is important that the
arguments of content-bearing verbs are assigned correctly.
Failing to recover the subject or object of a verb will render
it less useful — not completely useless, however, since we
may like to know e.g. that "X inhibits B cell Ig secretion”
even if we do not yet know what X is. Furthermore, most
biologically-important predicates are very much direc-
tional, meaning that a confusion between subject and
object at the level of syntax will lead to a disastrous
reversal of the roles of agent and target at the level of
semantics. Put more simply, "X phosphorylates Y" and "Y
phosphorylates X" are very different statements.

In order to detect any latent parsing problems that might
hinder this process, we chose one of the most common
biological predicate verbs in the corpus (‘'induce' in any of
its forms) and divided the dependency types that can hold
between it and its (non-prepositional) arguments into
two sets: those which one would expect to find linking it
to its agent, and those which one would expect to find
linking it to its target. For example, in the statement "Cor-
tivazol significantly induced GR mRNA," 'Cortivazol' is
the agent and 'GR mRNA' is the target. We then calculated
an F,, score for each parser over these dependencies only,

Parser

Modified words F,

Modifying words F,

Charniak-Lease
Bikel (0.9.8)

79.5
78.0

89.5
91.0

Parser effectiveness for the task of attaching prepositions correctly to the words they modify and to the words which are doing the modifying.
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cloned
A UBJ|AUX \DOBJ

I 4

We have genes

%% N NN
»
the mouse NN GATA-1
AND

human

Figure 7

Co-ordination ambiguity l. The correct dependency
graph for the sentence "We have cloned the mouse and
human GATA-I| genes."

counting as a match those which connect the correct two
nodes and which are from the correct set, even if the exact
dependency type is different. For example, if the gold
standard contained a NOMINAL_SUBJECT dependency
between two nodes, and the parse contained a
CLAUSAL_SUBJECT dependency between the same two
nodes, this would count as a match since both are in the
agent dependencies set.

The resulting Fg,,, scores are given in Table 9, together with
a breakdown of false negatives (recall errors): the num-

cloned

'A;/AUX\)OBJ
4

We have mouse

human GATA-1

Figure 8

Co-ordination ambiguity Il. An incorrect graph for the
sentence in Figure 7, implying that some genes and a mouse
have been cloned.
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Table 7: F,,, for co-ordinating conjunctions

Parser Fdep
Bikel (0.9.8) 755
Charniak-Lease 75.0

Parser effectiveness for the task of reconstructing phrases joined by
conjunctions such as 'and' and 'or".

bers of mismatches (substitutions for dependencies from
the other set), non-matches (substitutions for dependen-
cies from neither set), and completely missing dependen-
cies. The scores for both parsers are very high, with the
Charniak-Lease parser only mis-categorising one out of
145 instances of arguments for 'induce' (putting it in the
wrong category) and proposing only three other errone-
ous arguments for this verb in the whole corpus. These
results bode well for the semantic accuracy of information
extraction systems based on these principles.

Error analysis

Our previous experiences with parser evaluation have
indicated the importance of correct POS tagging for accu-
rate parsing; this is demonstrated by the difference in per-
formance between the Charniak-Lease parser, and the
other - newer - version of the Charniak parser which does
not have the benefit of biomedical-domain POS tagging.
To measure the consequences of POS errors, we counted
the number of false negatives (recall errors) in the outputs
of our two leading parsers where either one or two of the
words which should have been joined by the missing
dependency were incorrectly tagged. (Remember that,
since the strict matching criterion is being applied here, a
recall error means that a dependency of a specific type is
missing; it will often be the case that another dependency
of a different type has been substituted.)

Also, in a very small minority of cases, it is possible for
nodes to be present in a dependency graph from the gold
standard, but actually missing from the same graph in a
parser's output, or vice versa. This comes about since punc-
tuation symbols are not always retained as nodes in the
graph in the same way that words are. If a word is mistak-
enly treated as a discardable punctuation symbol, it will
be omitted from the dependency graph. This can come
about as a result of a POS tagging error, an error in the

Table 8: F,,, for negation words

Parser Fdep
Charniak-Lease 80.5
Bikel (0.9.8) 70.5

Parser effectiveness for the task of attaching negation words
correctly.
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Table 9: Verb argument assignment for 'induce’
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Parser Faep False posititives False negatives Mismatches Nonmatches Missing
Charniak-Lease 98.0 4 | | 0 0
Bikel (0.9.8) 97.0 4 3 | 0 2

Parser effectiveness at assigning the arguments of the verb 'induce' into the correct category (agent or target). For each recall error (false negative),
we counted the number of mismatches (substitutions for dependencies from the other set), non-matches (substitutions for dependencies from

neither set), and completely missing dependencies.

Stanford algorithm or a mismatch between the conven-
tions used by a parser or the gold standard and those used
by the Stanford algorithm's developers. Conversely, if a
punctuation symbol is treated as a word for the same rea-
sons, it may be present as a node in its own right in the
resulting graph even if it would otherwise have been sup-
pressed. Therefore, we also counted the number of miss-
ing dependencies in each parser's output where one or
both of the nodes that the dependency should have con-
nected were also missing. The results of both of these tests
are given in Table 10. The results — one in five missing
dependencies being associated with at least one POS error
for the Charniak-Lease parser, and almost one in three for
the Bikel parser - should provide all the more motivation
for the development and refinement of biological POS
tagging software.

In addition, we counted the missing dependencies for
each parser by type, in order to get an idea of which types
were the most problematic. The results (Table 11) are
rather interesting. The same five types (out of roughly 50)
account for the majority of errors in both cases, although
there is some difference in the relative proportions. One
in five missing dependencies are of the generic DEPEND-
ENT type, which the Stanford algorithm produces when it
cannot match a syntactic construction in a phrase struc-
ture tree to a more specific type of dependency. The pres-
ence of large numbers of DEPENDENT arcs in the graphs
of the gold standard corpus indicates that the GENIA
annotators are using syntactic constructions that are unfa-
miliar to the Stanford algorithm. On closer inspection, we
discovered that one fifth of the DEPENDENT arcs missed
by each parser had been substituted for more specific
dependencies joining the same words; it is impossible for
us to judge by comparison to GENIA whether the types of
these dependencies are truly correct or not.

Table 10: Reasons for recall errors

Computational efficiency

Full syntactic parsing is a computationally demanding
process, and although it is trivial to parallelise by parsing
separate sentences on separate CPUs, processing speed is
nevertheless an important consideration. We measured
the parsing time of the 1757-sentence corpus using the
GNU time utility, calculating the total processor time for
each parser as the sum of the user and system times for the
process. The Charniak-Lease parser took 1 h:18 m:36 s
while the Bikel parser took much longer at 7 h:21 m:08 s.
These times do not include pre- or post-processing scripts,
or the time required to generate the dependency graphs,
although these are minor compared to the actual parsing
process. All processes were running on one processor of a
3 GHz SMP Linux PC.

The difference between these two results is startling. The
Bikel parser is written in Java and the Charniak parser in
C++, but this in itself does not explain the difference.
Analysis of the time command's output indicated that the
Bikel parser had vastly greater memory requirements, and
while the Charniak-Lease parser ran without needing to
swap any of its data out to the hard disk, the Bikel parser
made very frequent use of the swapfile. The newer version
of the Bikel parser, while not quite as robust, made a time
saving of over 50% compared to its predecessor, which
indicates that comptutational speedups are possible and
practical with Bikel's architecture. The other parsers in the
evaluation varied hugely, ranging from slightly under an
hour (for the model 1 Collins parser) to nearly 10 hours
(for the lexicalised Stanford parser).

Conclusion

We have presented a method for evaluating treebank pars-
ers based on dependency graphs that is particularly suita-
ble for analysing their capabilities with respect to

Parser | bad tag 2 bad tags | missing 2 missing
Charniak-Lease 20.6% 2.0% 0.4% 0.0%
Bikel (0.9.8) 28.6% 3.4% 0.4% 0.0%

For each dependency from the gold standard that was not generated by each parser, we determined whether one or both of the words it should
have joined were badly POS-tagged, or entirely missing from the dependency graph of the parser's output.
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Table I 1: Recall errors by type (top five types only)

http://www.biomedcentral.com/1471-2105/8/24

Bikel (0.9.8) Charniak-Lease

DEPENDENT 20.8% DEPENDENT 20.4%
PREPOSITIONAL_MODIFIER 12.4% NOUN_COMPOUND_MODIFIER 11.7%
PUNCTUATION 11.6% PREPOSITIONAL_MODIFIER 11.6%
ADJECTIVAL_MODIFIER 8.2% PUNCTUATION 10.5%
NOUN_COMPOUND_MODIFIER 8.0% ADJECTIVAL_MODIFIER 7.0%

For each parser, these are the five most common dependency types that were not correctly generated, with the proportion of all recall errors they

account for.

semantically-important tasks crucial to biological infor-
mation extraction systems. Applying this method to vari-
ous versions of four popular, open-source parsers that
have been deployed in the bioinformatics domain has
produced some interesting and occasionally surprising
results relevant to previous and future NLP projects in this
domain.

In terms of overall parse accuracy, the Charniak-Lease
parser — a version of the venerable Charniak parser
enhanced with access to a biomedical vocabulary for POS-
tagging purposes — and version 0.9.8 of the Bikel parser
achieved joint highest results. Both parsers relied on good
POS tagging to achieve their scores, with large proportions
of the dependency recall errors being attributable to POS
errors. An interesting comparison can be drawn here
between the Charniak-Lease parser, for which just over
20% of the missing dependencies connect to at least one
incorrectly-tagged word, and the original Charniak parser,
which uses a POS-tagging component trained on newspa-
per English, and for which almost 60% of the recall errors
relate to at least one incorrectly-tagged word.

Both parsers performed well on tasks simulating the
semantic requirements of a real-world NLP project based
on dependency graph analysis, and achieved mostly simi-
lar scores. The reconstruction of co-ordinating conjunc-
tions (e.g. 'and'/'or' constructs) was slightly more difficult
than average for each parser, and the correct attachment of
negation words (e.g. 'not' or 'without') proved problem-
atic for the Bikel parser, although the Charniak-Lease
parser was more successful on this task. Both parsers iden-
tified the arguments of the verb 'induce' almost perfectly
when we relaxed the matching criterion to allow substitu-

tions between agent-argument dependencies (e.g.
NOMINAL SUBJECT and CLAUSAL_SUBJECT) and
between target-argument dependencies (e.g.

DIRECT_OBJECT and INDIRECT_OBJECT).

Practical considerations

There are two additional criteria upon which one might
choose a parser for an information extraction project, all
other things being equal: robustness and computational
efficiency. On the former criterion, the Charniak-Lease

parser is slightly more desirable, as it did not fail to parse
any of the sentences in the corpus, whereas version 0.9.8
of the Bikel parser failed on one sentence. This seems to
reflect an architectural difference between the two parsers;
the version of the Charniak parser tested here did not suf-
fer any failures either, and neither did two previous ver-
sions that we tested in earlier experiments, whereas the
later version of the Bikel parser tested here failed twice
(and was itself a bugfix release for a version that failed a
staggering 440 times on our corpus). In terms of effi-
ciency, the Charniak parser family is the clear winner, with
the Charniak-Lease parser taking a fraction of the time of
the Bikel parser to produce slightly better results.

Advantages of dependency graphs

Given that none of the parsers in this evaluation use
dependency grammars natively, one might ask two ques-
tions. Firstly, what are the practical advantages of translat-
ing the output of treebank-style constituent parsers into
dependency graphs? And secondly, how do the graphs
thus generated compare to the raw output of dependency
parsers on biological texts? We will address the latter ques-
tion below in the Related Work section. In answer to the
former question, the benefits are manifold and apply to
both the evaluation process and the engineering of NLP
applications.

We hope that the semantic evaluation tasks presented in
this paper demonstrate the ease by which application-spe-
cific benchmarks can be designed and applied with refer-
ence to dependency graphs. Granted, one could conceive
of similar phrase-structure tree-based algorithms to test
the positioning of, say, negation words with respect to the
words they modify, but these would require the compari-
son of two subtrees and would therefore require much
more coding and processing than their dependency equiv-
alents. Indeed, since several subtrees can result in the
same grammatical relation (e.g. Figures 3 and 4), one
would have to manually account for a degree of allowable
variation.

Furthermore, some application-specific tests — such as the
analysis of arguments for the verb 'induce' in our investi-
gation — would be impossible using raw constituent trees.
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This kind of information is not explicitly represented in
constituent trees, but rather is implicit (albeit buried
rather deeply) in the phrase structures and the rules of
English, and to test such relations from trees alone
requires the design and implementation of mapping rules
that would essentially result in dependency structures

anyway.

That said, there is more information in a constituent tree
than in its dependency equivalent, and there are many
algorithms that make use of the richness of trees in order
to tackle such problems as pronoun resolution [25], label-
ling phrases with semantic roles such as CAUSE, EXPERI-
ENCER, RESULT or INSTRUMENT [26], automatic
document summarisation [27], unsupervised lexicon
acquisition [28], and the assignment of functional cate-
gory tags like TEMPORAL, MANNER, LOCATION or PUR-
POSE to phrases [29]. All of these features may be of use
in a fully-featured NLP system, so it is desirable to retain
the original phrase-structure representation of each sen-
tence as well as the final dependency graph. Therefore, a
parsing pipeline that produces both a constituent tree and
a dependency graph has an advantage over one that pro-
duces only one of these.

Related work

The inspiration for this paper came from the observation
that constituent parsers are beginning to appear in bioin-
formatics papers on a wide variety of topics, but without
any analysis of how well they perform as isolated compo-
nents in broader projects. For example, the Bikel parser
has been used to produce rough treebanks for human cor-
rection in a biological treebanking initiative [30]. Subtrees
from the Collins parser have been used as features in a
protein interaction extractor [2] and in a classifier for
semantic relations between biomedical phrases [31]. The
Charniak parser has been employed to assist in the re-
ranking of search results in a search engine for genomics
documents [32] and in the acquisition of causal chains
from texts about protein interactions [33].

The Stanford parser has been used to provide syntactic
clues for identifying key clinical terms in the medical
domain [34] and gene and protein names in the biologi-
cal domain [35], although we disagree with the latter
paper that unlexicalised parsers - those that represent
words simply by their POS tags - are more suited to the
biological domain than lexicalised parsers equipped with
a general-English lexicon. While the relative positions of
the lexicalised and unlexicalised versions of the Stanford
parser in our study depend on which evaluation measure
is used, both versions were consistently out-performed by
the Bikel and Charniak-Lease parsers, both of whose pars-
ing engines are lexicalised with a general-English vocabu-

lary.
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A thorough analysis of the effectiveness of these parsers in
this domain is vital to identifying the source of errors, to
developing workarounds for these errors, and indeed to
selecting the right parser to begin with. The work reported
here builds on a previous paper on the same subject [12]
but the dependency-based approach circumvents many of
the limitations of constituent-based evaluation that were
identified in the course of that investigation. However,
there have been a few papers that deal with the bench-
marking of parsers of various kinds on biological or bio-
medical tasks. Lease and Charniak [20], in introducing the
modified version of the Charniak parser that performed
so well here, present some comparative scores for various
versions of the parser on both the GENIA treebank and
the Penn Treebank, but they use constituent-based preci-
sion, recall and F-measure (F,,,;) and therefore implicitly
suffer from the inability of such measures to distinguish
between differences of meaning and convention (as dis-
cussed above in the Background section).

Grover et al. [36] present several experiments on parsing
MEDLINE abstracts with three hand-crafted grammars.
First they demonstrate that although the low-coverage but
high-accuracy ANLT parser [37] can return a successful
parse on only 39.5% of the sentences in their 79-sentence
test set, 77.2% of those sentences (30.5% overall) were
parsed perfectly. This strategy seems somewhat dubious
for real-world applications, however, since a parse with a
handful of minor errors is surely more desirable in prac-
tice than no parse at all. The ANLT parser also returns a set
of logical predicates representing the sentence; whether
this is more or less useful for application development
than a dependency graph remains to be seen. They then
present some experiments on using the Cass [38] and TSG
[39] parsers to correctly interpret compound nouns which
encode predicate relationships, differentiating for exam-
ple between 'treatment response' = response TO treat-
ment, and 'aerosol administration' = administration BY
aerosol. Their results for this unique investigation are
interesting and encouraging, but it is unfortunate that
they do not apply the ANLT parser to the compound noun
task, and conversely, they do not provide general meas-
ures of coverage and accuracy for the Cass and TSG pars-
ers.

Other papers have been published on the behaviour of
native dependency parsers on biomedical text. The paper
by Pyysalo et al. [8] is perhaps the closest to our own work.
They compare the free Link Grammar parser [40] to a
commercial parser, the Connexor Machinese Syntax
parser [41], both of which have been used in bioinformat-
ics [7,42]. The parsers use different dependency gram-
mars, so the authors prepared a 300-sentence protein-
protein interaction corpus with a dual annotation scheme
that accommodated the major differences between the
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two parsers' dependency types. They also disregarded
dependency types, as well as directions, as the Link
parser's 'links' are not explicitly directional, resulting in an
even looser matching criterion than the loose criterion
mentioned in our Results section.

The Link parser can return multiple parses in ranked order
of likelihood, and taking only the first parse for each sen-
tence, it achieved a recall of 72.9%, and parsed 7.0% of
sentences perfectly, although the same group shows else-
where [43] that this figure may be raised slightly by using
an independently-trained re-ranker. The Connexor parser
returns a single parse for each sentence; it scored 80.0%
for recall and also achieved 7.0% perfect parses. For com-
parison, our best parser (Charniak-Lease) achieved an
overall recall of 81.0% and parsed an impressive 23.1% of
sentences perfectly, even given a slightly stricter depend-
ency matching criterion. The authors also scored the pars-
ers on their ability to return perfect interaction subgraphs
- minimal subgraphs joining two protein names and the
word or phrase stating their interaction - although we dis-
agree that a perfect interaction subgraph is necessarily a
pre-requisite for successful retrieval of an actual interac-
tion. (Neither is it sufficient, since a negation word might
be outside the interaction subgraph yet still able to com-
pletely reverse its meaning.)

Schneider et al. [44] present results comparable to ours for
the Pro3Gres parser [45] on performing several specific
syntactic tasks over a small subset of GENIA. Their general
approach is very similar to ours, but they do not provide
performance indicators over all dependency types, and
they chunk multi-word terms into single elements before
parsing. They report F,,, scores of 88.5 and 92.0 for iden-
tifying the subjects and objects of verbs respectively,
although it is not clear whether or not these relation types
are defined as broadly as the categories we used above in
the study of the verb 'induce', where the Charniak-Lease
parser scored 98.0 and the Bikel parser scored 97.0, aver-
aged across both agent and target relations. They also
report Fy,, scores of 83.5 and 83.0 for prepositional mod-
ification of nouns and verbs respectively, which are
slightly better than our best parsers' scores on this task;
their system contains a module specifically written to cor-
rect ambiguous prepositional phrase attachments. (Note
that the F,, scores reported here are calculated from the
individual precision and recall scores given in the original
Schneider et al. paper.)

One factor common to the Pyysalo et al. paper and the
Schneider et al. paper is the small size of the evaluation
datasets (300 and 100 sentences respectively) since both
required the manual preparation of a dependency corpus
tailored to the parsers under inspection. Another advan-
tage of producing dependency parses from constituent

http://www.biomedcentral.com/1471-2105/8/24

parses is that we can make use of the larger and rapidly-
growing body of treebank-annotated biological text. Since
this project was begun, the GENIA treebank has grown
from 200 to 500 MEDLINE abstracts, and the BiolE
project [14] has released 642 abstracts annotated in a sim-
ilar format. The Stanford algorithm provides a de facto
standard for comparing a variety of constituent parsers
and treebanks at the dependency level; if the dependency
parser community were to adopt the same set of grammat-
ical relations as standard, then native dependency parsers
could be compared to constituent parsers and to biologi-
cal treebanks fairly and transparently.

The use of dependency graph analysis as an evaluation
tool is not a new idea, having been discussed by the NLP
community for several years, but to the best of our knowl-
edge the application of such methods to specific problem
domains like bioinformatics is a recent development. An
early proposal along these lines [46] also acknowledged
that inconsequential differences exist between different
dependency representations of the same text, and
included some suggested ways to exclude these phenom-
ena, although without a comprehensive treatment. While
such differences do exist, we believe that dependency
graphs are much less prone to this problem than constit-
uent trees. The same paper also discussed the mapping of
constituent trees to dependency graphs via phrasal heads;
the Stanford toolkit relies on a more sophisticated version
of this process. Its author later used this approach to eval-
uate his own MINIPAR dependency parser [47]. Later, the
EAGLE and SPARKLE projects used hierarchically-classi-
fied grammatical relations, which are comparable to the
Stanford toolkit's dependency types, to evaluate parsers in
several languages [48-50]. Similar scoring measures have
been proposed for partial parsers [51,52] - those parsers
which only return complete syntactic analyses of parts of
each sentence. However, despite the well-known issues
with constituent-based methods and the wealth of
research on alternatives such as these, constituent preci-
sion and recall (along with supplementary information
like number of crossing brackets per sentence) remain the
de facto standard for reporting parser accuracy.

Methods

Preparing the corpus

We took the initial release of the GENIA treebank, which
contains 200 abstracts from MEDLINE matching the
query terms human, blood cell and transcription factor, cor-
rected several minor errors, and removed a small number
of truncated sentences. This left us with 45406 tokens
(words and punctuation symbols) in 1757 sentences,
from which we stripped all annotations.

Before parsing, the words in the corpus needed to be

assigned POS tags. We did not use the gold standard POS
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tags as this would not reflect the typical use case for a
parser, where the text is completely unseen. The Charniak
and Charniak-Lease parsers perform POS-tagging inter-
nally, but the difference between them is that while the
original Charniak parser learns to POS-tag as part of the
parsing engine's training process — and therefore is distrib-
uted with a general-English POS-tagging vocabulary learnt
from the Penn Treebank - the Charniak-Lease parser has
a decoupled POS-tagging module which can be trained
separately, and is provided pre-trained on a different part
of the GENIA corpus from that which is included in the
GENIA treebank. (Note that it still uses lexical statistics
learnt from the Penn Treebank for the actual syntactic
parsing step as there is not yet sufficient syntactically-
annotated biological text for retraining the parsing
engine.) The other parsers in the experiment expect pre-
tagged text, for which we used the MedPost tagger [53]
which is trained on text from a variety of MEDLINE
abstracts.

Parsing the corpus

All the parsers were invoked with default compile-time
and command-line options, with the exception that all
resource limits were set to their most generous levels to
allow for particularly long/complex sentences. Some post-
processing was required to normalise punctuation sym-
bols and deal with other formatting issues, and to insert
'dummy’ trees with no nesting each time one of the pars-
ers completely failed to process a sentence. Prior to scor-
ing, some additional operations were carried out on both
the gold standard treebank and the parser output files.
PRT labels were replaced with ADVP, and NAC and NX
labels were replaced with NP, as these constituent types
are not used in GENIA. Any constituents with a single
daughter of the same type were removed, as were all con-
stituents that did not cover any words in the sentence, and
TOP nodes (S1 nodes in the case of the Charniak parser)
which are meaningless top-level container constituents
inserted by the parsers at the root of every sentence as a
processing convenience.

The Penn Treebank defines a set of grammatical function
suffixes on constituents, such as -LGS for logical subset, -
LOC for location and -TMP for temporal modifier, that
allow certain aspects of meaning to be represented more
specifically than a purely syntactic annotation allows.
GENIA uses a subset of these suffixes, the Stanford parser
can generate a different subset, and the dependency graph
generation algorithm can use another subset to provide
additional clues for identifying the correct dependency to
hold between two words. However, since these subsets do
not match, and the other parsers in the evaluation do not
produce any function suffixes at all, we completely dis-
carded them in order to maintain a level playing field.
There is a tool which adds these suffixes probabilistically
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to raw trees [29], but it was designed for the Charniak
parser and is very sensitive to small differences in output
between different parsers; its performance on biological
text is untested so far and this would make an interesting
experiment.

Generating the dependency graphs

We will not discuss in detail the system for mapping from
phrase structure trees to dependency graphs as it is
described thoroughly in [9] and in the documentation for
the Stanford NLP tools [54]. Briefly, it defines a taxonomy
of directed, labelled grammatical relations, from the most
general default type, DEPENDENT, to highly specific
types such as NOMINAL_PASSIVE_SUBJECT or
PHRASAL_VERB_PARTICLE. Each type has a list of allow-
able source constituents, target constituents and local tree
structures that may hold between source and target; these
definitions can include both structural constraints and
lexical constraints (e.g. lists of valid words within the con-
stituents). The algorithm attempts to match the patterns
against the supplied tree structure of a sentence, from
most specific to most general, and when a match is found,
a dependency arc is added to the output graph from the
head word of the source constituent to the head word of
the target constituent. (A head word of a constituent is the
word that is central to that constituent's meaning, upon
which all the other words within it ultimately depend; e.g.
the head of a verb phrase is the verb itself, and the head of
a noun phrase is the rightmost noun.)

The algorithm also provides the facility to 'collapse'
graphs into a slightly simplified form, replacing certain
words such as prepositions or possessives with dependen-
cies, and optionally adding extra dependencies that make
the semantics of each sentence slightly more explicit (at
the expense of making the sentence's graph potentially
cyclic rather than guaranteed acyclic). When scoring the
parsers' overall performance, we used the collapsed ver-
sions of the dependency graphs with all additional
dependencies added in, as this is the kind of graph one
would find most useful in an information extraction
project. The specific subtasks for the Charniak-Lease and
Bikel parsers however used the unmodified graphs as
these allowed a more fine-grained analysis of behaviour.

Scoring the parsers

The effectiveness scores F,,,, and Fj,, are constituent tree
and dependency graph similarity measures, respectively.
They are the harmonic mean of the Precision (P) and
Recall (R) values achieved by each parser, and are thus
designed to penalise parsers who favour one at the
expense of the other:

F=2><P><R
P+R
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Precision is the proportion of constituents or dependents
in the parsed corpus that are actually present in the gold
standard:

P #true positives
#true positives + # false positives

Recall is the proportion of constituents or dependents in
the gold standard corpus that are correctly proposed by
the parser:

R= #1true positives
# true positives + # false negatives

When calculating F,,,,, a constituent is treated as a true
positive only if its label (constituent type) and span (the
portion of the sentence covered by the constituent, not
counting punctuation) are correct. When calculating F,,
a dependency arc is treated as a true positive only if its
label (dependency type), start node and end node are cor-
rect (unless the loose matching criterion is specified, in
which case the label is disregarded).

For brevity, individual precision and recall scores have not
been reported in this study. In constituent terms, and con-
sidering successfully parsed sentences only, all parsers
scored slightly higher on precision than they did on recall,
indicating that they were producing somewhat sparser
trees than the GENIA annotators. In dependency terms,
on the other hand, all parsers scored almost exactly the
same for precision and recall on successfully parsed sen-
tences. This suggests that omitted dependencies were usu-
ally replaced with a single erroneous arc.

List of abbreviations
F Parser effectiveness (F-measure)

F_ . Effectiveness based on constituents

const
F, Effectiveness based on dependencies

NLP Natural language processing

P Precision

POS Part of speech

PTB Penn Treebank

R Recall

The following list covers the linguistic abbreviations used
in phrase-structure tree diagrams in this paper only. See

[10] for explanations of their names and a comprehensive
list.

http://www.biomedcentral.com/1471-2105/8/24

ADVP Adverbial phrase

CC Coordinating conjunction

CD Cardinal number

DT Determiner

IN Preposition or subordinating conjunction
NN Noun, singular or mass

NNS Noun, plural

NP Noun phrase

PP Prepositional phrase

RB Adverb

S Simple declarative clause

VBD Verb, past tense

VBN Verb, past participle

VBP Verb, non-3rd person singular present
VP Verb phrase

WDT Wh-determiner (e.g. "which", "that", "whatever")

WHNP Wh-noun phrase (noun is replaced by "which",
"who" etc.)

The following list covers the linguistic abbreviations used
in dependency graph diagrams in this paper only. See [9]
and [54] for comprehensive lists.

ADVMOD Adverbial modifier

AND Conjunction 'and'

AUX Auxiliary

AUXPASS Passive auxiliary

BY Preposition 'by’

DEP Dependent

DET Determiner

DOBJ Direct object
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DURING Preposition 'during'

NN Noun compound modifier

NSUBJ Nominal subject

NSUBJPASS Passive nominal subject

NUM Numeric modifier

OF Preposition 'of’

IN Preposition 'in'

RCMOD Relative clause modifier
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