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Background
In recent years, understanding the contribution of alterna-

tive splicing

active area of research in many fields of biology and bio-
medicine [1-9]. This has been motivated by the biological

Abstract

Background: The study of the functional role of alternative splice isoforms of a gene is a very
active area of research in biology. The difficulty of the experimental approach (in particular, in its
high-throughput version) leaves ample room for the development of bioinformatics tools that can
provide a useful first picture of the problem. Among the possible approaches, one of the simplest
is to follow classical protein function annotation protocols and annotate target alternative splice
events with the information available from conserved events in other species. However, the
application of this protocol requires a procedure capable of recognising such events. Here we
present a simple but accurate method developed for this purpose.

Results: We have developed a method for identifying homologous, or equivalent, alternative
splicing events, based on the combined use of neural networks and sequence searches. The
procedure comprises four steps: (i) BLAST search for homologues of the two isoforms defining the
target alternative splicing event; (ii) construction of all possible candidate events; (iii) scoring of the
latter with a series of neural networks; and (iv) filtering of the results. When tested in a set of 473
manually annotated pairs of homologous events, our method showed a good performance, with an
accuracy of 0.99, a precision of 0.98 and a sensitivity of 0.93. When no candidates were available,
the specificity of our method varied between 0.81 and 0.91.

Conclusion: The method described in this article allows the identification of homologous
alternative splicing events, with a good success rate, indicating that such method could be used for
the development of functional annotation of alternative splice isoforms.

relevance of AS, a process shown by a large fraction of
human genes (~74%][10]), which results in the diversifica-

(AS) to biological processes has become an  tion of the nature and expression pattern of their corre-

sponding products [2,8]. For instance, it has been found
that different alternative splice isoforms of the DSCAM
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protein are involved in the development of neuronal
interconnections by choosing the proper interaction part-
ners [2]. AS is also able to alter the substrate specificity of
enzymes by modifying their active site, as previously
shown for Anopheles dirus's glutathione S-transferase [3].
In the case of transcription factors, AS plays a regulatory
role that has a clear impact on the levels of gene expres-
sion [11,12]. The roles of transcription factors isoforms
are very broad, and depend on the nature of the sequence
changes associated with the AS event [11]: loss of the
DNA-binding domain results in isoforms that will act as
dominant-negative inhibitors of the corresponding full-
length isoforms. In other cases, functional modulation is
obtained by small insertions/deletions in the space
between DNA-binding domains, etc. All these examples
illustrate the importance of understanding the functional
role of alternative splice isoforms if the aim is to improve
our knowledge of biological processes like development,
tissue differentiation, resistance to insecticides, etc.

In addition to its intrinsic biological interest, there is also
a major biomedical interest in understanding the func-
tional role of gene isoforms, as deviations from a gene
normal AS pattern -either through isoform expression
imbalance or presence of aberrant isoforms- are at the ori-
gin of many diseases [13,4,14]. Examples cover different
cancer types -leukaemia, colon cancer, etc- [15], neurolog-
ical [1] and immune disorders [16], etc. Availability of
functional annotations for AS events is also relevant in
applied biomedical research, as these may contribute to
the selection of animal models for the above-mentioned
diseases given that proper models must show coincidence
in the AS patterns of the disease gene with its human
ortholog [16]. Lastly, drug design strategies are also start-
ing to include knowledge of the different functional roles
of alternative splice isoforms [5], as targeting the wrong
isoform may result in unexpected damaging effects [17].

All these facts stress the importance of having functional
annotations of AS events and have fuelled bioinformatics
research in this field. Indeed, a blossoming of bioinfor-
matics studies has been witnessed in recent years [18-20]
which have led to important advances in the enumeration
of a gene isoforms [21-23,19,24,20,25], in the processing
of expression data [10,23,8], in the characterization of the
nature of AS changes [26,6,27,23,28], and in the study of
the evolutionary role of AS [29-31,23,32,9,33]. However,
the functional annotation of AS, or annotation of the bio-
logical/biochemical role of the different isoforms
expressed by a gene, still remains an open problem [23].

A natural approach to this problem would be to directly
determine the functional effects of AS by studying their
impact on protein structure. This approach may work in
some cases, in particular when sequence changes involve
gain/loss of domains of known function [11]. However,
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when sequence changes are small, or involve substitu-
tions, or domain insertions/deletions in non-annotated
parts of the protein, functional inference may be very dif-
ficult [23]. For example, in the case of rat Piccolo C,A, an
apparently innocent insertion results in an isoform with
completely unexpected structural modifications [34,23].
Within this context, annotation processes based on data
mining the increasingly large amount of experimental
information available on AS, may be a good option to
obtain information on the functional effects of AS. Imple-
mentation of these annotation protocols requires a data-
base of known AS events that can be queried and a
method for the identification of homologous [35] or
equivalent AS events that will allow the identification of
proper candidates in the database.

Here we present a protein-level procedure aimed at the
identification of homologous AS events, which works irre-
spective of the nature of the associated sequence change
between isoforms, i.e. substitution, insertion/deletion, or
a mixture of both. The procedure (illustrated in Figure 1)
is conceptually similar to standard procedures for protein
function annotation. It is based on the utilisation of the
two isoforms of a target AS event to query an isoform data-
base. The resulting hits are then combined to give a small
set of candidate AS events which are subsequently scored
by 100 neural networks (NN). The method has been
tested giving an accuracy of 0.99 and a precision and sen-
sibility of 0.98 and 0.93, respectively, confirming that the
method constitutes a positive step towards the functional
annotation of AS events.

Results

Prediction procedure

We define an AS event as a pair of isoforms (11, 12) from
the same gene. Because a gene with AS may express more
than two isoforms [7], annotation of the whole AS pattern
of the gene would require a repeated application of our
method; however we will not address this issue here.

Our goal was to devise a method to find homologous, or
equivalent, AS events (I1', 12') of a target event (11, 12). We
followed the definition of homologous AS events from
our previous work [35]: two events (I1, 12) and (I1', 12")
were called homologues when isoforms I1 and I1' had an
equivalent function, with the same being true for isoforms
I2 and I2'. Two isoforms were considered to be function-
ally equivalent when their sequence identity was > 50%
[36,37].

Our procedure was designed to work at protein level,
where there are only two types of sequence changes asso-
ciated with AS: substitutions and/or insertions/deletions.
It is well known that the size of these changes may vary
broadly [29,6,28], and in some cases these changes can be
very small [38]. Small changes can be a source of large
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[ Target AS event: (I1,12) ]

STEP1:
-BLAST queries with isoforms 11 and 12

-Discard unwanted candidates (E-value >
10-5; sequence identity < 50 %, etc)

STEP2:

Combine the isoforms’ hits to give the
candidate events list: (11°, 12’), (117, 12”), etc

STEP3:

-Label candidates with 12 properties
-Score candidates using 100 NN

STEPA4:

-Rank candidates according to the NN
output

-Choose best candidates per gene

Possible homologous AS
event identified: (11°,12°)

Figure |

Protocol for the identification of homologous alternative
splicing events presented in this work. Our procedure is
divided in the four steps shown in the figure: a BLAST search
of an isoforms database with each isoform of the target AS
event, obtention of a list of candidate events, scoring of the
candidates with a set of NN and final filtering of the accepted
candidates. A more detailed description is provided in the
text of the article. In the article we compare the perform-
ance of our method with that of a control method (see
Methods section) which is an extension of a previously
described protocol to find conserved AS events between
species [45].
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fluctuations in the parameters we utilise to score the pairs
of homologous events (see Methods section below), thus
negatively affecting the training of the NN. Also, in some
cases, small changes may correspond to sequencing/anno-
tation errors [29]. Therefore, to avoid these problems, we
eliminated those AS substitution events for which the
length of at least one of the substituted sequence stretches
was below 10 residues [29]. This minimum-size filter was
also extended to the case of insertions/deletions. AS
events with insertions/deletions smaller than 10 residues
were also excluded. As a result of this filtering, 8.4% of the
events were discarded before applying the prediction pro-
tocol.

The final protocol comprised four main steps (Figure 1): a
BLAST query of an isoform database with each isoform of
the target AS event, obtention of a list of candidate events,
scoring of the candidates with a set of NN, and final filter-
ing of the accepted candidates. These steps are described
below in more detail:

.- STEP 1. For each isoform of the target event we per-
formed a BLAST [39] query of an isoform database (see
Methods section below). After excluding hits with E-val-
ues above 10-5, we kept the best hit for each query accord-
ing to the BLAST bit score [40]. In case different hits had
the same bit score they were all kept. Next, each target iso-
form was aligned to its recovered candidate (or candi-
dates), using a standard dynamic programming algorithm
[41], with gap opening and elongation penalties of -11
and -1, respectively, and the Blosum62 scoring scheme
[42]. After alignment, we excluded any hit showing a per-
centage of sequence identity with the target isoform below
50%. Then, a local sequence identity filter was applied:
the percentage of sequence identity at the location of the
alternative splicing change had to be > 50% (Figure 2),
otherwise the hit was eliminated from the corresponding

Seql HAKRPAYRELVL.KCANHKNIIVSLINVF|.PQKTLDEFQDAYLVMELM
R e N N R R
Seq2 HAKR.AYRDLVLLKCVNHKNI|.VSLLNVFTPQKTLEEFQDVYLVMELM

IG="" IL=>
44 8

Figure 2

Local and global sequence identities. This figure illustrates
how we computed these properties. Global sequence iden-
tity is the ratio between the total number of identical residue
pairs in the alignment divided by the total number of aligned
pairs. Local sequence identity is computed relative to the
sequence stretch in the target isoform (upper sequence, red
bold characters) modified by alternative splicing, and is equal
to the number of identical residue pairs involving residues
from this stretch, divided by the size of the stretch (the part
of the alignment involved in computing local sequence iden-
tity is enclosed within a red box and shaded in light blue).
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list. At the end of this step we had two hit lists, one per iso-
form.

.- STEP 2. We built a set of candidate events by obtaining
all possible combinations between the members of each
isoform list. Pairs composed of the same isoform were
excluded. Pairs composed of isoforms from different
genes or different species were also excluded. For example,
the search with isoform 11 recovered isoforms I1' and F1',
and the search with isoform 12 recovered isoforms I1', 12',
13" and F2'; where 11", 12" and 13" are expressed by gene I,
and F1' and F2' by gene F. The final list of candidate
homologous events produced at this step was: (I1', 12'),
(I1', 13") and (F1', F2'). The pair (I1', I1') was excluded
because both isoforms were the same; the pairs (I1', F2'),
(F1', 11'), (F1', 12"), (F1', I3") were excluded because the
candidate isoforms belonged to different genes.

.- STEP 3. For each candidate event obtained in the previ-
ous step we computed a set of 12 properties (see Methods
section below and Figure 3). These 12 properties were the
input to 100 NN that produced an output between 0 and
1 (see Methods section below). A candidate event was
considered to be homologue of the target event when

Target event

[ Candidate event]

Figure 3

Comparisons between isoforms. For each property used to
characterize the candidate events we obtained four values
corresponding to four comparisons between the isoforms of
the target event and those of the candidate event. The four
comparisons are shown in the figure with arrows relating the
involved isoforms. Continuous and dashed lines are used for
the arrows linking the functionally equivalent (highlighted
with the same colour) and non-equivalent isoforms, respec-
tively.
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both the ratio (number of NN with output > 0.5)/
(number of NN) and the average NN outputs were > 0.5.

.- STEP 4. The candidate events accepted in STEP 3 where
then ranked according to the number of NN with output
> 0.5, and for each gene the first candidate was kept only.
In case two candidates from the same gene ranked equally
we further ordered both candidates according to average
of their corresponding NN outputs and subsequently took
the top candidate.

Testing method performance

We tested our method performance in a set of 473 manu-
ally annotated pairs of homologous AS events (see Meth-
ods section below). The performance figures (see
Methods section below) given here are an average of the
test sets results (Figure 4). In no case we utilised the same
data to simultaneously train the NN and assess the per-
formance of the whole method.

The previous test is usually employed to assess the reliabil-
ity of sequence searches [43,44], giving a good idea of
their performance. However, there is at present a clear dif-
ference between our problem and the classical problem of
querying a sequence database for a protein with the same

Original Data

NN training [ | NN testing

2 [>| set1 ] NN1 —»] NN1 |——+] Success Ratet |
a

=

% —’ —>| NN2 }—>| Success Rate2 |
o

» >
L+| Set100 —»{ NN100 | | L+ NN100 —»{ Success Rate100
Figure 4

NN training and testing. In the figure we highlight these two
processes with a different colour code, red for the training
and blue for the testing. We followed a two-fold heterogene-
ous cross-validation scheme [50] in which the original dataset
was split in two (training and test sets). A resampling proto-
col was applied to correct for class-imbalance effects [51],
resulting in 100 training sets with the same proportion of
correct and incorrect observations. Each training set was
then utilised to train a NN. We applied the latter to the
events in the test set and computed the success rate. The
success rate given in the article is the average of the success
rates for the 200 NN.
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structure/function. For the latter problem we have nearly
achieved a full coverage of the protein structure/function
space, and thus there will always be good candidates in
the database, irrespective of whether candidates can be
recovered or not. In our case, despite great efforts in this
direction [8], it is yet unclear how much we know about
the alternative splicing pattern of all known genes (inde-
pendently of the species) [8]. Indeed, on top of the nor-
mal limits imposed by the present techniques [8], there
may be complex evolutionary phenomena that affect AS
conservation among species [31,33,28]. Thus, it is possi-
ble for a given AS event not to have any homologues in
the isoform database. To assess the ability of our method
to recognize this situation and thus produce no false can-
didates we performed what we called the no-candidate
test. This test was implemented in two different fashions:
given a target AS event (11, 12) and its homologous AS
event (I1', [2') we eliminated either isoform I1' or isoform
I2' from the isoform database or alternatively both iso-
forms were eliminated. In neither of these two versions of
the test was it possible to recover the correct hit, and there-
fore any candidate recovered would have corresponded to
a method error. The test was applied using the set of 473
correct cases.

Performance results

We first show the results for the NN, which is at the core
of our approach, and then those for the whole method.
The latter are shown together with those corresponding to
the control method (see Methods section).

Table 1 shows the results for NN performance. These
results indicate that the variables chosen for recognising
homologous AS events work well, resulting in an accuracy
of 0.89 and a precision and specificity of 0.46 and 0.94,
respectively. To assess the ability of NN to detect difficult
cases of incorrect pairings, we replaced the original incor-
rect pairs of AS events in the test set by a collection of 86

Table I: NN performance. The results given in this table
illustrate the ability of the trained NN, which are at the core of
our method, to distinguish between correct from incorrect pairs
of AS homologous events. The results in the second column
correspond to the cross-validated performance of NN when
tested using 473 and 4746 correct and incorrect pairs of
homologous AS events, respectively. The results in the third
column were obtained after replacing the 4746 incorrect pairs
with a small set of 86 of hard-to-identify incorrect pairs. In both
cases NN was shown to have a good recognition ability.

True positives + Built
negative cases

True positives + Hard
negative cases

Accuracy 0.89 £ 0.01 0.82 £ 0.02
Precision 0.46 + 0.06 0.83 £ 0.0l
Sensitivity 0.94 + 0.02 0.94 + 0.02
Specificity 0.88 £ 0.0l 0.47 £ 0.05
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hard cases (see Methods section). Please, note that no
retraining of NN was done using the latter data. We
observe (Table 1) that, despite the challenging nature of
the incorrect pairings, NN retain a good performance,
with an accuracy of 0.82 and a precision and sensitivity of
0.83 and 0.94, respectively. We can see that for this second
test the precision was better than that of the first test, 0.83
vs. 0.46, whilst this trend was reversed for specificity, 0.47
vs. 0.88. This is due to the fact that the population of
incorrect homologous AS events was smaller in the sec-
ond case. Overall, these data show the ability of NN to dis-
criminate between correct and incorrect pairs of AS events.

If we now consider the whole method we can see (Table
2) that the performance is also good, with an accuracy of
0.99 and a precision and a sensitivity of 0.98 and 0.93,
respectively. The 0.98 precision shown by the method is
substantially higher than that of NN, 0.46. This is caused
by (i) a smaller number of incorrect pairs of AS events
reaching NN due to the filters applied to the results of the
BLAST searches in STEP 1, and (ii) to the filter applied in
STEP 4, where only the best candidate event was chosen.
If we now compare the performance of our method with
that of the control method (Table 2), we see that while the
former has higher accuracy, 0.99 (our method) vs. 0.96
(control method), it has a slightly lower sensitivity 0.93
(our method) vs. 0.97 (control method). This indicates
that slightly less candidates were recovered with our
method due to the more stringent nature of our prediction
protocol, which in some cases may lead to the rejection of
good candidates. However, this also results in a clearly
better ability of our method to reject false positives, as
shown by the precision values 0.98 and 0.73, for our
method and the control method, respectively.

Overall, these results indicate that in general given a target
AS event our method will be usually successful at finding
a homologous candidate event (Table 2) for as long as
there is at least one candidate in the isoform database. To
assess the performance of our method when no candidate
was available in the database, we performed a no-candi-
date test (see above), in which all good candidates of the
target event were removed from the isoform database. We
see (Table 3) that for both versions of the test, our method
always showed a better specificity than the control
method, confirming its better ability to discard false posi-
tives.

Error analysis

In general the success of our method, and in particular its
ability to identify good hits, will depend on NN perform-
ance. If the pairings between equivalent isoforms are suf-
ficiently different from those between incorrect isoforms,
NN will easily identify good candidates. However, when
this is not the case these candidates will go unnoticed
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Table 2: Method performance. The results given in this table
show the ability of the whole method to identify AS homologous
events. The results in the second column correspond to our
method, while those in the third column correspond to a simple
control method in which no NN was utilised (see Methods
section). Both methods have a high accuracy, but our procedure
displays a better precision, related to its ability to discard wrong
candidates.

OUR METHOD CONTROL METHOD
Accuracy 0.99 £+ 0.00 0.96 + 0.04
Precision 0.98 £ 0.0l 0.73 £ 0.31
Sensitivity 0.93 £ 0.02 0.97 £ 0.0l
Specificity 1.00 + 0.00 0.96 + 0.05

resulting in false negatives. For example, in the case of
RABGA (Ras-related protein Rab-6A) there is an AS event,
corresponding to a substitution, which is homologous
between human (SwissProt code: RAB6A_ HUMAN) and
mouse (SwissProt code: RAB6A_MOUSE). In this case glo-
bal and local sequence identities for the correct pairings -
global: 99% and 99%, local: 100% and 100%- are almost
as good as those for the incorrect pairings -global: 97%
and 97%, local: 96% and 96%. As a result, the NN is una-
ble to decide whether there is a preferred pairing, and
therefore discards the mouse event as a homologue of the
human event. The contrary occurs when substantial differ-
ences appear between alternative isoform pairings; in this
case even though none of the pairings is correct, the NN
accepts wrong candidates as correct. This is what happens
for ATP2B3 (Plasma membrane calcium-transporting
ATPase 3), one of the 86 incorrect pairs of homologous AS
(see Methods section). The AS events in human and
mouse are not homologous (Figure 5), even though they
are predicted as such by our method. This is because one
of the possible isoform pairings gives better scoring
parameters than the other, leading the NN to a positive
prediction.

We tested our prediction protocol to determine whether
we could find any particular bias in the AS events correctly
identified. We considered four possible sources of bias:
similarity between isoforms (percentage of sequence iden-
tity between equivalent isoforms in homologous AS

Table 3: The no-candidate test. This test was devised to measure
the ability of our method to identify and discard incorrect pairs
of AS events. Specificity was used as performance measure
(equation 4). We observed that in both versions of the test the
specificity of our method was better than that of the control
method (see Methods section), indicating a better ability of the
former to discard false positives.

OUR METHOD CONTROL METHOD

0.81 £ 0.04
0.91 +£0.02

0.71 £ 0.04
0.88 + 0.05

Lack of one isoform
Lack of both isoforms

http://www.biomedcentral.com/1471-2105/8/260

Figure 5

Example of false positive. The figure shows two AS events
constituted by one long and one short isoform each. One is
from human ATP2B3, the other from rat Atp2b3. These two
events are not homologous, although our method predicts
them as such. This is probably because the human long/
mouse long and human short/mouse short isoform pairings
have much better values of the scoring parameters than the
human long/mouse short and human short/mouse long pair-
ings. Dotted lines between isoforms indicate sequence
stretches substituted between isoforms in each species.
Black: protein sequence adjacent to the AS sequence change.
Blue: substituted sequence stretch from the long isoform.
Red: sequence stretch from the short isoform substituted
only in human. Yellow: sequence stretch from the short iso-
form substituted in both species. Light grey: remaining of the
protein, where a second and identical AS sequence change
takes place in both species.

events), nature of the AS event (events with insertions/
deletions, substitutions or both), size of the insertion/
deletion (subdomain size: <30 residues/domain size: > 30
residues) and sequence location of the AS change. We
found (Table 4) a dependence on the similarity between
isoforms, with precisions ranging from 0.83 to 0.96, for
average similarities between 60% and 90%, respectively.
The differences were smaller when we considered the
nature of the event, with precisions 0f 0.91, 0.96 and 0.99,
for insertions/deletions, substitutions and complex events
(mixtures of insertions/deletions and substitutions),
respectively. The better performance observed for com-
plex events is due to the fact that equivalence between iso-
forms requires fulfilment of more conditions. In the case
of insertions/deletions (the most frequent sequence
change associated with AS) we found that the perform-
ance of the method was essentially independent of size.
When considering sequence location of AS change we
only observed very little performance differences. Overall,
despite the existence of some small trends, the perform-
ance of the method remained substantially high.

Finally, it must be pointed out that genes with a larger
number of isoforms are more prone to give false positive
hits than genes with only a few isoforms, independently
of the existence of any kind of bias.
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Table 4: Error analysis. Four sources of bias were considered: average identity between equivalent isoforms, AS mechanism, size of
the insertion/deletion, and sequence change location, which can be external (AS involves at least one sequence terminus), internal (no
sequence terminus is affected by AS) and external+internal (AS changes happen at both external and internal locations). Whilst a
certain trend may be observed for the first case, the performance of the method is nonetheless high. Only small performance changes
are observed for AS mechanism, size of the insertion/deletion andsequence change location.

Average identity between equivalent isoforms (sample size) Accuracy Precision Sensitivity
90% (N = 305) 0.99 £ 0.00 0.96 + 0.02 0.95 £ 0.0l
80% (N = 89) 0.98 £ 0.02 0.89 £ 0.06 0.89 £ 0.06
70% (N = 25) 0.93 £ 0.04 0.83 £ 0.05 0.83 £ 0.05
60% (N = 13) 0.95 £ 0.06 0.83 £ 0.24 0.83 £ 0.24
AS mechanism (sample size) Accuracy Precision Sensitivity
Insertions/deletions (N = 248) 0.98 £ 0.0l 091 £0.03 0.90 £ 0.02
Substitutions (N = 147) 0.99 £ 0.0l 0.96 + 0.04 0.95 £ 0.03
Complexes (N = 78) 1.00 = 0.00 0.99 £ 0.02 0.99 £ 0.02
Insertion/deletion size (sample size) Accuracy Precision Sensitivity
Small (N = 145) 0.98 £ 0.00 0.90 £ 0.0l 0.90 £ 0.00
Big (N = 103) 0.98 £ 0.0l 091 £0.05 0.91 £0.05
AS region position (sample size) Accuracy Precision Sensitivity
External (N = 153) 0.99 £ 0.01 0.95 £ 0.06 0.95 £ 0.06
Internal (N = 235) 0.99 £ 0.0l 0.91 £0.02 0.90 £ 0.00
External+Internal (N = 85) 1.00 £ 0.01 0.99 £ 0.02 0.99 £ 0.02

Discussion and conclusion

We have developed a method for the identification of
homologous, or equivalent, AS events based on the com-
bined use of NN and sequence searches. The method
works at protein level, where AS changes are either inser-
tions/deletions and/or substitutions. Its performance is
reasonably good when tested under different conditions
(presence or absence of the homologue AS event in the
isoform database), regardless of whether we consider its
accuracy or ability to discard false positive hits. We have
also compared the performance of our method with that
of a simple control method in which the use of NN was
eliminated. This control method is an adaptation to the
protein level of a previously described strategy for finding
conserved AS events [45], which we have extended to
cover the full range of AS events. We observe that while
the accuracy of both methods is comparable, our
approach has a better ability to discard false positives, due
to the presence of the neural network. These results indi-
cate that our method constitutes a positive step towards
the development of protocols for the functional annota-
tion of AS events using information from public data-
bases.

Methods

The isoforms database

This database included the sequence of all alternative
splice isoforms listed in version 43 of SwissProt [46].

However, the method is independent from the origin of
AS data, and these can come from other databases like
ENSEMBL [47], ASAP [18], etc.

Alternative splicing sequence changes

As mentioned above, our procedure was devised to work
at protein level, where sequence changes associated with
AS are of two types: substitutions and/or insertions/dele-
tions. However, because AS takes place at pre-mRNA level,
Table 5 includes, as a reference for the reader, the corre-
spondence between pre-mRNA and protein sequence
changes, for the most frequent AS events.

Application of our method required knowing exactly the
sequence change associated with the target AS event, i.e.
the number, size and location of insertions/deletions as
well as the number, size and location of substitutions. The
information on these changes was given relative to one
isoform from the pair constituting the AS event, following
SwissProt [46]. That is, if our target event was constituted
by the isoform pair (I1, 12) and 11 was taken as reference,
the sequence changes between both isoforms were
defined relative to the sequence of I1. For example, if the
AS event involved a sequence substitution, we located the
substituted sequence stretch in I1, defining its size and the
replacing stretch.
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Table 5: Correspondence between protein and mRNA level sequence changes. Pre-mRNAs can be alternatively spliced in several ways
[53] [54]. The corresponding sequence changes map only to two types of sequence changes at protein level: substitutions and/or
insertions/deletions. In this table we show the ten most frequent types of pre-mRNA AS (first column) and the corresponding protein
sequence changes (second and third columns). The former where obtained from the work of Nagasaki and colleagues [54], after
grouping some of their types, and are described using a notation similar to that used by Zheng and coworkers [53].

AS type

Insertion/deletion Substitution

Alternative transcriptional initiation
Exon skipping

Alternate polyadenilation site
Intron retention

Alternative acceptor

Alternative donor

Multiple exon skipping

Mutually exclusive exons

Complex Alternative donor/Exon skipping or Alternative acceptor/Exon skipping

Complex Multiple exon skipping/Alternate polyadenilation site

No Yes
If exon size is multiple of 3 If frameshift changes
No Yes
If intron size is multiple of 3 If frameshift changes
If frameshift is preserved If frameshift changes
If frameshift is preserved If frameshift changes
If global exon size is multiple of 3 If frameshift changes
No Yes
If frameshift is preserved If frameshift changes
No Yes

The properties

Candidate events were characterized with a set of proper-
ties (STEP 3 of the method) that were utilized by NN to
predict whether they could be homologues of the target
event. Three properties were utilized to this end: global
percentage of sequence identity, local percentage of
sequence identity and size ratio. Four values were
obtained for each property corresponding to the follow-
ing isoform comparisons (Figure 3): I1-11', 11-12', 12-11"
and 12-12' (where I1 and 12 were the isoforms defining the
target event, and I1' and 12' those defining the candidate
event). Thus, a total of 12 values were associated with each
candidate event. We describe below the properties utilized
and how these were computed.

Global percentage of sequence identity

This is the standard percentage of sequence identity,
obtained after sequence alignment of the involved iso-
forms. The sequence alignment was produced with the
Needleman & Wunsch algorithm [41]. The percentage of
sequence identity was computed as: 100.(number of iden-
tical residue pairs)/(total number of aligned residue
pairs).

Local percentage of sequence identity

To compute this parameter we used the information on
sequence changes among isoforms in the target event (see
above). This local sequence identity was computed as
(Figure 2): 100.(number of identical residue pairs involv-
ing residues from the "modified sequence stretch")/(size
of the "modified sequence stretch" in the corresponding
isoform of the target AS). The "modified sequence stretch"
was that part of the target isoform sequence affected by
alternative splicing (Figure 2). If the AS event was a substi-
tution, there were two affected sequence stretches, one per

isoform, that resulted in four local percentages of
sequence identity, one for each of the above-mentioned
comparisons: [1-11", 11-12', 12-11' and 12-12". If the AS event
was an insertion/deletion, only two local sequence identi-
ties were computed using the affected fragment: for exam-
ple, if the target AS event involved a deletion in isoform
I1, then local sequence identities were only computed for
this stretch. The local sequence identities involving iso-
form I2 were arbitrarily set to 0. This is of course an arbi-
trary decision, and a more refined method can probably
be obtained by considering substitutions and insertions/
deletions separately.

For complex events involving more than one sequence
change, e.g. two substitutions, we averaged the four values
of the local sequence identities over all the changes, to
give again 4 values for this parameter.

Size ratios

Finally, we computed the size ratios between isoforms as:
(number of residues of the candidate isoform)/(number
of residues of the target isoform), for the comparisons: 11-
11, 11-12', 12-11" and 12-12".

The neural network

All the candidates recovered at the end of STEP 2 were
scored using their properties vectors as input to a set of
100 feed-forward NN. Each of these NN produced an out-
put that is a number between 0 and 1, with values close to
0 or 1 corresponding to bad or good candidates, respec-
tively.

Each of the 100 NN had the same structure and comprised
a single hidden layer of two units, resulting in a total of 29
weights. These weights were computed presenting the NN
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with a number of inputs together with their associated tar-
get outputs [48,49]. The final weights were the result of
500 optimisation steps using scaled conjugate gradients.

Training of the neural networks

Each NN was trained to discriminate between homolo-
gous and non-homologous candidates. To this end, it was
presented with a set of inputs of both kinds. In the next
two sections we describe how we obtained this dataset
and the cross-validation protocol followed for the training
of the NN.

I. The input data set

The pairs of homologous events were obtained manually,
following a previously described protocol [35] that com-
bined visual inspection of AS events between different
species with information from the literature, when possi-
ble. For completion, we describe this procedure again.
First, we recovered a list of AS events querying the Swiss-
Prot database [46] with the keyword VARSPLIC (note that
in recent versions of the database this keyword has been
replaced by keyword VAR_SEQ). Then, we grouped the
recovered AS events according to the gene affected. We
subsequently explored these groups to find pairs of
homologous events, by looking for AS events showing
comparable sequence changes both in nature (e.g. inser-
tions/deletions or substitutions) as well as in location. In
addition, we also decided that global and local sequence
identities between equated isoforms should be > 50%, to
avoid recognition problems in the sequence twilight zone.
Finally, when possible, we utilized functional evidence
from the literature regarding, for example, differential
expression or biological activity of the different isoforms
of a gene. At the end of this procedure we recovered a total
of 473 pairs of homologous events, corresponding to 321
genes from 17 species.

The pairs of non-homologous events were built to reflect
the most frequently expected incorrect isoform pairings,
applying two different procedures to the 473 pairs of
homologous events. In the first procedure, for each pair of
homologous events, we produced a pair of non-homolo-
gous events by switching the isoforms in the second event.
That is, if we had a pair of homologous events (11, 12) and
(11", 12") we replaced the latter with (I2', 11"). In the second
procedure pairs of non-homologous events were pro-
duced by modifying the isoforms of the second AS event.
For example, we started with the correct pairing of events
(I1,12) and (I1', 12'), and replaced the latter with (I1', I3").
This procedure required that at least one of the genes had
more than two isoforms. The final number of pairs of
non-homologous events was 4746.

The total number of events in the input dataset was 473
correct assignments and 4746 incorrect assignments.

http://www.biomedcentral.com/1471-2105/8/260

2. The cross-validation procedure

We followed a two-fold cross-validation scheme (Figure
4) in which the previous dataset was split in two, impos-
ing that all data from one gene were in the same set, fol-
lowing a stringent heterogeneous cross-validation scheme
[50]. In standard cross-validation one of the resulting sets
is used to train the NN and the other is used to test its per-
formance, then the procedure is repeated again after
switching sets. However, in our case the split sets reflected
the imbalance between correct, 473 cases, and incorrect
pairings between AS events, 4746 cases. Because imbal-
anced training sets may result in biased predictors [51] we
applied an oversampling procedure to generate a new,
well-balanced, training dataset [51]. This was done by
keeping all the cases from the most frequent class (incor-
rect pairings) and by increasing the less frequent class
(correct pairings) until reaching a 1:1 ratio. The latter was
done by randomly sampling the set of correct cases from
the original training set. For example, if the original train-
ing set had 100 and 1000 correct and incorrect pairings,
respectively, we built a new training set with a total of
2000 pairs by increasing the number of correct cases, ran-
domly replicating the original 100 elements, until a total
of 1000 was reached. Then, we trained NN with the result-
ing new set. It is important to note that the resampling
procedure was only applied to the training set. This proce-
dure was repeated 100 times for each training set, result-
ingin 100 trained, different NNs. The performance figures
shown here are an average of the 200 results for the test
sets (100 for each of the two test sets).

An additional test was carried out to assess the ability of
NN to discard false positives resembling true hits. To this
end, the performance of each NN was assessed in a new
test set in which the correct pairs of AS events were main-
tained, but the incorrect pairs were replaced with those
from a small set of 86 incorrect pairs of homologous AS
events. The latter correspond to pairs of events that were
discarded when building the set of 473 correct cases but
which are similar to these, and are therefore particularly
challenging.

The performance figures shown are an average over the
results of the test sets.

A control method

We utilised an alternative method to control the improve-
ment introduced by the use of NN. In this alternative
method only the BLAST [39] search with both isoforms
was done, and the candidate event for a given gene and
species was constituted by the best hit found for each tar-
get isoform (after excluding those hits with E-values above
10-5) according to the BLAST bit score [40]. If more than
one hit had the same bit score, they were all kept. In sum-
mary, the control method is essentially a restriction to
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STEPS 1 and 2 of our identification method (see Results
section).

This method bears some resemblance to and can be con-
sidered an extension of a protocol recently described by
Pan and co-workers [45], designed to find conserved AS
events between human and other species. However, their
method works at DNA level and focuses on exon-skipping
events [45], whilst our control method works at protein
level and is not limited to any kind of AS event, to allow a
proper comparison with our NN-based prediction proto-
col.

Performance measures

We utilised the following parameters: accuracy (equation
1), precision (equation 2), sensitivity (equation 3), and
specificity (equation 4). These parameters are routinely
used to assess the performance of pattern recognition
methods when applied to biological problems, in particu-
lar when one class (in our case the true homologous AS
event) is more relevant than the others [52]. The symbols
tp, tn, fp and fn used below correspond to the number of
true positives, true negatives, false positives and false neg-
atives, respectively.

accuracy = % (1)
precision = ” Tfp (2)
sensitivity = " T D (3)
specificity = P (4)
Abbreviations

AS: alternative splicing; NN: neural network.
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