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Abstract

Background: The Immune Epitope Database contains information on immune epitopes curated
manually from the scientific literature. Like similar projects in other knowledge domains, significant
effort is spent on identifying which articles are relevant for this purpose.

Results: We here report our experience in automating this process using Naive Bayes classifiers
trained on 20,910 abstracts classified by domain experts. Improvements on the basic classifier
performance were made by a) utilizing information stored in PubMed beyond the abstract itself b)
applying standard feature selection criteria and c) extracting domain specific feature patterns that
e.g. identify peptides sequences. We have implemented the classifier into the curation process
determining if abstracts are clearly relevant, clearly irrelevant, or if no certain classification can be
made, in which case the abstracts are manually classified. Testing this classification scheme on an
independent dataset, we achieve 95% sensitivity and specificity in the 51.1% of abstracts that were
automatically classified.

Conclusion: By implementing text classification, we have sped up the reference selection process
without sacrificing sensitivity or specificity of the human expert classification. This study provides
both practical recommendations for users of text classification tools, as well as a large dataset
which can serve as a benchmark for tool developers.

Background

Manual curation of information from the literature into
electronic databases is of increasing importance in bio-
medical science. Prominent examples of databases incor-
porating curated data include the Swiss-Prot section of the
Universal Protein Resource Knowledgebase (UniProtKB/
Swiss-Prot) [1], the Gene Reference Into Function
(GeneRIF) system [2], the Mouse Genome Informatics

Database [3], KEGG [4], DIP [5] and BIND [6]. These
databases provide targeted query interfaces to access their
data, which allow the performance of summary analysis
that would be much harder or impossible to perform
when relying on literature alone.

This study was motivated by the needs of the Immune
Epitope Database and Analysis Resource (IEDB) [7,8]. The
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IEDB catalogs molecular structures of immune epitopes
recognized by the antigen specific receptors of T cells and
B cells or binding to the major histocompatibility com-
plex (MHC) molecules. In addition, the IEDB describes
the biological context in which epitope recognition was
recorded including information on the host organism,
immunogen, antigen and assay. Together with the analyt-
ical tools hosted within it, the IEDB provides resources for
the development of epitope based techniques to detect,
monitor, and prevent or treat diseases.

The IEDB literature curation is a highly iterative and coop-
erative process [9]. Epitope-related references are first
extracted from PubMed through complex queries consist-
ing of multiple keywords and logical operators. Since the
queries were designed to return all potentially relevant ref-
erences, a substantial number of abstracts returned by the
query are not actually in the scope of the IEDB and need
to be removed from the curation process. Examples for
studies that are out of the IEDB scope, even though their
abstracts contain epitope-related keywords, include those
describing a) epitope-tags for protein purification pur-
poses, b) computational studies describing epitope pre-
dictions but not experiments, and c) studies which
characterize immune responses without identifying the
molecular structure of the targeted epitopes. Until
recently, this abstract classification was performed manu-
ally by two experienced immunologists. Abstracts deemed
to be outside of the IEDB scope are discarded. For
abstracts within the scope, the full-text articles are
retrieved and their epitope related content is entered into
the database by a team of curators with expertise in bio-
chemistry, microbiology and immunology. The accuracy
of the curation is reviewed by an independent panel of
senior immunologists and structural biologists, which
give final approval to make the data public on the IEDB
website.

Manual literature curation is a resource and time-consum-
ing process, which makes it highly desirable to automate
any part of it. One step that clearly lends itself for automa-
tion is determining which publication retrieved from
PubMed is likely to contain relevant information. This is
referred to as text classification or relevance assessment
and falls in the scientific domain of information retrieval
[10,11]. The most prominent platform to evaluate the per-
formance of information retrieval techniques is the Text
Retrieval Conference (TREC) organized by the US
national Institute for Standards and Technology (NIST).
With the recent addition of TREC's genomics track [12],
TREC serves as a valuable resource to promote the
advance and application of information retrieval tech-
niques towards real world biomedical problems.

http://www.biomedcentral.com/1471-2105/8/269

Text classification is one of the simplest information
retrieval procedures [11] and can be directly applied to the
IEDB reference selection process. Early attempts of text
classification were mainly carried out by constructing
manually designed rules engineered from expert knowl-
edge [13]. With the increased availability of large amount
of literature in digital format, machine learning methods
became the dominant approaches. A large body of litera-
ture has been published documenting the application of
virtually every major machine learning algorithms in text
classification [11,14]. Popular approaches include Naive
Bayes Classifiers [15], Decision Trees [16] and Support
Vector Machines (SVM) [17].

Automated text classification has been successfully
applied to aid in biomedical database curation. Donald-
son et al. [18] used an SVM model to distinguish abstracts
containing information on protein-protein interaction
before they were curated into the BIND database. In
related work, a Probabilistic Latent Categoriser (PLC) with
Kullback-Leibler (KL) divergence was used to re-rank
PubMed references before they were curated into the
SWISS-PROT database [19]. Miotto et al. used artifical
neural networks and classification trees to identify rele-
vant abstracts containing allergen cross-reactivity infor-
mation [20]. In a more recent study, Chen et al. combined
SVM with a novel phrase-based clustering algorithm to
classify papers about C. elegans [21].

We here report the implementation of automated text
classification via a Naive Bayes Classifier into the IEDB
curation process. The Naive Bayes Classifier approach is a
popular machine learning method for text classification
because it is fast, easy to implement and performs well. It
has a long and distinguished record in text classification
[22,23] and it has been successfully applied to real world
problems such as filtering spam emails [24]. The classifi-
cation algorithms were developed utilizing the large data-
set of 20,910 PubMed abstracts previously classified by
experts. Several established text classification techniques
were compared, and a Naive Bayes classifier with informa-
tion theory based feature selection performed best. This
classifier was further customized with domain-specific
approaches to feature selection. The final algorithm was
put into practice classifying abstracts as "relevant", "irrel-
evant" and "uncertain", of which only the latter are further
reviewed by an expert. This greatly reduces the workload
for the human expert without sacrificing classification
performance.

Results

Overview of the dataset

The dataset used in our study are 20,910 PubMed
abstracts that have been manually evaluated by domain
experts during the population of the IEDB in the period
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from October 2005 to October 2006 (Table 1). The IEDB
is consecutively targeting different categories of epitope
information based on different epitope sources: category
A-C pathogens (AC), emerging and re-emerging diseases
(ER), allergens, and epitope sources not in the previous
three categories (other). The abstracts were extracted from
PubMed using complex keyword queries tailored for each
category [see Additional file 1].

All abstracts are expert classified as either "relevant" or
"irrelevant" to the scope of the IEDB [see Additional file
2]. "Relevant" abstracts are abstracts that contain epitope
related information that can be extracted and curated into
the IEDB. The majority of abstracts returned in the
PubMed query are not relevant. The relevant:irrelevant
ratios range from 1:2 for AC pathogens to 1:4 for allergens
and there are a total of 5,346 relevant and 15,564 irrele-
vant references. Of course, the human expert classifica-
tions are not always correct. This is especially true as the
abstract scanning is done very rapidly. To estimate the
inherent disagreement rate in this process, we compared
the classifications made by two experts on the same data-
set. We found the rate of disagreement to be slightly less
than 5%. This inherent disagreement rate in our dataset
limits the accuracy that can be achieved even from a per-
fect classification algorithm.

Application of established text classification techniques

We first evaluated the performance of a number of stand-
ard text classification algorithms using their default
implementation in the WEKA package [25]. Their per-
formance was compared in 10-fold cross-validation (Fig-
ure 1) using area under receiver operating characteristic
curves (AUC) as the performance metric. The input fea-
tures for classification are the raw words in each abstract.
We adopted a set of words approach and treat the features
as binary attributes. In other words, we take into account
only the presence of a feature in an abstract, not the
number of times it occurs. All features were used except
for "stop words", common words which occurred at iden-
tical frequency in relevant and irrelevant abstracts (e.g.
"and", "with", "a", "the"). Of the tested algorithms, the
Naive Bayes classifier performed best (AUC = 0.838) for
our dataset. To increase our flexibility in modifying the
algorithm and to avoid computer memory issues with the
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WEKA package in handling very large datasets, we imple-
mented the classification and performance evaluation as a
set of python scripts. The classification performance was
identical with that of the WEKA package. The imple-
mented classifier also has fast executing speed and can fin-
ish 10-fold cross-validation on the 20,910 abstracts in
about 15 minutes when tested on Ubuntu Linux system
with a 2 GHz Pentium 4 processor. When the trained clas-
sifier is used to process new abstracts, it can classify 1,000
abstracts in less than 30 seconds.

The features that can be extracted from PubMed include
not only the words in the abstract and title, but also the
authors, the journal and MeSH headings. We compared
using all of these features with using only the words of the
abstract. The ten-fold cross-validation estimated perform-
ance improved from 0.838 to 0.846 (Figure 2) which is
significant with a p-value 0.0021 as determined by a
paired t-test (see Methods). This improvement in classifier
performance clearly demonstrates that the abstract con-
tains most but not all of the information useful for refer-
ence classification.

While the t-test shows that the two methods produce dif-
ferent AUC values, one can reasonably ask if a change of
0.008 in AUC has any practical relevance. We can test the
improvement by using the irrelevant abstracts in our data-
set. In practice we wish to remove as many as possible the
irrelevant abstracts while retaining 95% of the relevant
abstracts. The classifier with AUC of 0.838 applied to our
dataset of 20,910 abstracts will identify 9,716 false posi-
tive abstracts to achieve a 95% true positive rate, while the
classifier with AUC of 0.846 will identify 9,421 false pos-
itive abstracts. This results in a net decrease of 295 false
positive abstracts and is a performance improvement of
3%, which is a small but noticeable practical improve-
ment.

The feature space in our dataset is now consisting of
181,299 unique words. To select features that are likely to
be more relevant, we applied two well accepted feature
selection methods: document frequency (DF) and infor-
mation gain (IG) described in the Methods section. The
performance curves of Naive Bayes classifier after feature
selection were plotted in Figure 3. Both IG and DF feature

Table I: Summary of expert curated abstracts used in this study. The abstracts are partitioned into four categories based on the
pathogen from which the epitopes are derived. Other refers to the pathogens that are not in the first three categories

Category Number of abstracts Relevant abstracts Irrelevant abstracts
Category A-C pathogens 7577 1942 5635
Allergen 4992 1080 3912
Emerging and Re-emerging 2911 845 2066
infectious diseases
Other 5430 1845 3585
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Comparison of popular text classification algorithms.
The performance of four well-known text classification algo-
rithm was evaluated on our dataset via |0-fold cross-valida-
tion. The ROC curve shows that the Naive Bayes classifier
performs best on our dataset. The AUC values for the four
classifiers are as follows: Naive Bayes classifier: 0.838; Neural
Network: 0.83 |; Support Vector Machine: 0.825; Decision
Tree: 0.809.

selection methods have similar effects on the classifier
performance. The best performances are achieved when
around 20,000 features are used. Both techniques permit
removing up to 80% of the features while maintaining
improved performance under cross validation. Applying
the combined cutoff with DF>3 and 1G>2.00e-05 selects
20,509 features and increases the AUC in ten-fold cross-
validation from 0.846 to 0.848 (p = 0.22) (Figure 2).
While this improvement is not significant when applying
the customary p < 0.05 cutoff, it is a benefit in itself to
remove features carrying little information or occurring
rarely, leading to decreases in computation time and a
reduction in the risk of over fitting.

An alternative approach to condense the feature space is
to identify words by their stem, e.g. reducing the words
"binding, binds, bind" to their common stem "bind".
There are standard stemming algorithms designed to han-
dle everyday English writing [26], which are often applied
for text classification including for bioinformatics. When
we applied the Porter stemming algorithm instead of fea-
ture selection, we found that the classifier performance
actually drops significantly from AUC = 0.846 to AUC =
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Comparison of Naive Bayes Classifier performance
in cross validation. AUCs of Naive Bayes classifier incor-
porating various dimensionality reduction techniques were
compared in each round of the |0-fold cross-validation side
by side. Abstract: AUC of classifier trained on the raw
words of abstracts. PubMed: AUC of classifier trained on
raw words in abstract, MeSH heading, title, author etc.
PubMed+FS: AUC of classifier trained on subset of raw
words selected from abstract, MESH heading, title, author
etc using combined cutoff of IG >2.00e-05 and DF >3.
PubMed+FS+FE: AUC of classifier trained on a subset of
feature generated from raw words in abstract, MeSH head-
ing, title, author etc by first applying feature extraction fol-
lowed by feature selection. Using combined cutoff of IG
>2.00e-05 and DF >3.

0.842 (p = 0.036) (Figure 2). This was in agreement with
a previous study [27] that suggests the standard Porter
stemmer may not be suitable to text classification for bio-
medical literature, as there is a large set of domain specific
vocabulary which may be reduced to unsuitable stems.
We did not test alternative stemming algorithms, some of
which are listed in the discussion section.

Domain specific feature extraction

In order to reduce the dimensionality of the feature space
while still capturing the essence of domain specific fea-
tures, we introduced novel rules that specifically try to
capture immune epitope related expressions, and group
them together. Through this process, the information car-
ried in individual expressions is combined and the infor-
mation content is enriched which can lead to better
performance. The following four concepts were identified:
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Effects of feature selection on Naive Bayes classifier
performance. The performances of the Naive Bayes classi-
fier (measured in AUC) is plotted against the number of fea-
tures used in training. Both IG (information gain) and DF
(document frequency) based feature selection have a similar
effect on classifier performance. Reducing the number of fea-
tures used to the top 20,000 by each measure leads to a
small increase in performance. Using even less features leads
to decreases in performance, but notably the top 100 fea-
tures in term of information gain are sufficient to reach AUC
values of 0.82.

(1) Peptide sequences (e.g. "SIINFEKL" or "ALTFVWG-
MKR"). Sequences of peptides are often included in
abstracts describing epitopes, but make poor features for
text classification as two sequences that are not identical
letter by letter will be treated as separate features. We iden-
tified peptide sequences as a) exclusively containing char-
acters representing the twenty amino acids, b) in upper
case ¢) length greater than seven and d) not one of the fol-
lowing words: "CLINICAL", "MATERIAL", "MATERIALS",
"PATIENTS", "RESEARCH" or "SIGNIFICANCE". All
identified peptide sequences are replaced with "~peptide~

(2) Position ranges (e.g. "276-284"). Expressions that can
indicate the location of an epitope in a protein sequence
were identified and replaced with "~range<50~ " or
"~range>50~ " depending on the length of the range spec-
ified. As the IEDB requires epitopes to be mapped to
stretches of less than 50 amino acids, only ranges of less

than 50 are good indicators of relevance.
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(3) MHC alleles (e.g. "HLA A*0201" or "H-2 Db") There
are thousands of different MHC alleles described with dif-
ferent nomenclatures and numbering systems for differ-
ent species. We compiled a regular expression
representing most MHC alleles from humans and mice

and replaced them with "~mhc_allele~ ".

(4) "X-mers" (e.g. "9-mer", "15-mer), which is a term
referring to peptides of a specific length. The X-mers were
identified with regular expressions matching the follow-
ing pattern: one or more digits followed by hyphen then
followed by "mer", and were translated into "~#integer~-

mer- .

The addition of domain specific feature extraction consist-
ently improved the performance of the classifier (Figure
2). The Naive Bayes classifier using all features from
PubMed (abstracts, MeSH heading, titles etc) and feature
selection has an average AUC of 0.848. Incorporating
domain specific feature extraction further improves its
performance to an AUC of 0.855, which is highly signifi-
cant (p = 1.3E-06).

Table 2 lists the top features selected by information gain.
Several features identified via our feature extraction rules
turned out to be highly informative. Extracted concepts
like ~peptide~, ~nmhc-allele~ are on par with the most
informative words utilized by domain experts such as
"epitope". Features that are strong indication of "irrele-
vant" are also informative. "Superantigens", which induce
immune response without involvement of epitopes,
ranked as the 275t among all features with an informa-
tion gain of 0.0012. "Epitope-tagged", which usually indi-
cates protein engineering experiments, ranks as the 106t
among all features with an information gain of 0.00236.
The improvements from utilizing additional features from
PubMed are also reflected in the top ranking features.
Table 3 lists top MeSH headings selected by information
gain. These MeSH headings are highly informative as
judged by information gain, and ranked as high as 21st
among all features. An interesting observation is that
author names can also be valuable features. For example
the name "Rammensee" ranked 393rd among all features
with an information gain of 0.000845.

Classification of abstracts from a new sub-domain

As described above, the IEDB consecutively curates
abstracts from different sub-domains based on the source
of the epitope. This means that the cross-validation used
here could overestimate the performance of the classifier
whenever abstracts from a new sub-domain are being clas-
sified. To test the performance of existing classifiers on
newly acquired abstracts from a different sub-domain, we
performed a series of tests. In each of such test, we first
trained a classifier based on three of the four available sets
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Table 2: Top features selected via information gain. Column one
is the feature. Column two is the average IG (information gain)
of the feature calculated from 10-fold cross-validation. Column 3
is the feature's DF (document frequency) calculated from the
whole dataset. Only features with an IG greater that 0.01 are
shown
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Table 3: Top 10 MeSH heading features selected via information
gain. MeSH terms with asterisk * denote major MeSH terms
referring to the "major" topic that is discussed in the article as
defined by the MeSH curator

Feature IG DF

Epitope 0.0441 5707
Peptide 0.0402 6408
Amino 0.0369 6461
Sequence 0.0308 6849
Acid 0.0289 6633
~range<50~ 0.0247 2915
Synthetic 0.0242 1878
~mhc_allele~ 0.0228 2745
overlapping 0.0174 781

Recognized 0.0159 3097
immunodominant 0.0153 1483
Mapping 0.0146 1433
Residues 0.0144 2108
Molecular 0.0126 7405
~peptide~ 0.0118 610

of abstracts. We then tested the performance of classifiers
learn on such sets on the fourth set of abstracts (Table 4).
The tests demonstrated that Naive Bayes classifiers learned
from different categories of abstracts have significantly
lower but still competitive performances and can achieve
AUCs in the range of 0.784 to 0.852. These lower perform-
ance estimates have to be used when applying the classi-
fier to a new sub-domain of articles, and were used to
establish the cutoff values in the following section.

Testing text classification in practice: the malaria
abstracts

Our goal for the classification is to remove as many irrel-
evant abstracts as possible while maintaining a false neg-
ative rate comparable to the human expert disagreement
rate of 5%. We also do not want to overload the curation
queue with false positive abstracts, as placing articles in
the queue and later removing them involves costs for e.g.
retrieving the full text manuscripts. We therefore classify
references in one of three categories: Abstracts with very
high predictive scores (cutoff: +100) predominantly rele-
vant to the IEDB and are directly placed into the curation

Feature IG DF

epitopes/*immunology 0.00664 682
cytotoxic/¥immunology 0.00604 746
peptides/chemical 0.00462 262
synthesis/immunology 0.00394 203

t-lymphocytes/fimmunology 0.00388 1236
Hepacivirus/¥immunology 0.00361 188
fragments/*immunology 0.00311 280
Proteins/*immunology 0.00269 958
peptides/immunology 0.00253 317
Antigens/fimmunology 0.00244 501

pipeline. Abstracts with very low predictive scores (cutoff:
-100) are predominantly irrelevant to the IEDB and can be
safely discarded. Those abstracts with intermediate predic-
tive scores are manually classified by domain experts. The
thresholds determining what scores are very high and very
low are chosen based on the performance in classifying
abstracts from a new sub-domain described above.

The first test case of this scheme was the classification of
abstracts from malaria epitopes, which constitutes a new
sub-domain. The initial PubMed query returned 1,470
abstracts with malaria epitope specific keywords. We clas-
sified the malaria abstracts using the Naive Bayes classifier
trained on all available abstracts and validated the pre-
dicted against manual classification results. A ROC plot
and precision-recall graph of the classification perform-
ance is shown in Figure 4. There are 310 abstracts classi-
fied as "relevant" according to the cutoff determined from
previous training. A close examination shows that 295 out
of those 310 abstracts are also classified as "relevant" by
domain experts (Table 5) which gives a positive predic-
tion value of 95.2%. We next examined the 441 abstracts
have been classified into the irrelevant category using cut-
off determined from previous training (Table 4). A com-
parison shows that the negative predictive value for this
cutoff is 94.8% which is right on par with domain experts.
In summary, using classifiers built on existing abstracts,
we were able to classify 51.1% of newly acquired malaria

Table 4: Classifier performances on sub-domains. The entries of the table are AUC values of Naive Bayes classifier performance
results. The AUC was derived by training the Naive Bayes classifier on a dataset (row) and use the model learned to classify a second
dataset (column). The first row of numbers is the AUC from 10-fold cross-validation. The second row of numbers is the AUC values
when the classifiers are trained using abstracts from other categories

Classification performance on sub-domain (AUC)

Train Set AC Allergen ER Other
Sub-domain (cross-validation) 0.847 0.856 0.858 0.861
All other sub-domains 0.797 0817 0.852 0.784
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Table 5: Classifier performance on newly acquired malaria abstracts
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Relevant abstracts predicted by classifier (310)

Irrelevant abstracts predicted by classifier (441)

Relevant abstracts determined by Domain
expert

Irrelevant abstracts determined by Domain
expert

295

I5

23

418

abstracts with performance on par with human experts
(Table 5).

A close examination of miss-classified abstracts can reveal
interesting insights. For example, the abstract with PMID
16791622 was classified as relevant with a high score of
162.3 while it is in fact irrelevant to the IEDB. The authors
discuss the sequence and structure of MHC molecules of
Aotus monkeys and compare their peptide binding region
with that of human MHC molecules. However, no exper-
imental data was generated. This example shows the lim-
itation of the independency assumption of the Naive
Bayes classifier and suggests that more sophisticated
methods are required to classify such abstracts automati-
cally.

Discussion

We report here our implementation of text classification
into the IEDB curation process. Using cross-validation on
existing data to evaluate classifier performances, we built
a customized Naive Bayes classifier to categorize if
PubMed abstracts are within the scope of the IEDB. The
final classification scheme was applied to a set of abstracts
from a new sub-domain of epitopes, and successfully val-
idated.

A number of lessons were learned that are generally appli-
cable for similar projects and may not be immediately
obvious. First of all, we found classification performance
was improved when using information beyond abstract
and title of a study such as MeSH terms and the names of
authors conducting a study. Author names are not com-
monly included in text classification, but doing so makes
sense as some scientists specialize in the application of
methods, which makes their authorship of a paper indic-
ative of its content. Potentially, there are many more
sources of information linked to a manuscript which
could be used as additional features for classifications. For
example, if an article is the primary reference for an entry
in the PDB, the information contained in the PDB could
be used as a source for features. Similarly, the references
citing or cited by an article could be incorporated into the
feature space.

Secondly, we found that grouping together biomedical
terms with the same meaning has a significant positive

impact on classifier performance. Grouping not only
reduced the dimensionality of the feature space but also
created features with enriched information that contrib-
uted to better performance. Several of the features we
extracted are likely to be relevant for other domains as
well, e.g. a project doing transplant research could benefit
from our regular expressions used for identifying MHC
alleles.

Finally, we have implemented a hybrid categorization
process using the automated classifier to pre-group
abstracts into clearly relevant, clearly irrelevant, or uncer-
tain. The latter ones are then classified by a human expert.
This stream of expert classifications will be used to contin-
uously update the classifier, which should result in
improvements in performance that will further reduce the
number of abstracts for which human classification is nec-
essary.

There are a number of ways the classifier could be further
improved. For example, we only tested one word stem-
ming algorithm, the Porter stemmer. The use of less strin-
gent stemming algorithms (such as Krovetz stemmer [28])
or a combination of stemming and part of speech tagging
could help to improve classifier performance as this
would tend to preserved domain specific terms and has
been useful in information retrieval from PubMed [29].
We could also incorporate techniques learned from infor-
mation retrieval research in other domains [11]. For
example, potential improvements may be achieved by giv-
ing higher weight to documents having passages with
high concentrations of high information content terms.
Also, the high information content terms identified in this
study could be applied to refine the construction of the
initial PubMed queries. Many irrelevant abstracts are
returned by our current queries; this could potentially be
avoided if more discriminating search terms can be iden-
tified.

In addition to reporting what we believe to be valuable
lessons learned, we also make the accompanying datasets
of expert classified abstracts publicly available (Supple-
mental Material 2), which could be a valuable addition
for existing resources benchmarking biomedical text clas-
sification. The BioCreAtIvE (Critical Assessment of Infor-
mation Extraction systems in Biology) provides several
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Figure 4

ROC and Precision-recall curve of malaria abstracts.
Newly acquired malaria abstracts were classified with the
Naive Bayes classifier trained on all previously expert classi-
fied abstracts. The ROC curve was shown in Figure 4a. Hori-
zontal line is the cutoff for "irrelevant” abstracts and vertical
line is the cutoff for "relevant” abstracts. Figure 4b is the Pre-
cision-Recall curve. The curve shows that at 95% precision,
we achieved a recall rate of 36.4%.
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such benchmarks for information extraction and text min-
ing [30]. The PubMed abstracts annotated with MeSH
terms are another resource of expert classified abstracts.
Comparing to benchmarks that are currently available,
our abstracts offer a very large dataset for possible optimal
training of classifiers to address a practical use-case. It is
critical for the development and evaluation of biomedical
text mining and categorization tools to identify biologi-
cally significant problems and set up corresponding
benchmarks for evaluation. This will benefit the commu-
nity just like what the CASP evaluation has contributed to
computational protein structure. We want to strongly
encourage others to utilize the IEDB dataset as part of
their benchmarking, and hope to learn from their experi-
ence to further improve our process.

Conclusion

In summary, we have successfully sped up the abstract
selection process of IEDB reference curation. We achieved
sensitivity and specificity comparable to that of the
human expert classification on a subset of automatically
classified abstracts by combining standard machine learn-
ing techniques and novel feature extraction method and
using a hybrid machine/human classification scheme. The
insights learned from this study provide practical recom-
mendations for users of text classification tools and the
large dataset can serve as a benchmark to facilitate
progress in tool development.

Methods

Feature selection

Two filter type feature selection algorithms are utilized.
Document frequency (DF) is a simple and efficient meth-
ods where features are ranked based on the number of
abstracts they appear in. Information gain (IG) is an infor-
mation theory based approach. It measures the number of
bits of information obtained for category prediction by
knowing the presence or absence of a feature in a docu-
ment. The definition is listed below,t denotes the feature
of interest, ¢; (i = 1,..., m) denotes the set of categories the
documents belong to. Each feature in the training set is
evaluated in terms of DF and IG, and features falling
below the cutoff are excluded from the training process.

1G(1) =3 (¢ ) log P(c,)+ P(1) P (c; 1) log P(c; [ 1)+ P(E) 3 P(¢ | T) log P(c; | 7)
i=1 i=1 i=1

Naive Bayes Classifier

The Bayesian approach for classification is to assign a new
instance v; the most probable target value v,,,,, given a set
of attribute values <o, a,... a,,> describing the instance
and a set of previously classified instances with known
attributes. The Naive Bayes classifier is based on the sim-
plifying assumption that the attribute values are condi-
tionally independent given the target value [31]. Based on
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this assumption, we can assign the target class as follow-
ing:

n
Viarget = argmaxP(vj )HP(ai |u]»)
u]-eV i=1

We implemented the multinomial model version of
Naive Bayes classifier with python scripts for maximum
flexibility. In addition, the WEKA [25] implementation of
the Naive Bayes classifier was used as a reference, which

performed practically identical to our classifier in all tests.

Performance measures

We used a 10-fold cross-validation approach to evaluate
the performance of the classifiers [32]. In brief, the dataset
was randomly partitioned into 10 mutually exclusive sub-
sets. For the validation, one of the 10 subsets was used as
the test set and the other 9 subsets were combined to form
a training set, and the whole process was repeated 10
times. In order to qualify and compare the performance of
classifier, we calculated the receiver operating characteris-
tic score, also know as area under ROC curve (AUC) [33].
All the test set predictions were combined and ordered by
decreasing prediction score provided by classifier. Each
instance in the combined test set was then assigned a
binary class label by applying a threshold to the predic-
tion score. The ROC curve was then generated by plotting
the true positive rate against the false positive rate and the
AUC was calculated by integrating the area under the ROC
curve.

To asses if modification of the classifier results in
improved performance, we compared the performance of
two classifiers using paired t-test. The t-test assesses
whether the means of two groups are statistically different
from each other. Paired t-test was used as the same 10-fold
partition of dataset was used for all classifiers. The calcu-
lation was carried out using t.test function from R [34].
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