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Abstract
Background: A major goal of computational studies of gene regulation is to accurately predict the
expression of genes based on the cis-regulatory content of their promoters. The development of
computational methods to decode the interactions among cis-regulatory elements has been slow,
in part, because it is difficult to know, without extensive experimental validation, whether a
particular method identifies the correct cis-regulatory interactions that underlie a given set of
expression data. There is an urgent need for test expression data in which the interactions among
cis-regulatory sites that produce the data are known. The ability to rapidly generate such data sets
would facilitate the development and comparison of computational methods that predict gene
expression patterns from promoter sequence.

Results: We developed a gene expression simulator which generates expression data using user-
defined interactions between cis-regulatory sites. The simulator can incorporate additive,
cooperative, competitive, and synergistic interactions between regulatory elements. Constraints
on the spacing, distance, and orientation of regulatory elements and their interactions may also be
defined and Gaussian noise can be added to the expression values. The simulator allows for a data
transformation that simulates the sigmoid shape of expression levels from real promoters. We
found good agreement between sets of simulated promoters and predicted regulatory modules
from real expression data. We present several data sets that may be useful for testing new
methodologies for predicting gene expression from promoter sequence.

Conclusion: We developed a flexible gene expression simulator that rapidly generates large
numbers of simulated promoters and their corresponding transcriptional output based on specified
interactions between cis-regulatory sites. When appropriate rule sets are used, the data generated
by our simulator faithfully reproduces experimentally derived data sets. We anticipate that using
simulated gene expression data sets will facilitate the direct comparison of computational strategies
to predict gene expression from promoter sequence. The source code is available online and as
additional material. The test sets are available as additional material.

Background
Transcriptional regulation of genes is controlled largely
through the concerted action of combinations of cis-regu-
latory sites in the promoters and surrounding regulatory

DNA of genes. The interactions between cis-regulatory
sites can be complex and may include synergistic [1], com-
petitive [2], and amplifying [3] interactions, and are often
influenced by the spacing and orientation of the sites rel-
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ative to each other and to the transcriptional start site
[4,5]. The complexity of the "cis-regulatory code" makes
predicting gene expression from promoter sequence a
challenging problem.

Computational approaches for determining the cis-regu-
latory code include multiple regression models [6], Baye-
sian networks [7], logic operators [8], and machine
learning methods [9]. Though their mathematical frame-
works differ, all of these approaches use large-scale tran-
scriptional data (usually microarray-based expression
profiling data) and attempt to correlate expression pat-
terns with the presence or absence of computationally
predicted cis-regulatory motifs. Currently, we do not have
good ways to compare the performance of these different
approaches to each other or to new approaches being
developed. A serious problem in comparing these meth-
ods is the lack of robust test data in which the cis-regula-
tory interactions underlying the expression data are
accurately known. We need data in which the "true"
answer is known if we are to compare methodologies. To
address this limitation, we built a rule based simulator to
create test data sets.

Simulators are playing a useful role in reconstructing gene
regulatory networks (GRN). A GRN models the regulatory
connections between genes, as opposed to the interac-
tions between cis-regulatory sites in a promoter. Because
the true GRN of a cell is not known, artificially created
GRNs are used to evaluate the accuracy of algorithms that
attempt to determine network architecture and dynamics
[10]. GRN simulators provide test datasets [11,12], which
in turn are used to assess the performance of network
reconstruction techniques [13]. We anticipate that gene
expression simulators will play a similar role in the devel-
opment of computational approaches to decipher the
interactions between cis-regulatory sites.

We present a regulatory rule simulator that generates ran-
dom promoters and produces expression data based on
user-defined interactions between cis-elements. Whereas
a GRN simulator attempts to create a web of genes con-
nected in a biologically relevant manner, our simulator
generates promoter regions and predicts the expression
from those promoters. We also present test datasets, cre-
ated by the simulator, which can be used to assess the per-
formance of algorithms that attempt to determine
underlying regulatory rules. The promoter generator and
simulator, named ReLoS (cis-Regulatory Logic Simula-
tor), are available for download [14] (see additional files
4 and 5). A web interface [15] is also available. The test
data sets are available in additional file 1.

Results and Discussion
Simulating regulatory rules
Gene expression simulations using Relos are divided into
discrete steps (Figure 1). The user first specifies the
number of cis-regulatory sites that will be part of the sim-
ulation. Next, the user creates a rule set that defines the
interactions between cis-regulatory sites and their effects
on gene expression. Relos then generates a set of promot-
ers consisting of random combinations of these cis-regu-
latory sites. Finally, the expression of each promoter is
determined by applying the rule set to each promoter
sequence. The simulator outputs a list of promoter
sequences with their corresponding expression values. At
every step, the user may specify parameters to customize
the simulations

With Relos a user can encode a wide variety of cis-regula-
tory rules. The rules are defined in an XML simulation file
to make the attributes of the simulation, including the
rules, legible to the user. A single rule in a rule-set is
defined by the cis-regulatory sites involved, the conditions
required by the rule, conditions excluded by the rule, con-
text dependencies for each condition, and the output
expression generated by that rule. Logical relationships
such as OR, NOT and AND can be expressed in describing
interactions between sites. Constraints on the spacing, ori-
entation, and distance of sites from each other can be
incorporated into any rule. Rule outputs may be com-
bined in linear and non-linear ways (see Methods). A rule
may simply specify the additive contribution of a particu-
lar regulatory element, or it may determine the parameters
of an epistatic (eg: cooperative, competitive, synergistic,
etc.) interaction between elements. Promoters are parsed
by each rule in the order in which the rules are specified.
When a rule matches a promoter, however, that rule may
specify a set of rules which should be skipped in the anal-
ysis of the matched promoter.

Promoter processing by rules is delegated to the "ana-
lyzer". The analyzer is responsible for determining
whether a rule will affect a promoter, based on the con-
straints specified for the rule. The analyzer is also respon-
sible for specifying the effect of a rule on the expression of
a promoter. Analyzers serve as the central point of exten-
sibility in Relos. For each rule, it is possible to specify a
custom analyzer. Relos comes with a regular expression
analyzer, which modifies promoter expression if the regu-
lar expression is matched. Another analyzer allows user-
defined mathematical functions to be used to determine
rule outputs. For example, a Hill function [16,17] might
be used to describe cooperativity between sites. The flexi-
bility inherent in the design of Relos allows users to sim-
ulate virtually any mode of regulation among cis-
regulatory sites.
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Real expression data are bounded. At the lower bound, a
cell cannot express less than zero copies of a gene. There is
also an upper limit of detection in any experimental setup
and to the levels of RNA that can be produced when a pro-
moter is fully occupied by the transcriptional machinery
and transcribing at the maximum rate. These constraints
produce sigmoid expression patterns. For this reason,
Relos allows users to sigmoidally transform the output
data. Users may explicitly tell Relos to transform the data.
In this case, Relos uses a sigmoid transformation centered
on the average expression for the simulation (see meth-
ods). Using the simulation expression mean to center the
transformation allows rule-sets to be compared in terms
of the variation present in the parsed promoters. Simula-
tions with large variance will show a spread of values
between zero and one. Simulations with little variance
will, when transformed, cluster around the value of 0.5.
One consequence of the mean-dependent transformation
is that it is impossible to generate a transformed dataset in
which all expression is either "on" or "off" since datasets
with very little variation will result in midline expression
when transformed. Users may therefore specify a rule at
the end of the pipeline employing a custom analyzer to
transform the data. Relos comes with a SigmoidalTrans-
form analyzer (see Methods) that can be used for this pur-
pose, but users may also provide their own
transformations. The SigmoidalTransform analyzer uses
four parameters (see Methods) to adjust the shape and
scale of the transformation. These parameters are inde-
pendent of the simulation dataset and determine an abso-
lute scale of expression onto which all rule-sets are
mapped. By using a consistent set of parameters, users can
compare rule-sets with regard to their strength of expres-
sion and compare variances according to where the mean
lies in the absolute expression scale. Since this transforma-
tion does not depend on the dataset, the absolute scale is
arbitrarily determined by the choice of parameters and
users should be careful to use rules consistent with the
scale determined by the parameters.

In addition to rules, their analyzers and constraints, and
transformation parameters, the XML simulation file con-
tains other adjustable attributes for the simulation. For
example, after the promoters have been interpreted using
the current rule set, Gaussian noise is added by the simu-
lator with a user defined standard deviation. Relos is also
capable of generating random promoters based on user-
defined properties, such as promoter length, cis-regula-
tory elements and their frequencies and outputting pro-
moters in either fasta or Relos format. These synthetic
promoters can be used directly by the simulator. For more
details, see Methods.

Examples of simulated datasets are shown in Figure 2. As
a visual aid to interpret the output of the simulations, his-

Flow of RelosFigure 1
Flow of Relos. Users supply Relos with cis-elements to use, 
the number and size of promoters to generate, and the rules 
used to analyze the promoters. Relos generates the promot-
ers then analyzes the rules by passing the promoters through 
a rule-pipeline of the user-defined rules. Noise is then added, 
and the data is optionally transformed via a sigmoidal trans-
form to ensure upper and lower limits of expression.
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tograms illustrating the distribution of expression values
are shown. Figure 2a shows the distribution of expression
values for 5000 fixed-length random promoters consist-
ing of variable numbers of a single type of cis-regulatory
activator site and neutral spacer elements, where all ele-
ments are equally probable. The expression is therefore a
reflection of the distribution of the activator element.
Relos outputs the expected Poisson distribution for
expression. Figure 2b shows the results from an activator-
repressor combination. Because expression is now a func-
tion of two inputs, it follows the expected Gaussian distri-
bution. Figure 2c shows the results from a synergistic rule
set, with noise at 5% of the expression level. In this simu-
lation, each element has a small additive effect on expres-
sion individually, but when both regulatory elements are
present in the same promoter, a large expression effect is
observed. As expected, the result of the simulation is a
bimodal distribution, where the second peak represents
promoters containing both regulatory elements. Figure 2d
shows the output of a cooperative interaction, modeled
by a Hill function. A Hill function is a transition function
of the form:

Where x is the input and ϕ and n are parameters used to
adjust the location and steepness of the transition. Hill
functions have been used to model biological cooperativ-
ity in proteins such as Hemoglobin [16] and in cis-regula-
tory interactions [17]. In Figure 2d, x is the number of
cooperative elements, n is 3, and ϕ is 5. Since the expres-
sion is a function of the number of A-elements, and the
number of A-elements is distributed according to the Pois-
son distribution, the expression pattern should be a func-
tion of a Poisson distribution. As expected, the simulator
output in Figure 2d follows a Poisson distribution with an
elongated right tail. This tail represents the high expres-
sion of promoters with multiple cooperative sites. See
additional file 2 for the rule-sets used to create figure 2.

Test datasets
The main motivation for creating the simulator was to
synthesize expression datasets for which we know the
underlying regulatory rules. These datasets will be neces-
sary to compare the accuracy of different methods that
infer cis-regulatory rules because there are no experimen-
tal datasets for which the true underlying relationships
between cis-regulatory sites are known. We therefore cre-
ated ten test datasets using different rule-sets. The test
datasets vary in the number and types of rules and in the
complexity of the rule-set. We have made the datasets and
rule sets used to generate them (see additional file 1)
available in both Relos format and fasta format. We antic-

ipate that the availability of test datasets will allow
researchers to evaluate their own methods and compare
their methods against commonly used algorithms that
deduce regulatory rules from expression data. While the
test data we provide will be useful for researchers who
want to get started right away testing their rule-finding
algorithms, we emphasize that the real power of Relos is
the capability it provides to quickly produce custom data
sets for algorithm testing. Researchers can now rapidly cre-
ate their own test datasets to compare the dependency of
any method on any particular parameter (number or sites,
types of interactions, noisy data).

Comparison to experimental data
We simulated the expression of five different regulatory
modules comprised of 254 yeast genes described in Beer
and Tavazoie [7]. A classification tree was constructed to
place each gene into its correct module based on the pres-
ence or absence of different regulatory elements. Overall,
80% (204/254) of the promoters were placed into their
original module. We then created a rule set based on the
classification tree which incorporated "AND", "OR", and
"NOT" logic. This rule set was used to simulate expression
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Sample Relos outputsFigure 2
Sample Relos outputs. Relos was used to generate and 
analyze promoters using four different models. Five thousand 
promoters were generated in all Figure 2 simulations. A. A 
simulation that depicts a single activator, modeled as an addi-
tive rule. B. A simulation that depicts an activator and a 
repressor modeled as additive rules. C. A simulation that 
depicts a synergistic rule between two regulatory elements. 
Each element has a small additive contribution to expression, 
but promoters with at least one of each element have 
enhanced expression. Gaussian noise was added to the out-
put of the simulation at 5% of the level of expression of indi-
vidual promoters. D. A simulation that depicts a cooperative 
interaction between two regulatory elements modeled with 
a hill function. Noise was added to the simulation as in C.
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values for each gene in each of the 255 conditions
reported in Beer and Tavazoie (see Methods). The results
of the simulation and the observed expression values are
shown in figure 3. The median gene-wise correlation coef-
ficient between the simulated and experimental expres-
sion was 0.78, illustrating that simulated data closely
matching observed data can be produced with Relos.
These results show that Relos can discriminate between
promoters and create biologically relevant data sets.

One noticeable discrepancy between the Relos data and
the Beer and Tavazoie data was the noise function. Relos
uses Gaussian noise, scaled by the noise-less expression
value. This results in a smaller absolute level of noise
around expression values close to zero. The Beer and Tava-
zoie data does not appear to follow this trend; the abso-
lute level of noise around zero is still quite large.
Accordingly, we wrote an unscaled noise analyzer that
applies unscaled Gaussian noise to simulated data.

We also used the same rule sets defined above to analyze
Relos-generated promoters. Randomly generated promot-
ers were created based on the frequency distributions of
the cis-regulatory sites that comprised the five modules we
simulated. When the rule set was applied to these compu-
tationally derived promoters the five expression patterns
from Beer and Tavazoie were again recapitulated (see
additional file 6). Randomly generated promoters, filtered
through Relos, faithfully replicate the observed expression
patterns in real data.

Conclusion
We sought to create a tool that simulates expression from
promoters based on cis-regulatory logic. Because there are
examples of additivity, synergism, cooperativity, and
competition between regulatory sites we created ways to
simulate these interactions in a straightforward manner.
The full spectrum of interactions between regulatory sites
is not known. We recognize that our knowledge of cellular
regulation is still relatively limited and that new types of
interactions may appear. We therefore did not want to be
limited by preconceived models. With its rule-pipeline
and analyzer plug-in architecture, Relos allows for virtu-
ally any regulatory model to be implemented.

The ease of specifying regulatory models and the speed
with which data can be generated will allow algorithms
that predict gene expression from promoter sequence to
be comprehensively tested. Algorithms that attempt to
determine regulatory logic rules from expression and
sequence data can be analyzed for their performance with
respect to noise, the number of underlying rules, and the
complexity of the interactions between the rules. Further-
more, researchers can study the size of the dataset required
for an algorithm to recapitulate the rules and the ability of
the algorithm to recapitulate the specified rules, as
opposed to alternate rule sets which also correlate with
the data. We have used Relos to generate a test dataset for
use in such studies. We anticipate that the ability to rap-
idly generate unlimited quantities of simulated expression
data will speed the design and comparison of algorithms
to decode the cis-regulatory logic that underlies real pat-
terns of gene expression.

The final arbiter of the performance of cis-regulatory rule-
finding algorithms will be how well they capture the
trends in real data. Algorithms that perform well on syn-
thetic data sets, such as those produced by Relos, will not
necessarily perform well on biological data. Because
experimentally derived data is still of limited quantity and
variable quality, extensive testing on synthetic data is the
best way to understand the strengths and limitations of
specific rule-finding methods. Testing and training on
synthetic data avoids over fitting rule finders on the lim-
ited quantities of real data that are now available. Testing
rule-finding methods on synthetic data sets will clearly be
one of the paths forward on the way to decoding the inter-
actions between cis-regulatory sites.

Methods
Promoter generation
Relos generates a promoter as a set of elements. Each pro-
moter element is associated with a "cis-element" and an
orientation. Each cis-element has an identifier (eg: A,
Oct4, etc), a sequence, and a frequency (expected occur-

Comparison of Relos vs. biologically generated dataFigure 3
Comparison of Relos vs. biologically generated data. 
Tree regression was performed on five modules 
(1,11,41,45,49) from Beer and Tavazoie [7]. The tree was 
converted to a ruleset and the ruleset used to generate 
expression values for each promoter in the modules. The 
median gene-wise correlation is 0.78. The real microarray 
expression values are depicted on the left and the Relos-gen-
erated expression values are on the right.
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rence). The sequence is only used for output purposes; all
built-in rule processing is done on promoter elements.

Relos supports two modes of promoter generation: exact
length and expected length. In exact length mode, a cis-
element is selected from the user-specified list of elements
by a roulette wheel selection process. The selected element
is added to the promoter starting from the position fur-
thest upstream of the transcription start site. The element
is added in a sense or anti-sense orientation with equal
probability. Element selection and addition continues
until the number of elements added equals the user-spec-
ified length. Relos does not insert spacer elements
between cis-elements. Rather, all cis-elements are treated
as spacer elements unless a rule is defined which uses the
cis-element in a manner inconsistent with a spacer ele-
ment (see Rule Specification below).

In expected-length mode, the element frequencies are
transformed by:

Where Di is the transformed frequency of the i-th element,
di is the non-transformed frequency for i-th element, E is
the expected promoter length, and n is the number of ele-
ments. This results in a distribution of cis-elements that
includes a "stop" pseudo-element with probably 1/E. The
distribution sums to one and preserves the relative proba-
bilities of the user-specified elements. Promoter elements
are added as in the exact length procedure until the stop
element is selected.

Rule specification
Rules are specified in an XML-based format defined by the
expression_rules.dtd document type definition file. Each
rule is defined in terms of the cis-elements the rule uses,
an optional custom analyzer to use in place of the default
Relos analyzer, the "output" (the amount by which the
rule will affect the current expression level for the pro-
moter), and the "operation" (the way in which the output
will affect the current expression). Rules may also define
precluded rules. Precluded rules are those that are pre-
vented from operating on a promoter should the preclud-
ing rule match. Rules using the default analyzer, or
custom analyzers that rely on the default analyzer, may
specify one or more conditions that determine whether a
particular element on the promoter "matches" the rule.
Conversely, these conditions may "exclude" elements on
the promoter that should not match the rule.

Conditions are comprised of the cis-element(s) to con-
sider, the allowed position(s) and required orientation of
the element(s), and zero or more contexts. Each context
defines a cis-element that must appear in the promoter
with the element under consideration in the condition.
Contexts may include specification of the spacing
between the two elements and the orientation of the "con-
text" element.

More details on rule specification can be found in addi-
tional file 3.

Promoter analysis
Relos uses a pipeline to perform rule by rule analysis of
the promoters. Typically, promoters are moved through
the pipeline in the order in which the rules appear in the
simulation XML file. However, when a precluding rule
matches a promoter, Relos prevents the precluded rules
from operating on the matched promoter. Rules which
define a custom analyzer delegate promoter analysis to
the custom module. All other rules delegate promoter
analysis to the default analyzer. The default analyzer
determines the number of elements in a promoter that
match the rule and multiplies the number of matches by
the output amount to determine the magnitude of the
effect on the current promoter expression. Promoter
expression is then affected by this amount according to
the operation defined for the current rule. Valid opera-
tions include add (new expression equals the current
expression plus the output); multiply (new expression
equals the current expression times the output); exponen-
tiate (new expression equals the old expression raised to
the power of the output); and replace (new expression
equals the output). Matching is performed on a promoter
element-wise basis. If the attributes and contexts of at least
one condition and no exclusions match, an element will
be considered a match. When no conditions or exclusions
are specified, the element only needs to match one of the
cis-elements specified by the rule.

Once all promoters have been through the rule pipeline,
a user-specified amount of noise is added to each pro-
moter by replacing the current expression value with a
random value X, where the probability of replacing the
current expression value with X is given by the Gaussian
distribution,

Where μ is the current expression value, σ = μ*η, and η is
the user defined level of noise. The Relos default sets the
noise to be 5% of the current expression level.
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Relos will also transform the data to fit a sigmoidal curve
if specified by the user. For each promoter, the trans-
formed expression value is given by:

Where VT is the transformed expression value of a particu-
lar promoter, V0 is the original expression for that pro-
moter, and μT is the mean of the untransformed
expression of all promoters in the simulation. An alterna-
tive method of transformation is provided by adding a
transformation rule with a custom analyzer to the end of
the pipeline. Relos provides an example of a transforming
analyzer in the SigmoidalTransformAnalyzer, which
transforms the data according to:

Where VT is the transformed expression value, V0 is the
original expression, α adjusts the slope of the curve at the
inflection point, β adjusts the position of the inflection
point, γ determines the expected midline expression, and
ϕ scales the resulting transformation.

More details on promoter analysis can be found in addi-
tional file 3.

Creating test dataset
Ten test-set simulations were run. Two hundred promot-
ers, comprised of eight cis-elements selected from a pool
of four possible elements (A-D), were generated for each
simulation, except for test-set simulation ten. A noise level
of 5% of the expression level was used. None of the data-
sets were subjected to upper or lower bound constraints.
The first nine test-set simulation rule sets were comprised
of: an additive activator, an activator with spacing and
ordering constraints, two synergistic rule sets with spacing
constraints, two cooperative rule sets, a dominant-nega-
tive competitive rule set, a dominant positive rule set, and
a rule set with constraints on many elements and an
enhancer. In the final test-set simulation, two hundred
promoters were generated, each comprised of eight cis-
elements selected from a pool of eight possible elements
(A-H). The final simulation rule set consisted of multiple
additive and non-additive effects, incorporating many of
the non-additive effects encountered separately in other
rule sets. For more details, see additional file 1.

Comparison to experimental data
Beer and Tavazoie [7] classified 49 transcriptional mod-
ules in S. cerevisiae. We simulated the "ribosome biogen-
esis", "peroxisome", "mitochondrion", "cell cycle", and
"glycolysis" modules. These modules were chosen

because they vary in size, expression outputs, and regula-
tory complexity. Promoters with no regulatory motifs
were removed from the dataset, leaving 254 promoters.
Tree regression [18] was performed to determine the best
classification tree for separating the promoters into the
five transcriptional modules. Input to the classification for
each promoter was their assigned module and the pres-
ence or absence of each of the 666 proposed motifs. Based
on the structure of the classification tree, a general rule set
was constructed (additional file 7). The ruleset was then
duplicated for each microarray experiment, except the
output for each rule was changed to match the average
expression for that module. All 254 promoters were used
as input sequences for each of the 255 simulations. Tree
regression and statistical calculations were performed in
R.

We used Relos to generate synthetic promoters based on
the frequency of the motifs used in the above rule set. The
frequency of each motif was determined in the 254 bio-
logical promoters as the number of times each motif
occurred divided by the total number of motifs in these
promoters. The frequencies of the remaining biological
motifs not considered by the ruleset were conglomerated
into a single "Spacer" motif (see additional file 8). Relos
was used to generate 1000 promoters which were then
analyzed by the same rule set described above, with the
addition of an "all spacer" rule.

Authors' contributions
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JG. BAC conceived the notion of a promoter-expression
simulator. BAC and JG provided guidance during the
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Additional file 1
Test Datasets. A compressed archive (zip) containing: the rulesets used to 
generate the test-set datasets (ASCII/xml); the datasets in both Relos and 
fasta format (ASCII); and histograms of each test-set to provide an over-
view of the data (PNG).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-272-S1.zip]

Additional file 2
Figure 2 Rule-sets. A compressed archive (zip) file containing the simula-
tion files (ASCII/xml). used in the generation of figure 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-272-S2.zip]
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Rule Specification and Promoter Analysis. Detailed information on how 
to specify rules and how promoters are analyzed.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-272-S3.txt]

Additional file 4
Supplementary Table 1: Relos Dependencies. A listing of modules needed 
for Relos to run and where they can be obtained.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-272-S4.pdf]

Additional file 5
Relos Source Code. A compressed archive (zip) containing the perl source 
for running Relos, the xml document-type definitions (DTD) which define 
simulation files, example simulation files, the README, and the source 
license (GPL).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-272-S5.zip]

Additional file 6
Image of modules from generated promoters. A "heat map" image showing 
the expression from the generated promoters. Promoters with only 
"Spacer" elements are not depicted.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-272-S6.png]
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Sample Ruleset for Biological Comparison. Ruleset used in one of the 255 
"microarray" simulations.
Click here for file
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Ruleset Used for Promoter Generation. The ruleset used to generate the 
1000 promoters used in testing the biological relevance of Relos-generated 
promoters.
Click here for file
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2105-8-272-S8.xml]
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