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Abstract

Background: The need for fast and accurate scoring functions has been driven by the increased
use of in silico virtual screening twinned with high-throughput screening as a method to rapidly
identify potential candidates in the early stages of drug development. We examine the ability of
some the most common scoring functions (GOLD, ChemScore, DOCK, PMF, BLEEP and
Consensus) to discriminate correctly and efficiently between active and non-active compounds
among a library of ~3,600 diverse decoy compounds in a virtual screening experiment against heat
shock protein 90 (Hsp90).

Results: Firstly, we investigated two ranking methodologies, GOLD,,, and BestScore,,,.
GOLD,,,, is based on ranks generated using GOLD. The various scoring functions, GOLD,
ChemScore, DOCK, PMF, BLEEP and Consensus, are applied to the pose ranked number one by
GOLD for that ligand. BestScore,,,, uses multiple poses for each ligand and independently chooses
the best ranked pose of the ligand according to each different scoring function. Secondly, we
considered the effect of introducing the Thr184 hydrogen bond tether to guide the docking
process towards a particular solution, and its effect on enrichment. Thirdly, we considered
normalisation to account for the known bias of scoring functions to select larger molecules. All the
scoring functions gave fairly similar enrichments, with the exception of PMF which was consistently
the poorest performer. In most cases, GOLD was marginally the best performing individual
function; the Consensus score usually performed similarly to the best single scoring function. Our
best results were obtained using the Thr184 tether in combination with the BestScore,,,, protocol
and normalisation for molecular weight. For that particular combination, DOCK was the best
individual function; DOCK recovered 90% of the actives in the top 10% of the ranked list;
Consensus similarly recovered 89% of the actives in its top 10%.

Conclusion: Overall, we demonstrate the validity of virtual screening as a method for identifying
new leads from a pool of ligands with similar physicochemical properties and we believe that the
outcome of this study provides useful insight into the setting up of a suitable docking and scoring
protocol, resulting in enrichment of 'target active' compounds.

Background screening' of very large libraries of molecules as an integral
Recent years have seen the development of in silico 'virtual ~ part of the drug development process. An initial library
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might contain millions of compounds that are potentially
available, either in-house or from vendors' catalogues.
Virtual screening has the twin goals of finding molecules
with both favourable ADMET properties and suitable bio-
activity. The first goal involves searching for molecules
with favourable values of relevant properties such as solu-
bility, polarity, logP, possible toxicity, absorption and
likely routes of metabolic breakdown, hence guiding the
medicinal chemist towards molecules of good bioavaila-
bility and low toxicity. While this is a very important
aspect of virtual screening, hereafter we shall concentrate
on the second goal of finding molecules with suitable bio-
activity.

In the favourable case where the three dimensional struc-
ture of the target, usually a protein, is known, it is possible
to computationally dock thousands of molecules into the
active site, looking for those that will have suitable spatial
and chemical complementarity and hence bind strongly
[1]. The simplest case is rigid body docking, where we take
given fixed conformations of the protein and ligand and
find where in the protein the ligand will bind, and how it
will be oriented, in order to obtain the (spatially and
chemically) best fit. Even with the assumption of rigid
bodies, the search space is six dimensional.

However, in reality the problem is harder than this. Both
protein and ligand are liable to undergo conformational
change upon docking. This means that the method must
allow conformational variation, ideally in both mole-
cules. The search space acquires a high dimensionality
and the flexible docking problem is difficult. In the
present work, we carry out semi-flexible docking.

One of the most successful strategies for docking is to use
a genetic algorithm, as in the program GOLD [2]. Such an
algorithm mirrors Darwinian evolution, representing the
solution as a 'chromosome'. Genetic algorithms allow a
population of solutions to exist, and in each 'generation'
these can evolve by processes such 'breeding' and 'muta-
tion'. Poor solutions are killed off, while good ones leave
their offspring in future generations. Such algorithms may
typically reach an excellent solution in a few tens of gen-
erations.

Scoring functions, either identical to or different from
those utilised as measures of fitness within docking pro-
grams, are used to assign predicted binding affinities and
rank ligands relative to one another, with a view to select-
ing and testing experimentally a small subset for biologi-
cal activity. The development of suitable scoring functions
for ranking the solutions produced by docking methods,
and especially for accurate prediction of protein-ligand
binding affinities, remains a considerable challenge. The
scoring function must accurately measure both intramo-
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lecular conformational strain energy and intermolecular
interaction energy. Several contrasting kinds of scoring
function have had some success, including some based on
molecular mechanics force fields (Coulomb + van der
Waals + hydrogen bonding + bond stretching & bending
+ torsions) [3] and others centred on modelling each of
the relevant terms of a 'Master Equation' describing the
free energy of interaction. An alternative is provided by
knowledge-based scoring functions, such as BLEEP [4]
and PMF [5], where the objective is to use the co-ordinates
of hundreds of three dimensional protein-ligand complex
structures as a knowledge base. Using this knowledge, a
putative protein-ligand interaction geometry can be
assessed on the basis of how similar its features are to
those of the ensemble of known structures. The features
used are the distributions of atom-atom distances
between protein and ligand in the complex. Commonly
observed features, such as donor/acceptor type nitrogen/
oxygen distances at typical hydrogen bonding distances
around 3A, score favourably. Less frequently observed
interactions, such as close polar/non-polar contacts, score
unfavourably. When the contributions are summed over
all pairs of atoms in the complex, the resulting score indi-
cates how much the putative structure 'looks like' a real
protein-ligand complex.

When the binding affinity of a series of homologous
inhibitors into a particular site is known, it is possible to
generate 'customised' scoring functions to fit the data [6].
Ideally, the combination of the search algorithm and the
scoring function should result in a single solution close to
the experimental ligand position [7]. General-purpose
scoring functions, in contrast, are designed to be applica-
ble to a wide variety of protein-ligand complexes, and are
therefore parameterised using a diverse set of protein lig-
and complexes. This work concentrates on five general-
purpose scoring functions.

The application of virtual screening techniques in parallel
with High-Throughput Screening (HTS) technology, cou-
pled with structural biology [8], can extend the scope of
screening to external databases. This allows more diverse
chemical entities to be identified as hits, and as a conse-
quence can help to reduce the assay-to-lead attrition rate
observed from HTS [9].

There are many questions, however, associated with the
tools employed for docking-based virtual screening. A
number of approximations are often employed for the
docking/scoring searches (e.g., neglect of protein flexibil-
ity in rigid docking, lack of a rigorous treatment of solva-
tion, and the choice of one particular protonation state) in
order for the virtual screen to be completed within an
acceptable time limit, as well as other unavoidable
approximations such as the limitations of X-ray crystal
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structures. Despite the above, virtual screening can be
improved by taking into consideration additional infor-
mation about the receptor of interest and using this infor-
mation advantageously in docking/scoring applications
[10-13]. Recent advances in virtual screening include var-
ious physics-based methods [14-16] and consensus scor-
ing [17,18].

In our study, we concentrate on heat shock protein 90
(Hsp90), which is a chaperone and a target for anti-cancer
therapeutics [19]. Prior to screening, the binding site was
prepared by using the SYBYL® 7.0 software of Tripos [20].
The docking program GOLD 2.2 [2] was used to perform
docking with and without the presence of a tether. The lig-
ands docked were taken from 'active' and 'inactive' datasets
[21]; we also used a set of 'decoys' retrieved from the
CIPSLINE cancer database [22]. Post-dock scoring was cal-
culated using multiple scoring functions: GOLD [2],
ChemsScore [23], DOCK [24], PMF [5], BLEEP [4,25-28],
and a Consensus generated from the preceding five. We
used two ranking methodologies: best GOLD, ,,, and Best-
Score,,,;, (see Methods).

rank

rank

Results and discussion

We analysed crystal structures (PDB Codes: 1YC1/1YC3/
1YC4[29], 1BYQ[30]) containing the ligands 4BC (Figure
1), 43P (Figure 1), and ADP (Figure 2) bound to the N-ter-
minal ATP binding domain of human Hsp90oc, as
described in detail in the Methods section.

We considered the conformation of the ADP bound
Hsp90 (PDB Code: 1BYQ), representing a ligand bound
structure, as a suitable starting point for virtual screening.
Thr184 was used as a tether, since it generated a low
RMSD (root mean square deviation) from its correspond-
ing crystallographic conformations (< 1A, Table 1) and, in
preliminary work, strongly outperformed the alternative
Asp93 tether. Each library compound was docked to the
binding site (PDB Code: 1BYQ), firstly with no tether and
secondly with the tether Thr184. We separately used the
GOLD and ChemScore functions for on-dock scoring. The
RMSD values between the docked ligands and their crys-
tallographic conformations (1YC1/1YC3/1YC4) are given
in Table 1.

A larger set of 'active’ (261) and 'inactive' (54) compounds
similar to 4BC and 43P and a 'decoy’ (~3600) set of known
drugs, with similarly druglike physicochemical properties
(molecular weight, logP, numbers of hydrogen bond
donors, hydrogen bond acceptors and rotatable bonds,
see Methods), but assumed inactive against this target,
were docked to the binding site, with and without the
Thr184 hydrogen bond tether, using GOLD 2.2 and the
GOLD scoring function. Post-dock scoring used the
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Figure |
Structures of 4BC (upper) and 43P (lower).

SYBYL®-CScore™ module, BLEEP as stand alone software,
and Consensus (see Methods).

By ranking all ligands via their score values, the enrich-
ments were calculated for each scoring function to estab-
lish how many decoys had to be picked in order to find all
the original actives, based on poses chosen with either the
GOLD,,,;, or BestScore,,; methodologies. GOLD,,,, is
based on ranks generated using GOLD. Each scoring func-
tion is applied to the pose ranked number one by GOLD
for that ligand. BestScore,,,;, chooses, in each case, the best
pose as ranked by the particular scoring function in ques-
tion, rather than always using the pose ranked first by
GOLD. The virtual screening was carried out both with
and without the tether.

Scores normalised for molecular weight [31] were
obtained by dividing the raw score by the number of
heavy atoms to the power of 1/3. This is designed to
reduce the inherent bias towards larger molecules that
arises from the additive nature of scoring functions. Nor-
malisation also reduces the prevalence of high molecular
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Figure 2
LIGPLOT [38] diagram of the protein-ligand interactions in the Hsp90 N-terminal domain bound with ADP (PDB code: 1BYQ).
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Table I: Deviations between docked and crystallographic conformations

Compounds

GOLD

ChemScore

4BC (no tether)

1.84 [1YC1]/0.38 [1YC3]

1.19 [1YC1]/1.58 [1YC3]

4BC (Thri84) 1. 62 [LYCI1]/0.51 [1YC3] 0.71 [LYC1]/0.98 [LYC3]
43P (no tether) 0.51 [1YC4] 0.64 [1YC4]
43P (Thri84) 0.78 [LYC4] 1.19 [1YC4]

RMS deviations in A between the docked conformations of 'active’ compounds 4BC and 43P and their corresponding crystallographic

conformations (PDB codes: 1YCI, 1YC3, 1YC4).

weight molecules amongst the hits, which is likely to be
beneficial from a lead optimisation perspective.

We give the results in Table 2 (no tether) and Table 3
(Thr184 tether). Some of the same data are shown as
Receiver Operating Characteristic (ROC) curves in Figure
3.The ROC curves are presented as plots of the proportion
of all actives recovered versus the proportion of all inac-
tives recovered as one proceeds from the top to the bot-
tom of the ranked list. The areas under these ROC curves
are a convenient measure of performance, and are
included in Tables 2 and 3. An ideal case would recover all
actives before recovering any inactives and hence have an
area of unity. The apparent contradiction between the
retrievals of actives for GOLD between Tables 2, 3 (e.g.,
28% of actives for GOLD,,,;, and 25% of actives for Best-
Score,,,,, in the top 10% in Table 2) is due to the different
implementations of the GOLD algorithm in GOLD 2.2
and in the SYBYL® -CScore™ module.

Some clear trends are apparent from these results, based
on analysis of the data in Tables 2 and 3, and especially
the areas under the relevant ROC curves.

(1) The relative performance of the scoring functions is
typically given by

GOLD = Consensus > DOCK = ChemScore > BLEEP >>
PME.

The Consensus score used in this work is a simple sum of
the Z-scaled scores from five scoring functions. As such, it
is less sophisticated than other consensus strategies con-
sidered elsewhere [17,27]. Nonetheless, it is generally a
robust method, comparable in performance to the best
individual scoring function. The good performance of the
Consensus scoring method result is to some extent in
agreement with recent virtual screening studies where
Consensus scoring improves the enrichment of true hits
[32-34] in various systems. However, the improvement
given by using the Consensus method is small, and on
occasions Consensus fails to outperform the best individ-
ual function.

The performance of PMF here is usually worse than ran-
dom and PMF is consistently the poorest performer in all
applied protocols. We used the implementation of PMF in

Table 2: Receiver operating characteristic data obtained with no tether

Scoring Functions GOLD, BestScore,
% Actives % Actives

10 20 30 50 AUC 10 20 30 50 AUC
GOLD 28 42 55 75 .705 25 41 57 76 715
ChemScore 19 39 53 79 .704 21 35 58 84 725
DOCK 23 37 50 73 .678 18 32 44 70 .654
PMF | 8 16 41 419 0 0 5 27 364
BLEEP 19 35 50 69 .633 17 33 48 76 .666
Consensus 24 37 52 72 .68l 21 33 51 74 677
GOLD (normalised) 27 39 51 71 674 25 41 54 74 .695
ChemScore (normalised) 15 29 44 67 .635 I3 30 48 77 677
DOCK (normalised) 27 41 53 77 710 20 33 45 70 653
PMF (normalised) 0 4 Il 37 .385 0 0 4 21 334
BLEEP (normalised) 17 29 45 64 610 16 29 46 71 .648
Consensus (normalised) 28 43 59 78 732 23 36 49 75 .682

Retrieval of actives without using a tether. Percentages of actives corresponding to the top 10%, 20%, 30% & 50% of the screened library. The
normalised scores were obtained by dividing by the number of heavy atoms to the power of 1/3. AUC is the area under the ROC curve.
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Table 3: Receiver operating characteristic data obtained with the Thrl84 tether

Scoring Functions GOLD, BestScore,
% Actives % Actives

10 20 30 50 AUC 10 20 30 50 AUC

GOLD 37 6l 78 92 .824 63 87 96 99 919
ChemScore 33 52 70 90 797 56 8l 93 99 .898
DOCK 32 47 62 8l 753 59 84 92 100 .899

PMF 0 6 19 43 466 3 4 9 53 .505

BLEEP 28 44 57 79 718 45 73 87 98 .867
Consensus 39 53 69 92 .803 63 92 97 100 .930
GOLD (normalised) 43 60 73 88 .806 79 94 98 99 .954
ChemScore (normalised) 24 44 62 86 751 52 76 88 96 .878
DOCK (normalised) 35 49 63 86 769 90 96 97 100 976
PMF (normalised) 0 2 14 41 448 3 4 13 56 521
BLEEP (normalised) 25 39 52 76 .699 69 83 90 96 .909
Consensus (normalised) (normalised) 38 57 71 89 .801 89 97 99 100 974

Retrieval of actives with the Thr184 tether. Percentages of actives corresponding to the top 10%, 20%, 30% and 50% of the screened library. The
normalised scores were obtained by dividing by the number of heavy atoms to the power of 1/3.

THR184 Tether; Best Score Rank; Normalised

1'00 Fﬂiﬁ—rﬁ -
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Proportion Inactives Recovered
Figure 3

Receiver Operating Characteristic (ROC) curves for the combination of the Thrl84 tether, the BestScore
normalisation by dividing the raw score by the number of heavy atoms to the power of 1/3.

rank Protocol, and
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SYBYL® 7.0; our previous use of the SYBYL implementa-
tion of PMF also gave disappointing results [27], though
the present ones are certainly poorer. PMF gave much bet-
ter results in its authors' own in-house implementation
[5,35].

(2) The tethered results are in all cases better than the cor-
responding untethered ones. This effect is particularly
strong when the BestScore,,,,;, protocol is used.

The utilisation of tethering during docking requires prior
knowledge of ligand-protein X-ray structures, which is not
always available. Inspection of the structures shows that
in general the tether is satisfied as expected in the better
scoring structures and structures unable to satisfy the
tether appear further down the ranked list.

(3) When the tether is used, the BestScore,,,, protocol
always gives better results than a corresponding calcula-
tion using the GOLD,,,;, protocol. For untethered docking,
there is little difference in the performance of the two pro-
tocols.

The GOLD,,,,;, protocol tends to be biased towards to the
GOLD function in relation to the other scoring functions;
BestScore,,,, proved to be an unbiased method selecting
the best score for each scoring function independently.

(4) In most cases, normalisation has little effect on per-
formance, and any such effect is often deleterious. How-
ever, for the particular combination of tethered docking
and the BestScore,,,, protocol, normalisation gives a sig-
nificant improvement (though not for ChemScore).

(5) This combination of tethered docking, the BestScore.
-ani PTOtocol and normalisation by dividing the raw score
by the number of heavy atoms to the power of 1/3 gives
the best results found in this study; this is true for every
scoring function except ChemScore.

We consider that this optimal combination gives a good
virtual screening performance (other than with PMF),
with the percentages of actives found in the first 10% of
the ranked library being 90%, 79%, 69% and 52% for the
four best individual scoring functions and 89% for Con-
sensus. The ROC curves for this combination are shown in
Figure 3.

(6) The performance ranking of the scoring functions for
this optimal combination of tether, BestScore,,,;, and nor-
malisation is somewhat atypical of those found in our
other calculations and is given by

DOCK = Consensus > GOLD > BLEEP > ChemScore >>
PMF.

http://www.biomedcentral.com/1471-2105/8/27

Conclusion

This work has demonstrated the successful development
of a virtual screening methodology, as has been achieved
by other groups for different therapeutically relevant tar-
gets [36,37]. A library of ~3600 compounds was docked
semi-flexibly into the active site of Hsp90. Five scoring
functions, including BLEEP, were used to discriminate
active from inactive compounds. The present work offers
alternative protocols for virtual screening of chemical
libraries with an emphasis on the effect of using multiple
ligand poses for scoring with some of the most common
scoring functions and also tethered and un-tethered dock-
ing.

For tethered docking, we find that consideration of multi-
ple poses for each ligand in our BestScore,,,, protocol is
superior to relying on the best scoring pose generated by
a single scoring function. The different scoring functions
are thus judged on the basis of their own top-scoring
poses, which may be different from one another.

Though normalisation has little effect on enrichment else-
where in this work, in the case where the Thr184 tether is
combined with the BestScore,,,, protocol, normalisation
generates a significant improvement in enrichment. This
combination of tethered docking, the BestScore,,,, proto-
col and normalisation gives the best results found in this
work. Normalisation also reduces the prevalence of high
molecular weight molecules amongst the hits, which is
likely to be beneficial from a lead optimisation perspec-
tive.

Although we use only a very simple implementation of
Consensus scoring, we find it to be a generally robust
methodology. It performs similarly to the best individual
scoring function in each virtual screening run.

Overall, we demonstrate the validity of virtual screening
as a method for identifying new leads from a pool of lig-
ands with similar physicochemical properties and we
believe that the outcome of this study provides useful
insight into the setting up of a suitable docking/scoring
protocol, resulting in enrichment of 'target active' com-
pounds.

Methods

Data preparation

Prior to docking-based virtual screening, the binding site
was prepared using SYBYL® 7.0. Protonation states as at
pH?7, atom- and bond-types, hydrogen addition, and con-
sideration of active site waters for inclusion/exclusion
were implemented using SYBYL® 7.0 for the crystal struc-
tures (PDB Codes: 1YC1/1YC3/1YC4 [29], 1BYQJ30])
containing the ligands 4BC (Figure 1), 43P (Figure 1), and
ADP bound to the N-terminal ATP binding domain of
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human Hsp90a. A diagram featuring the key protein-lig-
and interactions for the ligand ADP was generated using
LIGPLOT [38] (Figure 2).

For the purpose of this study, we considered the confor-
mation of the ADP bound Hsp90 (PDB Code: 1BYQ), rep-
resenting a ligand bound structure and a more suitable
starting point for virtual screening. The bound inhibitor
was not included in the docking run. The 3D coordinates
of the ligands were generated from 2D structures using
CORINA [39]. For tether selection, we considered Thr184
[29,40] Asp93 [41] and Gly97, which all form distinct
hydrogen bonds with bound ligands. Gly97 was not
included in the final calculations as it did not form any
interaction with ATP and showed poor results in initial
validation studies. Default tether weights were used. Both
Thr184 and Asp93 initially seemed to be appropriate teth-
ers, since they generated the lowest RMSD from their cor-
responding crystallographic conformation (< 1A) for this
system (see Table 1). However, our early results showed
that the Asp93 tether did not produce a significant enrich-
ment of actives and hence it was not considered further.

Docking and scoring protocol

Each compound in the library was docked to the binding
site (PDB Code: 1BYQ), with no tether and with the
Thr184 tether. In each case, we separately used both the
GOLD and ChemScore functions for on-dock scoring. The
RMSD was calculated between each docked ligand and its
later published crystallographic conformation (PDB
Codes: 1YC1/1YC3/1YC4) (Table 1 and Figures 3, 4).
GOLD,,,,, is based on ranks generated using GOLD. The
various scoring functions, GOLD, ChemScore, DOCK,
PMF, BLEEP and Consensus, are applied to the pose
ranked number one by GOLD for that ligand. BestScore.
-anie Uses multiple poses for each ligand, and independ-
ently chooses the best ranked pose of the ligand according
to each individual scoring function.

A larger set of 'active’ (261) and 'inactive' (54) compounds
similar to 4BC (4-benzo[1,3]dioxol-5-yl-5-(5-ethyl-2,4-
dihydroxy-phenyl)-2H-pyrazole-3-carboxylic acid) and
43P  (4-ethyl-6-[4-(1H-imidazol-4-yl)-1H-pyrazol-3yl]-
benzene-1,3-diol) and a 'decoy’ (~3600) set of known
drugs (with similar physicochemical properties but
assumed inactive against this target) were docked to the
binding site, with and without the Thr184 hydrogen bond
tether, using GOLD 2.2 and the GOLD scoring function,
determined to give the best results in previous test runs.
Post-dock scoring using a set of different scoring functions
was applied using the SYBYL®-CScore™ module, and
BLEEP as stand alone software. The Consensus was
defined as follows: the mean of each scoring function was
subtracted from the score of each compound and divided
by its standard deviation; the sum of these scaled values of

http://www.biomedcentral.com/1471-2105/8/27

the five scoring functions generated the consensus. This
sum over Z-scaled scoring function values was imple-
mented using perl scripts.

Using the activity data reported in a set of recent patents
[42], we defined compounds as 'active' if IC50 < 10 uM
and as 'inactive' if IC50 > 50 uM. The 'decoy' set was
selected from the CIPSLINE cancer database using the
dbtranslate and dbslnfilter tools in SYBYL® 7.0, so as to
maintain the same physicochemical properties as the
active/inactive set: MWt 150-750, logP 1-6, rotatable
bonds 0-14 and hydrogen bond donors/acceptors 0-8/0-
12. In each case, up to 10 poses were saved for each
docked compound. Two separate results files were written
containing all poses for all ligands, and containing only
the top GOLD,,,,;, pose for each ligand.
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