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Abstract
Background: Many procedures for finding differentially expressed genes in microarray data are
based on classical or modified t-statistics. Due to multiple testing considerations, the false discovery
rate (FDR) is the key tool for assessing the significance of these test statistics. Two recent papers
have generalized two aspects: Storey et al. (2005) have introduced a likelihood ratio test statistic
for two-sample situations that has desirable theoretical properties (optimal discovery procedure,
ODP), but uses standard FDR assessment; Ploner et al. (2006) have introduced a multivariate local
FDR that allows incorporation of standard error information, but uses the standard t-statistic
(fdr2d). The relationship and relative performance of these methods in two-sample comparisons is
currently unknown.

Methods: Using simulated and real datasets, we compare the ODP and fdr2d procedures. We also
introduce a new procedure called S2d that combines the ODP test statistic with the extended FDR
assessment of fdr2d.

Results: For both simulated and real datasets, fdr2d performs better than ODP. As expected, both
methods perform better than a standard t-statistic with standard local FDR. The new procedure
S2d performs as well as fdr2d on simulated data, but performs better on the real data sets.

Conclusion: The ODP can be improved by including the standard error information as in fdr2d.
This means that the optimality enjoyed in theory by ODP does not hold for the estimated version
that has to be used in practice. The new procedure S2d has a slight advantage over fdr2d, which
has to be balanced against a significantly higher computational effort and a less intuititive test
statistic.

Background
High-throughput methods in molecular biology have
challenged existing data analysis methods and stimulated
the development of new methods. A key example is the
gene expression microarray and its use as a screening tool
for detecting genes that are differentially expressed (DE)

between different biological states. The need to identify a
possibly very small number of regulated genes among the
10,000s of sequences found on modern microarray chips,
based on tens to hundreds of biological samples, has led
to a plethora of different methods. The emerging consen-
sus in the field [1] suggests that a) despite ongoing

Published: 26 January 2007

BMC Bioinformatics 2007, 8:28 doi:10.1186/1471-2105-8-28

Received: 22 August 2006
Accepted: 26 January 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/28

© 2007 Perelman et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/28
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17257426
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2007, 8:28 http://www.biomedcentral.com/1471-2105/8/28
research on p-value adjustments [2], false discovery rates
(FDR, [3]) are more practical for dealing with the multi-
plicity problem, and b) classical test statistics requires
modification to limit the influence of unrealistically small
variance estimates. Nonetheless, many competing meth-
ods for detecting DE exist, and even attempts at validation
on data sets with known mRNA composition [4] cannot
offer definitive guidelines.

In this context, the introduction of the so-called optimal
discovery procedure (ODP, [5]) constitutes a major con-
ceptual achievement. Building on the Neyman-Pearson
lemma for testing an individual hypothesis, the author
shows that an extension of the likelihood ratio test statis-
tic for multiple parallel hypotheses (or genes) is the opti-
mal procedure for deciding whether any specific gene is in
fact DE: for any fixed number of false positive results,
ODP will identify the maximum number of true positives.
The ODP establishes therefore a theoretical optimum for
detecting DE against which any other method can be
measured.

Unfortunately, the optimality of ODP is a strictly theoret-
ical result that requires, for all genes, a full parametric
specification of the densities under null and alternative
hypothesis. In practice, even assuming normality, the
gene-wise means and variances are unknown, and they
become nuisance parameters in the hypothesis testing.
Consequently, the authors of [6] have suggested an esti-
mated version EODP, which can be implemented in prac-
tice. It is, however, not clear how EODP performs
compared to the theoretical optimum, or other existing
methods, except under the most benign circumstances
(no correlation and equal variances between genes).

The main questions of this paper are therefore a) whether
the optimality of ODP is retained by EODP, and b)
whether we can improve on EODP's performance in prac-
tice. Previously, we have introduced a multidimensional
extension of the FDR procedure (fdr2d) that combines
standard error information with the classical t-statistic.
We demonstrated that the fdr2d performs as well or better
than the usual modified t-statistics, without requiring
extra modeling or model assumptions [7]. In this paper,
we show that fdr2d also outperforms EODP on simulated
and real data sets. We also demonstrate how a synthesis of
the EODP and fdr2d procedures can further improve the
power to detect DE.

The two-sample problem
We demonstrate the application of EODP and fdr2d in the
common situation where we want to detect genes that are
DE between two biological states. We assume n1 and n2
arrays for each group, each containing probes for m genes.
For gene i, we observe a vector of expression values xi of

length n1 + n2, which consists of the observations xi1 in the
first group, and xi2 in the second group. We define the
groupwise means and standard deviations as usual, and
refer to the pooled standard deviation as

Furthermore, we assume that we are dealing with a ran-
dom mixture of DE and nonDE genes, with a proportion
π0 of genes being nonDE.

ODP statistics
The theoretical ODP statistic assumes that for all i = 1, ...
m genes, the density functions of the expression values
under the null hypothesis of no DE, fi, and under the alter-
native hypothesis of DE, gi, are fully known in advance.
For the random mixture of DE and nonDE genes outlined
above, the ODP statistic for the observed expression val-
ues xi of the i-the gene can then be written as

The procedure then rejects the null hypothesis for all
genes i with Si ≡ S(xi) ≥ λ, i.e. all genes with large Si are
declared to be DE. Using the Neyman-Pearson Lemma, it
can be shown that this procedure is optimal in the sense
that for any pre-specified false positive rate (which will
determine λ), the ODP will have the maximum true posi-
tive rate. This optimality property can also be expressed in
terms of FDR [5].

Requiring full specification of all null and alternative dis-
tributions, however, is impractical. In any realistic appli-
cation, only an estimated ODP statistic

is feasible, where the densities  and  are estimated

from the data. In [6], the authors propose to assume that
all genes follow a normal distribution (possibly after suit-
able transformation); under this assumption, only means
and variances have to be estimated from the data. In our
two-sample situation, this amounts to
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where φ(·|µ, σ2) is the joint-density for the normal distri-
bution with mean µ and variance σ2.

Conceptually, under the null hypothesis, we have the

usual estimates  and  from the combined

data, and under the alternative hypothesis, the corre-

sponding group-wise means  and 

with the pooled sample variance . For the practi-

cal implementation, we follow [6] and pre-normalize all
genes to have zero mean.

The second step in applying the ODP to data is the calibra-
tion of the procedure. There is no distribution theory for
the statistic, so it is not clear how to choose the threshold

λ to achieve a desired FDR level. [6] suggest a conven-
tional algorithm that computes the estimated ODP statis-

tic  under random permutations of the group labels;

they use the resulting null distribution of  to compute
the q-value for each gene, which represents its global FDR
(e.g. [8]). We follow this approach for our implementa-
tion, but use the local false discovery rate (fdr, see [9] and
below), with essentially identical results as theirs.

Multidimensional local false discovery rate
FDR approaches focus on the distribution of the specific
statistic Z used to test the gene-wise null hypotheses, in
contrast to ODP, which is based on the distribution of the
data. Given a mixture of DE and nonDE genes as
described above, the density f of Z can be written as

f(z) = π0f0(z) + (1 - π0)f1(z),  (2)

where f0 and f1 are the densities of the test statistic Z for
nonDE and DE genes, respectively, and π0 the proportion
of truly nonDE genes. The local fdr for any observed value
z of the test statistic is then

and can be interpreted as the expected rate of false posi-
tives among genes with test statistic z, see [9]. Practically,
the densities f can be estimated from the histograms of the
test statistics computed from the real data, and f0 is esti-
mated similarly from the test statistics computed from
permuted data.

Formulated as a decision procedure like ODP, we specify
a test statistic Z and a desired threshold α for the local fdr;
we then compute for each gene the value of the test statis-

tic zi = Z(xi) and the decision criterion fdri = fdr(zi) and
declare genes with fdri <α to be DE.

As the more usual global FDR of a set of test statistics is
just the average of their local fdr [9], little seems to be
gained by using the local fdr. Note, however, that Equa-
tions (2) and (3) still hold if we replace the univariate test
statistic Z by a vector Z of test statistics. We have recently
shown that for the two-sample problem, using a bivariate
test statistic and the associated two-dimensional fdr is
more powerful than conventional FDR for univariate test
statistics [7]. Specifically, the test statistic Z = (Z1, Z2) with

Z1 = t and Z2 = log se,  (4)

where t is the usual t statistic, and se the standard error of
the mean,

yields smaller fdr not only compared to the conventional
t-statistic on its own, but also compared to a number of
popular modified t-statistics [10-12].

In the following, we will use the abbreviations fdr1d and
fdr2d for local fdr computed based on univariate and
bivariate test statistics, respectively. Note that in practice,
the fdr2d is estimated in a similar manner as the fdr1d,
using two-dimensional histograms instead of one-dimen-
sional histograms, together with a somewhat more
sophisticated binomial smoothing procedure, see [7] for
details.

Procedures to be evaluated
The central aim of this paper is to compare the operating
characteristics of four different procedures for detecting
DE on a number of real and simulated data sets:

1. t1d uses the standard t-statistic with conventional fdr1d
and serves as a reference.

2. S1d uses the logarithm of  in (1) with fdr1d; this pro-
cedure is equivalent to the estimated version of ODP
described in [6] and its implementation in the EDGE soft-
ware.

3. t2d uses the test statistic in (4) for calculating fdr2d; this
is the same procedure as described in [7].

4. S2d is a novel procedure that combines the logarithm

of  and the standard error for computing fdr2d, see
below.

µ̂ j jx= σ̂ j js0
2 2=

µ̂ j jx1 1= µ̂ j jx2 2=

σ̂ j js1
2 2=

Ŝ
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Results
Feasibility of S2d
We first evaluate the S2d procedure, based on the bivariate
test statistic

Z1 = log   and  Z2 = log se,

with  defined as in (1) and se as in (4). The only practi-
cal concern is that the smoothing procedure described in

[7] may have problems with . Indeed, the reason for tak-
ing the logarithms of the test statistics is to facilitate
smoothing, by avoiding crowding at the boundary values.

Figures 1(a) and 1(b) show the scatter plot of the bivariate
test statistics for two real data sets described in Methods,
with the estimated fdr2d overlayed as isolines. We exploit
the useful fact that we can always average the fdr2d over
one of the component statistics to get the fdr1d for the
other component statistic:

see [7]. Figures 1(c) and 1(d) show S1d (black) overlayed
with the averaged S2d (red) for both data sets, with excel-
lent agreement. This indicates that the smoothing
required for computing S2d has been successful. This is
consistent with the relationship between t-statistics and

log  for the data at hand (not shown, but see e.g. Figure
1 in [5]), which is essentially linear for genes with t-statis-
tic |t| > 1, suggesting that the same general smoothing pro-
cedure is applicable.

Performance on simulated data sets
We perform simulations with 10,000 genes per array, a
proportion of truly nonDE genes π0 = 0.8, and two inde-
pendent groups with n = 7 arrays per group. We combine
three different levels of variance heterogeneity between
genes with two different settings for the balance between
up- and down-regulation, for a total of six different simu-
lation scenarios:

1. Variances can be 'similar' (effectively the same) across
genes, 'balanced', which allows for moderate differences
in variance between genes, and 'variable', which allows
large differences.

2. In the 'symmetric' case, roughly 50% of the DE genes
are up- and down- regulated; in the 'asymmetric' case,
only about 20% of all genes are down-regulated, the rest
is up-regulated.

We have included the asymmetric scenario, because this is
where ODP is expected to perform better than standard
methods in a theoretical setting [5]. All expression values
are assumed to follow a normal distribution; see Methods
for further details of the simulation procedure.

For each scenario, we generate 100 data sets, for a total of
106 genes. For each procedure, the fdr values are com-
puted by keeping track of the DE status of each gene,
grouping the genes in intervals (1d) or grid cells (2d)
based on their test statistic, and computing the percentage
of false positives in each interval or cell.

In order to compare different fdr procedures, we summa-
rize their results via operating characteristics (OC) curves:
for each procedure, we sort the groups of genes as
described above by their local fdr, and compute the corre-
sponding global FDR as cumulative mean of the local fdrs
from the smallest to the largest. This global FDR is then
plotted against the cumulative percentage of genes in
these intervals or grid cells. The resulting curve shows the
true global FDR for a set of top-ranked genes as a function
of the size of that set (as a percentage of the number of
genes under study). The results for the different simula-
tion scenarios and all four procedures are shown in Figure
2.

There is little or no difference in relative performance
between the procedures under the symmetric and asym-
metric scenarios in Figure 2. It is also clear that the differ-
ences in performance are most pronounced when the
variances are similar, less so when the variances are bal-
anced, and minor when the variances are highly variable.
The ranking of the different procedures is consistent
through all six scenarios: as expected, t1d has the worst
performance; equally as expected, S1d does clearly better
than t1d. Novel findings of this paper are that a) t2d does
still better than S1d, and b) S2d improves over t2d,
although only marginally.

Performance on real datasets
We evaluate the performance of the different procedures
on two real data sets:

• The BRCA data [13] contains 3,170 genes and was col-
lected from 15 patients with hereditary breast cancer, who
had mutations either of the BRCA1(n = 7) or the BRCA2
gene (n = 8).

• The Lymphoma data [14] contains 7,399 genes and was
collected from 240 patients with diffuse large B-cell lym-
phoma, comprising n1 = 102 survivors and n2 = 138 non-
survivors.
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Ŝ

fdr d fdr d1 2(log ) (log ,log ) log ,S S se d se= ∫

Ŝ
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S2d and S1d for the BRCA and Lymphoma data setsFigure 1

S2d and S1d for the BRCA and Lymphoma data sets. (a) A scatter plot of the BRCA data, with log  on the horizontal axis and 
log se on the vertical axis. Each symbol corresponds to a gene. The isolines shown are the local fdr based on the S2d method. 

(b) The same as (a) for the Lymphoma data. (c) The local fdr for the BRCA data, shown as a function of log  on the horizon-
tal axis. The black line shows the local fdr computed via S1d, the red line shows the fdr based on S2d, averaged across the log 
standard errors as shown in (a) above. (d) The same as (c) for the Lymphoma data.
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Operating characteristics of the four procedures for six simulated data setsFigure 2
Operating characteristics of the four procedures for six simulated data sets. Each curve shows the true global FDR among the 
top-ranked genes for a procedure on the vertical axis as a function of the percentage of genes declared DE by this procedure 
on the horizontal axis. See text for description of the simulation scenarios.
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Here, the local fdr estimates are computed based on the
mixture model (2). The estimate of f is computed by
smoothing the histograms of the observed statistics, and
similarly f0 from permuted test statistics. The permuted

statistics are obtained from permutations of the group
labels to generate the null distribution. Technically, we

also need an estimate  of the proportion of nonDE

genes, although for the purpose of comparing the differ-
ent procedures, it does not matter which estimate, as long
as we use the same value for all procedures, see Methods.
In fact, in comparing different FDR procedures, it is
important that this parameter is set to the same value.

For each procedure, we rank the genes by their estimated
fdr, and compute their estimated global FDR among the
top-ranked genes as the cumulative mean of their local
fdrs. The global FDR is then plotted as a function of the
percentage of genes declared DE. For comparison pur-
poses, we also include the FDR as computed by the EDGE
software.

The resulting OC curves are shown in Figure 3. We get the
same ranking as for the simulated data: t1d performs
worst and is easily bettered by S1d; t2d performs better
than S1d for the 2% most highly regulated genes, and is
equivalent otherwise; S2d has a slight advantage over t2d
on the BRCA data. Additionally, as a check that our imple-
mentation of ODP is correct, we are happy to see that
EDGE and S1d yield virtually identical FDR curves.

We [7] have previously compared t2d with other proce-
dures such as SAM [11], Efron's modified t [10], and an
empirical Bayes modification of the t-statistic [12]. To add
more comparisons, we have run two procedures by
Pounds and Cheng (Splosh [15] and robust FDR [16]) for
the two real data sets. We use their own software, with a

little modification so that we can specify the  parame-

ter to be the same as in the other procedures. The results
in Figure 4 show both Splosh and robust FDR to perform
worse than the other procedures. For these datasets, the
robust FDR estimate coincides with the standard FDR esti-
mate.

Discussion
The main motivation for using the FDR has been that it
offers a way of dealing with multiplicity that is less restric-
tive and more powerful than traditional p-value adjust-
ments. The challenge is how to explicitly exploit the
multiplicity by pooling information across genes in order
to make the FDR even more powerful.

In the case of t1d, the test statistic is computed gene-by-
gene and does not use information shared with other
genes. Moderated t-statistics [10-12], which borrow
strength across genes for estimating standard errors, are
more powerful than simple t-statistics. The ODP appears
to be the ultimate in combining information, where to
some extent all genes contribute to the statistic for each
other gene. The fdr2d approach on the other hand aug-
ments the grouping of genes based on individual test sta-
tistics by sub-grouping them based on their variability. In
all cases we find that when there are few instances of genes
with similar variability, the performance of the different
methods tends to converge towards the simple t1d (Fig-
ures 2(e) and 2(f)).

From a practical point of view, it seems that the smooth-
ing procedure underlying our implementation of fdr2d

seems to work as well for the statistic log  in S2d as for
the t-statistics in t2d, and arguably even better: when com-
paring Figures 1(c) and 1(d) in this paper with Figures
4(a) and 4(b) in [7], we find in the former less of a ten-
dency to underestimate the fdr for genes with small effect
sizes, as discussed in the previous paper.

At first glance, the empirical ODP statistic seems to rely on
the assumption that the expression values for all genes are
normally distributed. From a practical point of view, how-
ever, the empirical ODP procedure works even if the nor-
mal assumption does not hold, because it relies on the
permutation algorithm. In this sense, the normal densities
in (1) only represent a scoring function that exponentially
downweights contributions from genes with different
mean structure and/or large variability. However, the per-
formance of the empirical ODP will depend on how pre-
cisely the normal assumption holds for the data at hand.
Some loss of the optimality property in the real data appli-
cations is probably due to non-normality. But even in the
simulations, the empirical ODP is not better than t2d.
This can only mean that the presence of large number of
nuisance parameters degrades the performance of ODP.

Conclusion
The estimation of the nuisance parameters required to
apply the ODP in practice makes the procedure described
in [6] no longer optimal. We have shown in this paper
that the combination of a conventional t-statistic with the
standard error of the mean as described in [7] can outper-
form the empirical ODP. Further improvements can be
made by combining the ODP test statistic with standard
error information, but the gains are comparatively small.

The ODP procedure exploits similarities in the distribu-
tion for a collection of genes, for example similarity in var-
iance. When variances between genes are dissimilar, there

π̂0
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Operating characteristics of the four procedures and EDGE for the BRCA and Lymphoma dataFigure 3
Operating characteristics of the four procedures and EDGE for the BRCA and Lymphoma data. Each curve shows the esti-
mated global FDR among the top-ranked genes for a procedure on the vertical axis as a function of the percentage of genes 
declared DE by this procedure on the horizontal axis.
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is little gain by the ODP compared to the standard t-statis-
tic. One advantage of the ODP over the modified t-statis-
tics is that the adaption is done automatically, without
calculating a model-based or heuristic fudge factor for the
denominator.

The computational demand of calculating the ODP statis-
tic is a serious practical disadvantage: each density term
f(x) or g(x) requires computation across the whole dataset,
so a single ODP statistic already involves substantial com-
putations. Doing this for the whole collection of genes
and for repeated permutations of the group labels is an
order of magnitude more laborious than the computation
required for the standard statistics.

Methods
Simulation scenarios

Our model for simulating microarray data is based on the
model described in [12]. We assume that the expression
values for all m genes are normally distributed (possibly
after suitable transformation), and that their variances

 vary randomly between

genes, following the scaled inverse of a χ2-distribution.
Values are simulated for two groups of n1 and n2 arrays.

Each gene i = 1, ... m to is selected randomly with proba-

bility π0 to be DE. For genes that are picked as nonDE, the

mean value in both groups is set to zero; for genes that are
selected as DE, the mean in the first group is set to zero,
and the mean in the second group is drawn randomly
from a normal distribution whose variance is propor-

tional to the gene-specific variance .

In detail we proceed as follows for our simulations:

1. Initialize the design with m = 10,000 genes, proportion
of nonDE genes π0 = 0.8, and two groups with n1 = n2 = 7.

2. For each gene i = 1, ... m, draw a gene-specific variance
from

where  is a χ2-distribution with d0 degrees of freedom,

and d0 and s0 are tuning parameters as described below.

3. For each gene i = 1,... m, determine randomly with
probability π0 whether it is to be DE or not.

(a) In case of nonDE, set µ1 = µ2 = 0.

(b) In case of DE, set µ1 = 0 and draw µ2 randomly from

Di ~ N(0, v0 ),

where is v0 is another tuning parameter.

i. In case of an asymmetric scenario, set the sign of µ2 to
positive with probability 0.8, and to negative otherwise.

4. Simulate n1 and n2 values in the first and second group,
respectively, following normal distributions

X.i1 ~ N(µ1, ),

X.i2 ~ N(µ2, ).

Following [12], we set the constants to  = 4 and v0 = 2

in our simulations. The amount of variability of the gene-
wise variances is controlled via the parameter d0: the three

scenarios described in the Results section correspond to d0

= 1000 (similar variances across genes), d0 = 12 (balanced,

with moderate differences between genes), and d0 = 2 (var-

iable, with large variability in variances).

For each scenario, we then generate 100 data sets, for a
total of 106 genes. For each procedure, the true local fdr of
the genes is estimated from the known DE status of each
simulated gene, simply as the proportion of false positives
in each histogram interval or grid cell. This means specif-
ically that no permutation, smoothing, or estimation of π0
is required.

Real data sets

The permutation and smoothing approach used for esti-
mating the fdr values for real data has been described in

detail in [9] and [7]. The estimates  for the proportion

of nonDE genes are based on a mixture model for the
observed distribution of t-statistics, consisting of one cen-
tral and several non-central t-distributions; we have
shown previously that the weight of the central t-distribu-

tion can be a less biased estimate of π0 in the presence of

genes with small effects than the usual estimate based on
the distribution of p-values ([17]). The same estimates
have been used previously in [7].

The BRCA data set [13] was collected from patients with
hereditary breast cancer who had mutations either of the
BRCA1(n = 7) or the BRCA2 gene (n = 8). Expression was
originally reported for 3,226 genes, but following [8], we

s
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removed 56 extremely variable genes and analysed only
the remaining 3,170 genes. For all four procedures, we

used  = 0.61, and we evaluated 500 permutations of

the group labels.

The Lymphoma data set [14] was collected from 240
patients with diffuse large B-cell lymphoma, n1 = 102 of

whom survived the study period, and n2 = 138 of whom

did not. We used all 7,399 genes reported in the original

article. For all four procedures, we used  = 0.59, and we

evaluated 500 permutations of the group labels.

All expression values were logged prior to analysis.

Software
Methods t1d and t2d are implemented in the R package
OCplus, which is freely available at the Bioconductor
website [18]. R code implementing S1d and S2d is availa-
ble from the authors on request. EDGE, the official imple-
mentation of EODP described in [19], is available at [20].
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