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Abstract
Background: There are a number of different methods for generation of trees and algorithms for
phylogenetic analysis in the study of bacterial taxonomy. Genotypic information, such as SSU rRNA
gene sequences, now plays a more prominent role in microbial systematics than does phenotypic
information. However, the integration of genotypic and phenotypic information for polyphasic
studies is necessary for the classification and identification of microbes. Thus, we devised an
algorithm that objectively identifies discriminative characteristics for focused clusters on generated
trees from a dataset composed of coded data, such as phenotypic information. Moreover, this
algorithm has been integrated into the polyphasic analysis software, InforBIO.

Results: We developed a differential-character-finding algorithm based on information measures
and used this algorithm to identify the characteristic that best discriminates operational taxonomic
unit clusters. For all characteristics in a dataset, the algorithm estimates commonality in focused
clusters and diversity among clusters by scoring based on Shannon's and relative entropies. All the
characteristics selected for scoring are equally weighted. Thresholds for the scores are defined to
identify discriminative characteristics for clusters efficiently from a database. The unique feature of
the algorithm, which is implemented in the InforBIO software, is that it can identify the phenotypic
characteristics that discriminate and are associated with the clusters of a phylogenetic tree. We
successfully applied this algorithm to the study of phylogenetic clusters of Pseudomonas species.

Conclusion: The algorithm in the InforBIO software is a novel and useful approach for microbial
polyphasic studies. The algorithm can also be applied to diverse cluster analyses. The InforBIO
software is available from the download site http://wdcm.nig.ac.jp/inforbio/. This software is free
for personal but not commercial use.
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Background
It is common practice for biologists to apply cluster anal-
ysis to both genotypic and phenotypic data of operational
taxonomic units (OTUs). Genotypic data, primarily small
subunit ribosomal RNA (rRNA) gene sequences and
DNA-DNA similarities based on the hybridization tech-
nique, play a more prominent role than do phenotypic
data in current microbial systematics [1,2]. Phylogenetic
analysis based on single gene sequences is useful for
understanding relations between species but is rarely used
to define species. DNA-DNA similarities based on the
hybridization technique are recommended for species
definition, and the cut-off is defined [2]. However, it is
actually and technically difficult to conclude when a sim-
ilarity is close to the defined cut-off. In contrast, pheno-
typic data are still important for efficient identification
and recognition of biologic features and can be obtained
with kits such as API (bioMerieux, Inc., Lyon, France) and
BiOLOG (Biolog, Inc., Hayward, CA, USA). In 2002, the
ad hoc committee of the International Committee for the
Systematics of Prokaryotes [3] made the following recom-
mendations with respect to the value of phenotypes in a
species description: "(1) Species should be identifiable by
readily available methods (phenotypic and genotypic).
Efforts should be made to establish standardized methods
of reporting phenotypic and genomic data; (2) Minimal
characteristics should be provided...; and (3) Phenotype,
including chemotaxonomic markers, will remain impor-
tant diagnostic properties in a species description." These
recommendations can be fully addressed only through
polyphasic studies based on the integration of genotypic
and phenotypic data [4,5]. An information system for
polyphasic studies is needed for the classification and
identification of microbes.

A number of algorithms and programs for clustering and
generating trees have been developed for numerical and
phylogenetic analyses in bacterial taxonomy [6,7]. It is
often difficult to identify phenotypic characteristics that
can discriminate clusters defined on the bases of gene
sequences. At present, if it is difficult to identify discrimi-
native characteristics for a species from available pheno-
typic data, the species is studied on the basis of the
genomovars concept as was reported for Pseudomonas stut-
zeri strains [8], although cryptic discriminative character-
istics may be found. It can be difficult to identify
discriminative characteristics in the case of a large and
diverse phenotypic dataset.

We developed the InforBIO software for the study of
microbial diversity [9], and the software is freely available
from the download site [10]. The user can seamlessly
repeat a workflow from data management, data analysis,
and evaluation of analytical results. The software includes
functions for data handling, including design of data-

bases, storage and retrieval of data, numerical analysis,
phylogenetic analysis, and discriminative and probabilis-
tic identification. All the features of the InforBIO software
are applicable to any biologic object from molecules to
organisms, if the data are coded in the same way as micro-
bial data.

In the present study, we devised a differential-character-
finding algorithm that objectively identifies discrimina-
tive characteristics for focused clusters from a dataset com-
posed of coded data, and this algorithm was integrated
into the InforBIO software.

Implementation
The differential-character-finding algorithm consists of
two types of mathematical measures based on Shannon's
entropy [11] and relative entropy [12]. We named these
measures "common score" and "differential score",
respectively. With our differential-character-finding algo-
rithm, the following events are executed in the InforBIO
software: 1) construction of a database of biologic data,
including coded and sequence data; 2) construction of
phylogenetic trees (or numeric dendrograms) from data-
sets in the database; 3) selection of target clusters for dif-
ferential-character-finding analysis on the phylogenetic
tree (or numeric dendrograms); 4) calculation of com-
mon and differential scores for each characteristic on tar-
get clusters; and 5) identification of the most
discriminative characteristic(s) for each target cluster with
reference to thresholds for the two scores depending on
the range of scores for the value.

InforBIO
A biologic database and analysis programs are integrated
into the InforBIO software, and the system architecture
was described previously [9]. An ID number is automati-
cally assigned to an OTU in a biologic database. Each phe-
notypic characteristic (e.g., assimilation of glucose) of an
OTU is described in a biologic database by a testable var-
iable associated with the characteristic. In general, most
tests take the character data type as the test's result, such as
"+++", "+", and "-". Therefore, we consider the complete
event system for each item variable to calculate the com-
mon and differential scores. We can then calculate the
occurrence probabilities of every value for the item varia-
ble on the complete event systems. In the InforBIO soft-
ware, up to 12 values (e.g., +) can be assigned for a test
item (e.g., glucose assimilation). The InforBIO software
can also manage multiple gene and protein sequence data
of OTUs on a database.

Phylogenetic trees, based on sequence data of OTUs from
a biologic database, are constructed by programs in the
InforBIO software. The name of an OUT should contain
the ID number and species name. DNA and protein
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sequence data of OTUs are aligned with the ClustalW pro-
gram [13] in the InforBIO software, and phylogenetic
trees are then generated by either the ClustalW program
[13] by the neighbor-joining method or the PHYLIP pack-
age [14,15] with either the maximum-likelihood (the
DNAML program for DNA sequences and the PROML
program for protein sequences) or the maximum-parsi-
mony (the DNAPARS program for DNA sequences) meth-
ods. Additionally, the InforBIO software can import and
process alignment and tree files from outside. Importable
tree file format is Phylip, whereas alignment file formats
are Clustal, Fasta, Phylip, GCG, GDE, and PIR, provided
from other analysis programs such as MAFFT [16] and
MUSCLE [17]. After generating a phylogenetic tree, users
select target clusters on a generated tree for the differen-
tial-character-finding analysis and retrieve discriminative
characteristics for the target clusters from the biologic
database computationally with the differential-character-
finding algorithm. Then, phenotypic data of OTUs in tar-
get clusters are retrieved with reference to each OUT name
composed of ID number and species name. Thus, discrim-
inative characteristics for clusters on trees generated by
using outside data can be also analyzed in the InforBIO
software when the OUT names are defined by the same
format as described above. In addition, discriminative
characteristics for clusters on a numeric dendrogram that
is based on coded data of OTUs can be identified by the
same manner as those for clusters on a phylogenetic tree
in the InforBIO software. Numeric dendrograms are gen-
erated with either similarities or distances by the
unweighted pair-group method with arithmetic mean and
the neighbor-joining method. Similarities between OTUs
are calculated from coded data with the simple matching,
the Jaccard, and the dice coefficients, whereas distances
are based on the euclidean distance. The flowchart to
identify discriminative characteristics for target clusters in
the InforBIO software is shown in figure 1.

Differential-Character-Finding Algorithm
Common score
The common score is based on Shannon's entropy [11]
and represents the randomness of the probabilistic distri-
bution of n values (n ≥ 2) between OTUs in a cluster.
Thus, the common score of a discriminative item should
be close or equal to 0 and is calculated as

where p(m) denotes the frequency (0 ≤ p(m) ≤ 1) of the
occurrence probability of a value 'm' for an item. The aver-
age common score of an item among defined clusters is
represented as C in this study.

The upper threshold for C, Cthr, is calculated by

where a is an acceptable frequency of the occurrence prob-
ability (0.5 <a < 1) of a value for an item within a cluster.
(1-a)/(n-1) indicates that the total of frequencies of the
occurrence probability of other values for the item are
divided by the number of other values. Hence, Cthr is the
maximal common score in the case of a defined a. The C
for discriminative items should satisfy the condition of C
≤ Cthr.

Differential score
The differential score, Dcluster, of an item, which is based on
the relative entropy [12], represents the degree of differ-
ence between two probabilistic distributions within clus-
ters (A and B). A discriminative item should, accordingly,
have a high differential score. The score between two clus-
ters, Dcluster, is calculated as

where p(m) and q(m) denote the frequencies of the occur-
rence probability of a value 'm' for an item in OTUs in
clusters A and B, respectively. Each frequency should be
more than 0 and less than 1. When more than two clusters
are defined, each cluster is compared individually with
every other cluster. The average of the resulting Dcluster
scores is defined as the differential score, D, of the item,
which is calculated by
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Flowchart of the differential-character-finding algorithm in the InforBIO softwareFigure 1
Flowchart of the differential-character-finding algorithm in 
the InforBIO software.
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where y indicates the number of defined clusters. The
denominator indicates the number of combinations of all
clusters, and the numerator indicates a total score (TS) of
the differential scores.

The significant lower threshold for D, Dthr, is determined
by the substitution of TS in formula (4) with (y-1)Dcluster,
where Dcluster is calculated with an acceptable frequency of
the occurrence probability a (0.5 <a < 1) on the basis of
formula (3). The four frequencies are then substituted as
p(m) = a, p(n) = 1-a, q(m) = 0.000001, and q(n) =
0.999999, respectively. Hence, Dthr is calculated in the
same manner as the D score of an item assigned two val-
ues (n = 2). The D for discriminative items should satisfy
the condition of Dthr ≤ D.

Consequently, the common score is a useful measure of
the commonality of characteristics of OTUs in a cluster,
whereas the differential score is a measure of the differ-
ences between clusters. Their thresholds are effective for
the rejection of unsuitable items for the discrimination of
target clusters from a dataset.

Results and discussion
A differential-character-finding algorithm was added to
the InforBIO software and was tested with data for Pseu-
domonas strains to identify discriminative characteristics
for Pseudomonas species with reference to phylogenetic
clusters based on their 16S rRNA gene sequences.

Identification of discriminative phenotypic characteristics 
for Pseudomonas species
Construction of the biologic database of Pseudomonas species
Data, formatted with eXtensible Markup Language (XML)
for the InforBIO software [see Additional file 1]. The phe-
notypic data of 36 OTUs comprising strains of P. aerugi-
nosa, P. cremoricolorata, P. flavescens, P. fluorescens, P. fulva,
P. luteola, P. mendocina, P. oryzihabitans, P. parafulva, P. put-
ida, and P. straminea were obtained from published
reports [18,19]. The dataset consisted of 144 phenotypic
items to which two values for characterization (n = 2)
were assigned [see Additional file 2], and the capture of
the database screen in the InforBIO software is shown in
figure 2.

Construction of a phylogenetic tree based on sequences from 
Pseudomonas species
We used the InforBIO software equipped with the
DNAML program [14,15] to generate a phylogenetic tree
based on 16S rRNA gene sequences of 11 Pseudomonas

species after eliminating putative variable regions [20].
The phylogenetic tree constructed with the InforBIO soft-
ware is shown in figure 3A and is supported by the past
report [20].

Identification of discriminative characteristics for Pseudomonas 
species
Species-discriminative characteristics for 11 species of
Pseudomonas from the dataset were examined (y = 11, a =
0.95) by the algorithm. Thresholds were set as C ≤ 0.1985
and D ≥ 1.4474. As a result, 43 items were rejected because
they did not satisfy the threshold condition of Cthr (4
items) or Dthr (39 items). In contrast, 14 items were iden-
tified as best discriminative, without exceptions, for P. aer-
uginosa (4 items), P. cremoricolorata (2 items), P. fluorescens
(2 items), P. mendocina (1 item), and P. putida (5 items)
Also, 5 best discriminative items, with few exceptions, for
P. luteola (2 items), P. oryzihabitans (1 item), and P.
straminea (2 items) were identified. However, no discrim-
inative characteristics for P. flavescens, P. fulva, and P. para-
fulva were identified. Therefore, their discriminative
characteristics were identified with reference to discrimi-
native characteristics for clusters including the undiscrim-
inated species on a phylogenetic tree based on 16S rRNA
gene sequences of Pseudomonas species. In this study, a
phylogenetic cluster including the undiscriminated spe-
cies was analyzed hierarchically and stepwise from leaves
to upper nodes (clusters) on a phylogenetic tree as shown
in figure 4 until clusters with discriminative characteristics
were detected. Hence, the undiscriminated species were
discriminated by items that discriminate within each
upper cluster.

As shown in figure 4, undiscriminated species were 1B,
1C, and 1G in the first step (H1) and were located in two
clusters (2B and 2E) on the phylogenetic tree in the sec-
ond step (H2). Discriminative characteristics for the two
clusters were analyzed under the conditions described
above. The 2E cluster is composed of P. flavescens and P.
straminea and could be discriminated from six other clus-
ters by a single characteristic, non-assimilation of L-iso-
leucine. Moreover, the two species could be discriminated
from each other by 7 characteristics because their values
for these items were opposite each other. Thus, at least
two characteristics are needed for discrimination of these
species from other Pseudomonas species. In contrast, no
characteristics were identified that discriminated mem-
bers of the 2B cluster composed of three species, including
P. fulva and P. parafulva. Therefore, an upper cluster by the
third step (H3), comprising five species from the addition
of two species to the lower 2B cluster (3A by H3 in figure
4), was examined in the same manner and was discrimi-
nated by a single characteristic, non-reduction of nitrate.
Additionally, best discriminative characteristics for P.
parafulva (15 items) within the 3A cluster were identified,
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whereas those for P. fulva were not. To identify the dis-
criminative characteristics for P. fulva, characteristics to
discriminate the 2B cluster were identified within the 3A
cluster, and the discriminative characteristic from the 2A
and 2C clusters was non-assimilation of L-tartrate, whose
C and D values were 0.1668 and 7.0464, respectively.
Captures of the result screens of the InforBIO software are
shown in figures 3B–3C. Finally, three best discriminative
characteristics for P. fulva within the 2B cluster were iden-
tified. Therefore, at least three characteristics, non-reduc-
tion of nitrate, non-assimilation of L-tartrate, and one of
the three discriminative characteristics for P. fulva within
the 2B cluster, are needed to discriminate the species.
Moreover, discriminative characteristics for upper clusters
are effective as additional data for the discrimination of
species, whose discriminative characteristics are tenuous.
For instance, non-reduction of nitrate, a discriminative
characteristic for the 3A cluster, is additional data for the
discrimination of P. oryzihabitans, which is able to assimi-
late L-rhamnose. Consequently, the algorithm and the

InforBIO software were effective for identification of char-
acteristics that allowed discrimination of 11 Pseudomonas
species with reference to discriminative characteristics for
phylogenetic clusters. In addition, such an approach and
results may be helpful to find the specific properties of
species, which is important for phenotypic studies [21]. In
the InforBIO software, the C and D thresholds cannot be
set flexibly and have simply been set to 0.5 and 2, respec-
tively. Thus, a table of detailed data of discriminative char-
acteristics is provided by the InforBIO software as shown
in figure 3C.

Conclusion
We developed a differential-character-finding algorithm
for the identification of the best characteristic to discrimi-
nate focused clusters. The algorithm can be used to ana-
lyze any type of cluster because it evaluates both intra-
cluster and inter-cluster entropy. The common and differ-
ential scores are sensitive to taxon sampling. Thus, their
thresholds are calculated with the number of defined clus-

InforBIO database screenFigure 2
InforBIO database screen. The biologic database screen is shown. OTU data are recorded in a line.
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Captures of result viewers of InforBIOFigure 3
Captures of result viewers of InforBIO. (A) Result of phylogenetic analysis. Sequence data can be imported, edited, and 
aligned in the left window, and a tree is shown in the right window. Target clusters selected by clicking on the tree are shown 
in color. A scale bar indicates nucleotide substitution per position in the sequence. (B) Table of the results of the differential-
character-finding analysis for clusters selected in (A). The common and differential scores of items are shown. (C) Table of the 
characteristics of OTUs of the item checked in (B).
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ters (y) and of values for an item (n) in addition to an
acceptable frequency of the occurrence probability (a) of
a value for an item. For continuous data, ranges can be set
and converted into discrete data that can be analyzed by
the algorithm in the InforBIO software. The set of ranges
should include all possible values, but ranges should not
overlap. These discrete ranges can then be regarded as val-
ues for the algorithm. There are algorithms available to
identify sets of diagnostic keys [24] that can reduce a large
dataset into compact, homogeneous data clusters. There
are also tools for deterministic and probabilistic identifi-
cation [25]. The unique feature of our differential-charac-
ter-finding algorithm in the InforBIO software is that the
system can identify the phenotypic characteristics that dis-
criminate and are associated with the clusters of a phylo-
genetic tree. In current study, the phylogeny of protein-
coding gene and protein sequences is analyzed in addi-
tion to 16S rRNA gene sequence phylogeny [26,27], and
discriminative characteristics for clusters on a phyloge-
netic tree based on such sequences might be interesting
for polyphasic analysis.

We demonstrated the algorithm in the InforBIO software
with an actual dataset of Pseudomonas species. In the
recent taxonomic studies of the genus Pseudomonas, spe-

cific characteristics of newly suggested species have been
decided on the basis of the result from kits with many test
items in addition to their phylogeny [26-28]. Also, the
importance of species-discriminative phenotypic charac-
teristics has become evident recently in taxonomic studies
of species of other genera [29-33]. In this study, we suc-
cessfully identified a set of phenotypic characteristics that
were useful as diagnostic keys for Pseudomonas species.
Discriminative characteristics for phylogenetic clusters as
shown in the demonstration might be useful information
for the finding of novel features for species. Therefore, the
differential-character-finding algorithm and the InforBIO
software are effective for identification of the characteris-
tics that discriminate clusters from biologic data.

Availability and requirements
Project name: InforBIO project;

Project homepage: http://wdcm.nig.ac.jp/inforbio/
index_e.html;

Operating systems: Windows 2000/XP, Macintosh OSX,
Linux, UNIX;

Other requirements: CPU ≥ 800 MHz, Memory ≥ 256 MB,
HD ≥ 50 MB, Screen resolution ≥ 800 × 600 pixels;

Programming language: Java (j2sdk1.4.2_05);

License: GNU GPL;

Any restrictions to use by non-academics: none.
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Additional material

Additional file 1
This compressed file includes data files (such as Pseudomonas.xml) for 
InforBIO. Details of how to use the file are described in the file of 
ReadMe.ppt (Power Point file).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-281-S1.zip]

Additional file 2
This file can be browsed by using PDF file viewer such as Acrobat Reader.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-281-S2.pdf]

Phylogenetic tree based on 16S rRNA gene sequences of Pseudomonas speciesFigure 4
Phylogenetic tree based on 16S rRNA gene 
sequences of Pseudomonas species. Undiscriminated spe-
cies and cluster in each step are underlined.
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