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Abstract
Background: The rapid burgeoning of available protein data makes the use of clustering within
families of proteins increasingly important. The challenge is to identify subfamilies of evolutionarily
related sequences. This identification reveals phylogenetic relationships, which provide prior
knowledge to help researchers understand biological phenomena. A good evolutionary model is
essential to achieve a clustering that reflects the biological reality, and an accurate estimate of
protein sequence similarity is crucial to the building of such a model. Most existing algorithms
estimate this similarity using techniques that are not necessarily biologically plausible, especially for
hard-to-align sequences such as proteins with different domain structures, which cause many
difficulties for the alignment-dependent algorithms. In this paper, we propose a novel similarity
measure based on matching amino acid subsequences. This measure, named SMS for Substitution
Matching Similarity, is especially designed for application to non-aligned protein sequences. It allows
us to develop a new alignment-free algorithm, named CLUSS, for clustering protein families. To the
best of our knowledge, this is the first alignment-free algorithm for clustering protein sequences.
Unlike other clustering algorithms, CLUSS is effective on both alignable and non-alignable protein
families. In the rest of the paper, we use the term "phylogenetic" in the sense of "relatedness of
biological functions".

Results: To show the effectiveness of CLUSS, we performed an extensive clustering on COG
database. To demonstrate its ability to deal with hard-to-align sequences, we tested it on the GH2
family. In addition, we carried out experimental comparisons of CLUSS with a variety of
mainstream algorithms. These comparisons were made on hard-to-align and easy-to-align protein
sequences. The results of these experiments show the superiority of CLUSS in yielding clusters of
proteins with similar functional activity.

Conclusion: We have developed an effective method and tool for clustering protein sequences
to meet the needs of biologists in terms of phylogenetic analysis and prediction of biological
functions. Compared to existing clustering methods, CLUSS more accurately highlights the
functional characteristics of the clustered families. It provides biologists with a new and plausible
instrument for the analysis of protein sequences, especially those that cause problems for the
alignment-dependent algorithms.
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Background
With the rapid burgeoning of protein sequence data, the
number of proteins for which no experimental data are
available greatly exceeds the number of functionally char-
acterized proteins. To predict a function for an uncharac-
terized protein, it is necessary not only to detect its
similarities to proteins of known biochemical properties
(i.e., to assign the unknown protein to a family), but also
to adequately assess the differences in cases where similar
proteins have different functions (i.e., to distinguish
among subfamilies). One solution is to cluster each fam-
ily into distinct subfamilies composed of functionally
related proteins. Subfamilies resulting from clustering are
easier to analyze experimentally. A subfamily member
that attracts particular interest need be compared only
with the members of the same subfamily. A biological
function can be attributed with high confidence to an
uncharacterized protein, if a well-characterized protein
within the same cluster is already known. Conversely, a
biological function discovered for a newly characterized
protein can be extended over all members of the same
subfamily. In the rest of the paper, we use the terms sub-
family and cluster interchangeably.

The literature reports many algorithms that can be used to
build protein clustering databases, such as the widely used
algorithm BLAST [1] and its improved versions Gapped-
BLAST and PSI-BLAST [2], as well as SYSTERS [3], Prot-
Clust [4] and ProtoMap [5] (see [6] for a review). These
algorithms have been designed to deal with large sets of
proteins by using various techniques to accelerate exami-
nation of the relationships between proteins. However,
they are not very sensitive to the subtle differences among
similar proteins. Consequently, these algorithms are not
effective for clustering protein sequences in closely related
families. On the other hand, more specific algorithms
have also been developed, for instance, the widely cited
algorithms BlastClust [7], which uses score-based single-
linkage clustering, TRIBE-MCL [8], based on the Markov
cluster approach, and gSPC [9], based on a method that is
analogous to the treatment of an inhomogeneous ferro-
magnet in physics, as well as others such as those intro-
duced by Sjölander [10], Wicker et al. [11] and Jothi et al.
[12]. Almost all of these algorithms are either based on
sequence alignment or rely on alignment-dependent algo-
rithms for computing similarity. As several alignments are
often possible for a single family, particularly for families
which have not yet been definitively aligned and biologi-
cally approved, this will result in different clusterings.
Such variable results create ambiguities and make biolog-
ical interpretation of sequences a difficult task.

In this paper, we propose an efficient algorithm, CLUSS,
for clustering protein families based on SMS, which is a
new measure we propose for protein similarity. The nov-

elty of CLUSS resides essentially in two features. First,
CLUSS is applied directly to non-aligned sequences, thus
eliminating the need for sequence pre-alignment. Second,
it adopts a new measure of similarity, directly exploiting
the substitution matrices generally used to align protein
sequences and showing a great sensitivity to the relations
among similar and divergent protein sequences. CLUSS
can be summarized as follows (a detailed description of
the algorithm is given later in the paper):

Given F, a family containing a given number of proteins:

1) Build a pairwise similarity matrix for the proteins in F
using SMS our new similarity measure.

2) Create a phylogenetic tree of the protein family F using
a hierarchical clustering approach.

3) Assign a co-similarity value to each node of the phylo-
genetic tree by applying a variant of Ward's formulas
[13,14] introduced by Batagelj [15].

4) Calculate a critical threshold for identifying subfamily
branches, by computing the interclass inertia [16].

5) Collect each leaf from its subfamily branch into a dis-
tinct subfamily (i.e., cluster).

Implementation
CLUSS was developed with standard C++, and tested in a
basic desktop computer under Microsoft Windows XP.
The source code, the application server, and all experi-
mental results are available at CLUSS website.

The new similarity measure SMS
Many approaches to measuring the similarity between
protein sequences have been developed. Prominent
among these are alignment-dependent approaches
including the well-known algorithm BLAST [1] and its
improved versions Gapped-BLAST and PSI-BLAST [2],
which the programs are available at [7], as well as several
others such as the one introduced by Varré et al. [17] based
on movements of segments, and the recent algorithm
Scoredist introduced by Sonnhammer et al. [18] based on
the logarithmic correction of observed divergence. These
approaches often suffer from accuracy problems, espe-
cially for multi-domain, as well as circular permutation
and tandem repeats protein sequences, which were well
discussed by Higgins [19]. The similarity measures used in
these approaches depend heavily on the quality of the
alignment, which in turn depends on the alignability of
the protein sequences. In many cases, alignment-free
approaches can greatly improve protein comparison,
especially for non-alignable protein sequences. These
approaches have been reviewed in detail by several
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authors [20-23]. Their major drawback, in our opinion, is
that they consider only the frequencies and lengths of
similar regions within proteins and do not take into
account the biological relationships that exist between
amino acids. To correct this problem, some authors [22]
have suggested the use of the Kimura correction method
[24] or other types of corrections, such as that of Felsen-
stein [25]. However, to obtain an acceptable phylogenetic
tree, the approach described in [22] performs an iterative
refinement including a profile-profile alignment at each
iteration, which significantly increases its complexity.
Considering this, we have developed a new approach
mainly motivated by biological considerations and
known observations related to protein structure and evo-
lution. The goal is to make efficient use of the information
contained in amino acid subsequences in the proteins,
which leads to a better similarity measurement. The prin-
cipal idea of this approach is to use a substitution matrix
such as BLOSUM62 [26] or PAM250 [27] to measure the
similarity between matched amino acids from the protein
sequences being compared.

In this section, we will use the symbol |·| to express the
length of a sequence. Let X and Y be two protein
sequences belonging to the protein family F. Let x and y be
two identical subsequences belonging respectively to X
and Y; we use Γx, y to represent the matched subsequence
of x and y. We use l to represent the minimum length that
Γx, y should have; i.e., we will be interested only in Γx, y
whose length is at least l residues. We define El

X, Y, the key
set of matched subsequences Γx, y for the definition of our
similarity function, as follows (see Figure 1 for an exam-
ple):

The symbols x' and y' in the formula are simply used as
variables in the same way as x and y. The expression (. ⊄ .)
means that the first element is not included in the second
one, either in terms of the composition of the subse-
quences or in terms of their respective positions in X. The
matching set El

X, Y contains all the matched subsequences
of maximal length between the sequences X and Y. It will
be used to compute the matching score of the sequence
pair.

The formula El
X, Y adequately describes some known prop-

erties of polypeptides and proteins. First, protein motifs
(i.e., series of defined residues) determine the tendency of
the primary structure to adopt a particular secondary
structure, a property exploited by several secondary-struc-
ture prediction algorithms. Such motifs can be as short as
four residues (for instance those found in β-turns), but the

propensity to form an α-helix or a β-sheet is usually
defined by longer motifs. Second, our proposal to take
into account multiple (i.e., ≥2) occurrences of a particular
motif reflects the fact that sequence duplication is one of
the most powerful mechanisms of gene and protein evo-
lution, and if a motif is found twice (or more) in a protein
it is more probable that it was acquired by duplication of
a segment from a common ancestor than by acquisition
from a distant ancestor. The following pseudo-code
describes how we can obtain the matching set El

X, Y:

Γ: matched subsequence.

E: matching set.

for i = 1 to maximum of |X| and |Y|

k = 0, j = i

while (k < |X| and j < |Y|)

if (X[k] = Y [j])

then Add the amino acid X[k] to Γ

else If (|Γ| ≥ l) Add the Γ to E

Empty Γ

end else

Increment k, Increment j

end while

if (|Γ| ≥ l) Add Γ to E

Empty Γ

k = i, j = 0

while (k < |X| and j < |Y|)

if (X[k] = Y[j])

then Add the amino acid X[k] to Γ

else if (|Γ| ≥ l) Add Γ to E

Empty Γ

end else

Increment k, Increment j
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end while

if (|Γ| ≥ l) Add Γ to E

end for

This algorithm for the construction of El
X, Y requires a CPU

time proportional to |X|*|Y|. In practice, however, several
optimizations are possible in the implementation, using
encoding techniques to speed up this process. In our
implementation of SMS, we used a technique that
improved considerably the speed of the algorithm; we can
summarize it as follows:

By the property that all possible matched subsequences
satisfy |Γx, y|≥l, we know that each Γx, y in El

X, Y is an expan-
sion of a matched subsequence of length l. Thus, we first
collect all the matched subsequences of length l, which
takes linear time. Secondly, we expand each of the
matched subsequences as much as possible on the both
left and right sides. Finally, we select all the expanded
matched sequences that are maximal according to the
inclusion criterion. This technique is very efficient for
reducing the execution time in practice. However, due to
the variable lengths of the matched sequences, it may not

be possible to reduce the worst-case complexity to a linear
time. In the Results section, we provide a time comparison
between our algorithm and several existing ones.

Let M be a substitution matrix, and Γ a matched subse-
quence belonging to the matching set El

X, Y. We define a
weight W(Γ) for the matched subsequence Γ, to quantify
its importance compared to all the other subsequences of
El

X, Y, as follows:

Where Γ[i] is the ith amino acid of the matched subse-
quence Γ, and W[Γ[i], Γ[i]] is the substitution score of this
amino acid with itself. Here, in order to make our measure
biologically plausible, we use the substitution concept to
emphasize the relation that binds one amino acid with
itself. The value of M[Γ[i], Γ[i]] (i.e., within the diagonal
of the substitution matrix) estimate the rate at which each
possible amino acid in a sequence keep unchanged over
time. For the pair of sequences X and Y, we define the
matching score sX, Y, understood as representing the sub-
stitution relation of the conserved regions in both
sequences, as follows:

To define our similarity measure, we need to scale down
sX, Y. Let smax be the matching score of the longest sequence
belonging to the protein family F with itself, defined as
follows:

smax = {sX, X;|X| = max {|Y|;Y ⊂ F}}

Finally, the similarity measure between the two sequences
X and Y, SX, Y is obtained by dividing the matching score
by the value of smax:

Minimum length of matched subsequences "l"
In the CLUSS algorithm described in the following sec-
tion, l, the minimum length of the matched subsequences
in SMS, is set to 4. l = 4 yields good results in all our exper-
iments. Here we will attempt to provide an explanation of
this choice.

Our aim is to detect and make use of the significant motifs
best conserved during evolution and to minimize the
influence of those motifs that occur by chance. This moti-
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Matching sequencesFigure 1
Matching sequences. Let X and Y be two protein 
sequences, as illustrated in figures A and B. (A). For the pair 
of subsequences x1 and y1 we add a matching subsequence Γ1, 
identical to x1 and y1, to the matching set E4

X, Y. Similarly, we 
add Γ2 identical to x1 and y2, and Γ3 identical to x2 and y1. 
However, since x2 ⊂ x3 and y2 ⊂ y3, (x3 and y3 are shown in fig-
ure B) we do not add Γ4, identical to x2 and y2, to E4

X, Y. (B). 
For the pair of subsequences x3 and y3 we add a matching 
subsequence Γ5, identical to x3 and y3, to the set E4

X, Y, even if 
x3 overlaps with x2.
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vates one of the major biological features of our similarity
measure, the inclusion of all long conserved subsequences
in the matching (i.e., multiple occurrences), since it is well
known that the longer the subsequences, the smaller the
chance of their being identical by chance, and vice-versa.
Here we make use of the theory developed by Karlin et al.
in [28-30] to justify our choice of l. According to theorem
1 in [29] we have:

where

and

These formulas calculates Kr, N, the expected length of the
longest common word present in at least r out of N sequences
[29] (i.e., Seq1,...,SeqN), where pi

(ν) is generally specified as
the ith residue frequency of the observed ν(th) sequence.

By fixing N = r = 2, we calculated K2,2, the expected length
of the longest matched subsequence present by chance at
least 2 times out of each pair of sequences, for several pro-
tein datasets including the COG [31] database and the G-
proteins [32], GH2 [33] and ROK [34] families. The
results, presented in Table 1, show an average expected
length very close to K2,2 = 4 residues, with a relatively
small standard deviation for each dataset. Thus, for
lengths equal to or greater than four amino acids, identi-
cal protein subsequences are more likely to be conserved
motifs. This choice of length was also made in previous
protein sequence comparison contexts, such as Heringa
[35] for secondary structure prediction and Leung et al.
[36] for identifying matches in multiple long sequences.

The CLUSS algorithm
CLUSS is composed of three main stages. The first one
consists in building a pairwise similarity matrix based on
our new similarity measure SMS; the second, in building
a phylogenetic tree according to the similarity matrix,
using a hierarchical approach; and the third, in identifying
subfamily nodes from which leaves are grouped into sub-
families.

Stage 1: Similarity matrix
Using one of the known substitution score matrices, such
as BLOSUM62 [26] or PAM250 [27], and our new similar-

ity measure, we compute S, the (N × N) pairwise similarity
matrix, where N is the number of sequences of the protein
family F to be clustered, and Si, j is the similarity measure
between the ith and the jth protein sequences belonging to
F. The construction of S takes CPU time proportional to
N(N-1)T2/2, with T the typical sequence length of the N
sequences.

Stage 2: Phylogenetic tree
To build the phylogenetic tree, we have adopted the clas-
sical hierarchical approach. Starting from the protein
sequences, each of which is considered as the root node of
a (sub)tree containing only one node, we iteratively join a
pair of root nodes in order to build a bigger subtree. At
each iteration, a pair of root nodes is selected if they are
the most similar root nodes in terms of a similarity meas-
ure derived from the above similarity matrix S. This proc-
ess ends when there remains only one (sub)tree, which is
the phylogenetic tree.

The similarity between two root nodes referred to above is
computed in the following way. At the beginning of the
iteration, the similarity between any pair of nodes is ini-
tialized by the similarity matrix computed in Stage 1 (i.e.,
according to SMS). Let L and R be two nearest root nodes
at a given iteration step; they are joined together to form a
new subtree. Let P be the root node of the new subtree. P
thus has two children, L and R. We assign a "length" value
DL, P = DR, P = (1-SL, R)/2 to each of the two branches con-
necting L and R to P. This value is the estimate of the phy-
logenetic distance from either node L or R to their parent
P in the tree. This distance has no strict mathematical
sense; it is merely a measure of the evolutionary distance
between the nodes. It is closer to the notion of dissimilar-
ity. The similarity between the new root node P and any
other root node K is defined as a weighted average of the
similarity between the children of P and the node K:

Where SL, K and SR, K are in that order the similarity values
between the nodes L and R with the node K before the
joining, and dL and dR are the numbers of leaves in the
subtree rooted at L and R, respectively. Note that in order
to keep the notation simple, SP, K is retained here to repre-
sent the similarity between any pair of nodes that do not
have any descendant relationships in the phylogenetic
tree.

Stage 3: Clusters extraction
Given F, a family of N protein sequences, after computing
their similarity matrix and phylogenetic tree, CLUSS
locates subfamily nodes in this tree using [13,14] Ward's
approach. The main idea is to extract from the phyloge-
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netic tree a number of subtrees, each of which corre-
sponds to a cluster, while optimizing a validation
criterion. The criterion is in fact a trade-off between the
within-cluster compactness and the between-cluster sepa-
ration [16]. The different steps are summarized as follows:

Step 1 (Computing the weight of each node)
First, each leaf node is considered as a subtree in the phy-
logenetic tree. We assign to each subtree L (i.e., an individ-
ual leaf represents one protein sequence) a weight WL
according to its importance in F. WL depends on the
number and closeness of the protein sequences that are in
fact similar to L, and is thus intended to measure how well
F is represented by this particular sequence. For this pur-
pose, we make use of the Thompson [37] method in the
definition of WL:

Where P is the root of the phylogenetic tree, L a leaf in this
tree, branch(L→P)-{P} the subset of nodes on the branch
from L to P excluding P, Parent(i) the parent of the node
i, DParent(i), i is the length of the branch connecting the
node i to its parent (as defined in the previous phase), and
dParent(i) the number of leaves in the subtree rooted at the
parent of i. According to this definition, the value of WL is
small if L is very representative and is large if L is not very
representative. Iteratively, we assign to each internal sub-
tree P the weight value WP equal to the sum of the weights
of its children WL + WR.

Step 2 (Computing co-similarity for all internal nodes)
Iteratively, until the root of the phylogenetic tree is
reached, we assign to the subtree rooted at each non-leaf
node P the co-similarity value CP (between its two child
nodes), which is calculated according to the generalized
Ward dissimilarity formula [13,14] introduced by Batagelj
[15], as follows:

Where WL and WR are the weights of L and R, respectively,
and SL, R is the similarity between L and R computed in
Stage 2.

By taking into account information about the neighbour-
hood around each of the nodes L and R, the concept of co-
similarity reflects the cluster compactness of all the
sequences (leaf nodes) in the subtree. In fact, its value is
inversely proportional to the within-cluster variance.
When the subtree becomes larger, the co-similarity tends
to become smaller, which means that the sequences
within the subtree become less similar and the difference
(separation) between sequences in different clusters
becomes less significant.

Step 3 (Separating high co-similarity nodes from low co-similarity 
nodes)
The CLUSS algorithm makes use of a systematic method
for deciding which subtrees to retain as a trade-off
between searching for the highest co-similarity values and
searching for the largest possible clusters. We first separate
all the subtrees into two groups, one being the group of
high co-similarity subtrees and the other the low co-simi-
larity subtrees. This is done by sorting all possible subtrees
in increasing order of co-similarity and computing a sep-
aration threshold according to the method based on the
maximum interclass inertia [11].

Step 4 (Extracting clusters)
From the group of high co-similarity subtrees, we extract
those that are largest. A high co-similarity subtree is largest
if the following two conditions are satisfied: 1) it does not
contain any low co-similarity subtree; 2) if it is included
in another high co-similarity subtree, the latter contains at
least one low co-similarity subtree. Each of these (largest)
subtrees corresponds to a cluster and its leaves are then

W
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=
∈ →( )−{ }{ }

∑ ( ) ,

( )

C
W W

W W
SP

L R

L R
L R= ∗

+
∗ ,

Table 1: Expected length of longest common subsequence computed for several protein datasets. The columns represent respectively, 
DS: the tested protein datasets, NS: number of tested protein sequences, AEL: average of the expected length of the longest common 
subsequence and finally SD: the standard deviation.

DS NS AEL SD

COG database 144298 3.934 0.363
KOG database 60748 4.062 0.458
G-proteins family 381 3.718 0.200
GH2 family 316 4.355 0.232
ROK family 730 4.074 0.324
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collected to form the corresponding cluster (see Figure 2
for an example).

Results
To illustrate its efficiency, we tested CLUSS extensively on
a variety of protein datasets and databases and compared
it with several mainstream clustering algorithms. We ana-
lyzed the results obtained for the different tests with sup-
port from the literature and functional annotations. Most
important data and results are provided with this paper as
supplementary material, the others are available at CLUSS
Website.

The clustering quality measure
To highlight the functional characteristics and classifica-
tions of the clustered families, we introduce the Q-meas-
ure, which quantifies the quality of a clustering by
measuring the percentage of correctly clustered protein
sequences based on their known functional annotations.
This measure can be easily adapted to any protein
sequence database. The Q-measure is defined as follows:

Where N is the total number of clustered sequences, C is
the number of clusters obtained, Pi is the largest number
of sequences in the ith cluster obtained belonging to the
same function group according to the known reference
classification, and U is the number of unclustered
sequences. For the extreme case where each cluster con-
tains one protein with all proteins classified as such, the
Q-measure is 0, since C becomes equal to N, and each Pi
the largest number of obtained sequences in the ith cluster
is 1.

COG database
To illustrate the efficiency of CLUSS in grouping protein
sequences according to their functional annotation and
biological classification, we performed extensive tests on
the phylogenetic classification of proteins encoded in
complete genomes, commonly named the Clusters of
Orthologous Groups of proteins database (COG) [31]. As
mentioned in the website for the database, the COG clus-
ters were delineated by comparing protein sequences
encoded in complete genomes, representing major phylo-
genetic lineages. Each COG consists of individual proteins
or groups of paralogs from at least 3 lineages and thus cor-
responds to an ancient conserved domain. In order to
evaluate CLUSS in a statistical manner, we randomly gen-
erated 1000 different subsets from the COG database.
Each subset contains between 59 and 1840 non-orphan
protein sequences (i.e., each selected protein sequence has

at least one similar protein sequence from the same func-
tional classification of the COG database).

We tested CLUSS on the 1000 subsets using each of the
substitution matrices BLOSUM62 [26] and PAM250 [27]
to compute SMS. The average Q-measure value of the clus-
terings obtained is superior to 92% with a standard devi-
ation of 3.57% (see Figure 3), while the minimum Q-
measure value is 80.03% and the maximum value is
99.35%. This result shows that CLUSS is indeed very effec-
tive in grouping sequences according to the known func-
tional classification of COG.

In the aim of comparing the efficiency of CLUSS to that of
alignment-dependent clustering algorithms, we per-
formed tests using CLUSS, BlastClust [7], TRIBE-MCL [8]
and gSPC [9] on the COG database. In all performed com-
parisons, we used the default parameters of compared
algorithms. We also used the widely known algorithm to
compare protein sequences ClustalW [38] to calculate
similarity matrices used by TRIBE-MCL [8] and gSPC [9].
Due to the complexity of alignment, these tests were done
on six randomly generated subsets, named SS1 to SS6. The
FASTA files of these subsets are provided as supplemen-
tary material [see Additional files 1, 2, 3, 4, 5 and 6]. The
experimental results of each algorithm are summarized in
Figure 4 for the obtained Q-measures, and Table 2 for the
obtained numbers of clusters and the execution times. The
detailed results using CLUSS are available as supplemen-
tary material [see Additional files 7, 8, 9, 10, 11 and 12].
BlastClust [7] yielded better results than TRIBE-MCL [8]
and gSPC [9]. TRIB-MCL [8] obtained just one cluster for
subsets SS1, SS2, SS4 and SS6. For each of the six subsets,
the results show clearly that CLUSS obtained the best Q-
measure compared to the other algorithms tested. Glo-
bally, the clusters obtained using our new algorithm
CLUSS correspond better to the known characteristics of
the biochemical activities and modular structures of the
protein sequences. In Table 2 it can be seen that the fastest
algorithm is BLAST, closely followed by our algorithm
CLUSS, while TRIBE-MCL and gSPC, which use ClustalW
[38] as similarity measures, are much slower than BLAST.

G-proteins
The G-proteins [32] (guanine nucleotide binding pro-
teins) belong to the larger family of the GTPases. Their sig-
nalling mechanism consists in exchanging guanosine
diphosphate (GDP) for guanosine triphosphate (GTP) as
a general molecular function to regulate cell processes
(reviewed extensively in [39]). This family has been the
subject of a considerable number of publications by
researchers around the world, so we considered it a good
reference classification to test the performance of CLUSS.
The sequences belonging to this family and the obtained
clustering result are provided as supplementary material
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[see Additional files 13 and 14]. The experimental results
obtained using the algorithms CLUSS, BlastClust [7],
TRIBE-MCL [8] and gSPC [9], are summarized in Figure 5
for the obtained Q-measures, and Table 3 for the corre-
sponding numbers of clusters and the execution time. The
clustering results for the G-protein family show clearly

that although this family is known to be easy to align,
which should have facilitated the clustering task of the
alignment-dependent algorithms, CLUSS yields a cluster-
ing with Q-measure value of 87.09%, the highest of all the
algorithms tested. Thus, the results obtained by CLUSS are
much closer to the known classification of the G-protein

Merging leavesFigure 2
Merging leaves. Let us take a rooted phylogenetic tree with L1, L2...L10 as leaves, and N1, N2...N9 as internal nodes, where N5 
and N9 are identified as low co-similarity nodes (black nodes). Leaves are merged until a black node is reached, except for L3, 
L4, L5 and L6, which need special consideration. All leaves connected between N5 and N9 are merged into a distinct subfamily. L3 
is connected directly to N5 so it constitutes a distinct subfamily. We thus obtain the subfamilies Sf1, Sf2, Sf3 and Sf4, while Sf2 
contains the orphan sequence represented by leaf L3.

Table 2: Clustering results of the six subsets from the COG database. Number of clusters obtained by clustering the protein sequences 
of the six randomly generated subsets from the COG database (rows) with each of the clustering algorithms tested (columns). To 
each execution time of TRIBE-MCL [8] and gSPC [9], we added the corresponding execution time of ClustalW [38] used to compute 
the similarity matrix. Time is indicated in seconds.

Protein 
subsets

CLUSS BLAST MCL+ClustalW SPC+ClustalW

Nbr Time Nbr Time Nbr Time Nbr Time

SS1 (469 
proteins)

30 106 114 14 1 495 9 499

SS2 (743 
proteins)

15 234 102 58 1 1272 33 1275

SS3 (455 
proteins)

30 114 132 18 8 586 27 588

SS4 (409 
proteins)

19 82 125 11 1 452 4 454

SS5 (564 
proteins)

35 103 172 15 6 538 30 540

SS6 (6444 
proteins)

225 4272 732 583 1 95895 77 98880
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family than those of the other tested algorithms are. In
Table 3, we can make the same observation about the exe-
cution times of the different algorithms as in Table 2.

Glycoside Hydrolase family 2 (GH2)
To show the performances of CLUSS with multi-domain
protein families which are known to be hard to align and
have not yet been definitively aligned, experimental tests
were performed on 316 proteins belonging to the Glyco-
side Hydrolases family 2 from the CAZy database (version
of January 2006), the FASTA file is provided as supple-
mentary material [see Additional file 15]. The CAZy data-
base describes the families of structurally related catalytic
and carbohydrate-binding modules or functional
domains of enzymes that degrade, modify, or create glyco-
sidic bonds. Among proteins included in CAZy database,

the Glycoside Hydrolases are a widespread group of
enzymes that hydrolyse the glycosidic bond between two
or more carbohydrates or between a carbohydrate and a
non-carbohydrate moiety. Among Glycoside Hydrolases
families, the GH2 family, extensively studied at the bio-
chemical level includes enzymes that perform five distinct
hydrolytic reactions. Only complete protein sequences
were retained for this study. In our experimentation, the
GH2 proteins were subdivided into 28 subfamilies [see
Additional file 16], organized in four main branches (see
Figure 6). Three branches correspond perfectly to enzymes
with known biochemical activities. The first branch (sub-
families 1–7) includes enzymes with "β-galactosidase"
activity from both Prokaryotes and Eukaryotes. The third
branch (subfamilies 18 to 22) groups enzymes with "β-

Clustering results for the 1000 subsets from COGFigure 3
Clustering results for the 1000 subsets from COG. Each red point is a quality measure (Q-measure) of a clustering result 
of one of the 1000 randomly generated subsets from the COG database. As shown, the obtained results are in good concord-
ance with the functional reference characterization of COG. The average of the quality measure of the 1000 clusterings is 
equal to 92.09% with a standard deviation equal to 3.57%. More than 75% of the 1000 clusterings obtained a quality measure 
superior to 90%, and more than 21% of the clusterings obtained a quality measure superior to 95%. The minimum value of the 
quality measure is 80.03% and the maximum value is 99.35%.
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mannosidase" activity, while the fourth branch (sub-
families 23 to 28) includes "β-glucuronidases".

The clustering scheme obtained warrants further com-
ment. The "orphan" subfamily 17 includes nineteen
sequences labelled as "β-galactosidases" in databases.
While the branch 1 "β-galactosidases" are composed of
five modules, known as the "sugar binding domain", the
"immunoglobulin-like β-sandwich", the "(αβ)8-barrel",
the "β-gal small_N domain" and the "β-gal small_C
domain", the members of subfamily 17 lack the last two
of these domains, which makes them more similar to "β-
mannosidases" and "β-glucuronidases". These enzymes

are distinct from those of branch 1 [40] and their separate
localization is justified.

The second branch is the most heterogeneous in terms of
enzyme activity. However, most of the subfamilies (9 to
16) group enzymes that are annotated as "putative β-galac-
tosidases" in databases. To the best of our knowledge, none
of these proteins, identified through genome sequencing
projects, have been characterized by biochemical tech-
niques, so their enzymatic activity remains hypothetical.
At the beginning of this branch, subfamily 8 (shown in
detail in Figure 7) groups enzymes characterized very
recently: "exo-β-glucosaminidases" [41,42] and "endo-β-
mannosidases" [43]. Again, theses enzymes share only

Clustering results for the six subsets from COGFigure 4
Clustering results for the six subsets from COG. For each algorithm (reading horizontally), the bars represent the Q-
measure of the clustering results obtained on six randomly generated subsets: SS1, red; SS2, blue; SS3, green; SS4, yellow; SS5, 
gray; SS6, amber.

Table 3: Clustering results of the G-protein family. Number of clusters obtained by clustering the protein sequences of the G-protein 
family (rows) with each of the tested clustering algorithms (columns). Time is indicated in seconds. (The same remark applies as in 
Table 2 concerning TRIBE-MCL [8] and gSPC [9]).

Protein 
subsets

CLUSS BLAST MCL+ClustalW SPC+ClustalW

Nbr Time Nbr Time Nbr Time Nbr Time

G-proteins 
(381 
proteins)

51 85 24 14 2 419 20 432
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three modules with the enzymes from branches 1, 3 and
4. The close proximity among "exo-β-glucosaminidases"
and "endo-β-mannosidases" emerging from this work has
not been described so far. Furthermore, subfamily 8
includes closely related plant enzymes with "endo-β-man-
nosidase" activity and bacterial enzymes produced by
members of the genus Xanthomonas, including several
plant pathogens. This could be an example of horizontal
genetic transfer between members of these two taxa.

Subfamily 22 (see Figure 8), also found at the beginning
of a branch, has been recently analyzed by Côté et al. [41]
and Fukamizo et al. [44], using structure-based sequence
alignments and biochemical structure-function studies. It
was shown that proteins from this subfamily have a differ-
ent catalytic doublet and could recognize a new substrate
not yet associated with GH2 members.

Globally, the clustering result for the GH2 proteins corre-
sponds well to the known characteristics of their bio-
chemical activities and modular structures. The results
obtained with the CLUSS algorithm were highly compara-

ble with those of the more complex analysis performed by
Côté et al. [41] and Fukamizo et al. [44] using clustering
based on structure-guided alignments, an approach which
necessitates prior knowledge of at least one 3D protein
structure.

The 33 (α/β)8-barrel proteins from the GH2 family
The 33 (α/β)8-barrel proteins are a group within the GH2
family, studied recently by Côté et al. [41] and Fukamizo
et al. [44]. The periodic character of the catalytic module
known as "(α/β)8-barrel" makes these sequences hard-to-
align using classical alignment approaches. The difficul-
ties in aligning these modules are comparable to the prob-
lems encountered with the alignments of tandem-repeats,
which have been exhaustively discussed [19]. The FASTA
file and full clustering results of this subfamily are
reported as supplementary material [see Additional files
17 and 18]. This group of 33 protein sequences includes
"β-galactosidase", "β-mannosidase", "β-glucuronidase" and
"exo-β-D-glucosaminidase" enzymatic activities, all of them
extensively studied at the biochemical level. These
sequences are multi-modular, with various types of mod-

Clustering results for the G-proteinsFigure 5
Clustering results for the G-proteins. For each algorithm (reading horizontally), the bars represent the Q-measure of the 
clustering results obtained on the members of the G-protein family. CLUSS obtained the highest quality measure of all the clus-
tering results for this family, which shows that the CLUSS grouping is nearest to the functional reference classification for the 
G-protein family.
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CLUSS phylogenetic analysis of GH2 familyFigure 6
CLUSS phylogenetic analysis of GH2 family. The 316 enzymes of the GH2 family are clustered by CLUSS into 28 sub-
families (SF_1 to SF_28), in a phylogenetic tree composed of four main branches. Branches 1, 3 and 4 correspond to "β-galac-
tosidase", "β-mannosidase" and "β-glucuronidase" activities, respectively. Most enzymes in branch 2 are labelled as "putative β-
galactosidases" in databases. The "orphan" subfamily SF_17 includes nineteen sequences labelled as "β-galactosidases" in data-
bases. Subfamily SF_8 contains "exoglucosaminidase" and "endo-mannosidase" activities.
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ules, which complicate their alignment. Thus, the cluster-
ing of such protein sequences using the alignment-
dependent algorithms becomes problematic. In our
experiments, we tested quite a few known algorithms to
align the 33 protein sequences, such as MUSCLE [45],
ClustalW [38], MAFFT [46] and T-Coffee [47], etc. The
alignment results of all these algorithms are in contradic-
tion with those presented by Côté et al. [41], which in turn
are supported by the structure-function studies of Fuka-
mizo et al. [44]. This encouraged us to perform a cluster-
ing on this subfamily, to compare the behaviour of CLUSS
with BlastClust [7], TRIBEMCL [8] and gSPC [9] to vali-
date the use of CLUSS on the hard-to-align proteins. The
experimental results with the different algorithms are
summarized in Table 4, which shows the cluster corre-
spondence of each of the sequences by algorithm used. An
overview of the results is given below.

CLUSS results
The 33 (α/β)8-barrel proteins were subdivided by CLUSS
into five subfamilies, organized in four main branches
(see Table 5 and Figure 9). The first branch corresponds to
the first cluster, which includes the enzymes with "β-galac-
tosidase"activity; the second branch corresponds to the sec-
ond and the third clusters, which include the enzymes
with "β-mannosidase" activity; the third branch corre-
sponds to the fourth cluster, which includes the enzymes
with "exo-β-D-glucosaminidase" activity; and the fourth
branch corresponds to the fifth cluster, which includes the
enzymes with "β-glucuronidase" activity.

BLAST results
The 33 (α/β)8-barrel proteins were subdivided into five
subfamilies. Almost all the enzymes were clustered in the
appropriate clusters, except for seven proteins that were
unclustered, among which we find the following well-
classified enzymes: "β-galactosidase" enzymes: GenBank:
AAA69907, GenBank: AAA35265 and GenBank:

Subfamily SF_8 phylogenetic analysisFigure 7
Subfamily SF_8 phylogenetic analysis. The phylogenetic tree of the 22 enzymes of subfamily SF_8 is grouped into (DDBJ: 
BAD89079, DDBJ: BAD15284) "endo-β-mannosidasee" and (GenBank: AAX62629, DDBJ: BAD99604) "exo-β-D-glucosaminidase" 
activities. Subfamily SF_8 also includes closely related plant enzymes and bacterial enzymes produced by members of the genus 
Xanthomonas, including several plant pathogens.
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AAA23216; "β-mannosidase" enzyme:
NCBI:ZP_00425692; "exo-β-D-glucosaminidase" enzyme:
GenBank: AAX62629.

TRIBE-MCL results
The 33 (α/β)8-barrel proteins were subdivided by TRIBE-
MCL into two mixed subfamilies. We find the "β-mannosi-
dase" enzymes EMBL: CAB63902, GenBank: AAD42775
and EMBL: CAD33708 grouped in the "β-galactosi-
dase"subfamily. Furthermore, the "exo-β-D-glucosamini-
dase" enzymes and the "β-glucuronidases" enzymes are
grouped in the same subfamily.

gSPC results
The 33 (α/β)8-barrel proteins were subdivided by gSPC
into three subfamilies. Almost all the enzymes were
grouped in the appropriate subfamily, except for the "β-
galactosidases" and the "β-glucuronidases" which were
grouped in the same subfamily.

Globally, the clustering of the 33 (α/β)8-barrel proteins
generated by CLUSS corresponds better to the known
characteristics of their biochemical activities and modular
structures than do those yielded by the other algorithms

tested. The results obtained with our new algorithm were
highly comparable with those of the more complex, struc-
ture-based analysis performed by Côté et al. [41] and
Fukamizo et al. [44].

Other clustering tests
In our benchmarking (i.e., COG and G-proteins), we
compared the execution times of SMS and ClustalW [38];
these results are provided as supplementary materials [see
Additional file 19]. We also compared the performance of
CLUSS with two other alignment-dependent algorithms,
Secator [11] and COCO-CL [12]; the results again show
the clear superiority of CLUSS. We also tested CLUSS on a
variety of protein families and databases, such as the Clus-
ters of Orthologous Groups for eukaryotic complete
genomes database (KOG) [31], Glycoside Hydrolase fam-
ily 8 (GH8) from the CAZy database [33] and the protein
family known as the “Repressor, ORF, Kinases” (ROK)
family [34]. Similarly to the results family shown in this
section, all of these clusterings were highly concordant
with their respective reference classifications. The FASTA
files and the clustering results for the protein families and
databases tested are available at the CLUSS website.

Subfamily SF_22 phylogenetic analysisFigure 8
Subfamily SF_22 phylogenetic analysis. CLUSS has clustered in the same subfamily the enzymes GenBank: AAU48942 
"Burkholderia mallei", NCBI: YP_107240 "human", GenBank: AAZ64708 "Ralstonia eutropha", GenBank: AAL43556 "Agrobacte-
rium tumefaciens", GenBank: ABB11922 "Burkholderia" and NCBI:ZP_00425692 "Burkholderia vietnamiensis", which were 
recently analyzed by Côté et al. [41] and Fukamizo et al. [44] and characterized by their ability to recognize a substrate not yet 
associated with GH2 members.
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Discussion
The alignment of protein sequences often provides infor-
mation on conserved and mutated motifs, which is a good
approach to measure the similarity between two protein
sequences. The problem with this approach is that the
result depends primarily on the alignability of the protein
sequences, also on the algorithm selected and the param-
eters set by the user depending on the alignment algo-
rithm used (e.g., gap penalties), which implies several
different alignments with each algorithm. Such variations
may create difficulties in measuring similarity between
sequences and consequently complicate the clustering
task. For the case of easy-to-align protein families, such as
the G-protein family, almost all alignment algorithms
find the same alignment for the conserved regions; how-

ever, the alignments of the less conserved regions are sig-
nificantly different. On the other hand, for the case of
hard-to-align protein families, such as the GH2 family,
each alignment algorithm tends to diverge to its own, dis-
tinct results. Thus, in all cases, there is a significant need
to develop efficient and robust alignment-independent
approaches to clustering protein sequences.

The SMS developed in this paper makes it possible to
measure the similarity between protein sequences based
solely on the conserved motifs. The major advantage of
SMS compared to the alignment-dependent approaches is
that it gives significant results with protein sequences
independent of their alignability, which allows SMS to be
effective on both easy-to-align and hard-to-align protein

Table 4: Clustering results of the 33 (α/β)8-barrel protein sequences. The clustering correspondence of each of the 33 (α/β)8-barrel 
protein sequences (rows), obtained by Côté et al. [41] and Fukamizo et al. [44] and each of the clustering algorithms tested (columns). 
Each number in the table represents the corresponding cluster of the row's protein sequence obtained with the column's method. 
They are bold when they correspond to Côté et al. [41] and Fukamizo et al. [44] classification. The symbol "/" means that the row's 
protein sequence is unclustered.

Protein sequences Côté Fukamizo CLUSS BLAST MCL SPC

GaEco 1 1 1 1 1
GaA 1 1 / 1 1
GaK 1 1 / 1 1
GaC 1 1 / 1 1
GaEcl 1 1 1 1 1
GaL 1 1 1 1 1
MaA 2 2 2 1 2
MaB 2 2 2 2 2
MaH 2 2 2 2 2
MaM 2 2 2 2 2
MaC 2 3 2 1 2
MaT 2 3 2 1 2
UnA 3 3 3 2 2
UnBv 3 3 3 2 2
UnBc 3 3 / 2 2
UnBm 3 3 3 2 2
UnBp 3 3 3 2 2
UnR 3 3 3 2 2
CsAo 4 4 / 1 3
CsS 4 4 4 1 3
CsG 4 4 4 1 3
CsM 4 4 4 1 3
CsN 4 4 / 1 3
CsAn 4 4 / 1 3
CsH 4 4 4 1 3
CsE 4 4 4 1 3
GIC 5 5 5 1 1
GIE 5 5 5 1 1
GIH 5 5 5 1 1
GIL 5 5 5 1 1
GIM 5 5 5 1 1
GIF 5 5 5 1 1
GIS 5 5 5 1 1
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families. This property is inherited by CLUSS, our new
clustering algorithm, which uses SMS as its similarity
measure. CLUSS used jointly with SMS is an effective clus-
tering algorithm when used on protein sets with a
restricted number of functions, which is the case of almost
all protein families. It more accurately highlights the char-
acteristics of the biochemical activities and modular struc-
tures of the clustered protein sequences than do the
alignment-dependent algorithms.

So far, our similarity measure has been based on pre-
determined substitution matrices. A possible future devel-
opment is to propose an approach to automatically com-
pute the weights of the conserved motifs instead of relying
on pre-calculated substitution scores. There is also a need
to speed up the extraction of the conserved motifs and the
clustering of the phylogenetic tree, to scale the algorithm
on datasets that are much larger in size with many more
biological functions.

Conclusion
Clustering of protein families into phylogenetically cor-
rect groups is a difficult problem, especially for those
whose alignment is not biologically validated and not
definitively performed. In this paper, we have proposed a
new similarity measure, SMS, based on which we develop
the new clustering algorithm CLUSS. CLUSS is applied
directly to non-aligned sequences. Compared to existing
clustering methods, CLUSS more accurately reflects the
functional characteristics of the clustered families. It pro-
vides biologists with a new and plausible instrument for
the analysis of protein sequences, especially those that
cause problems for the alignment-dependent algorithms.

We believe that CLUSS can become an effective method
and tool for clustering protein sequences to meet the
needs of biologists in terms of phylogenetic analysis and
function prediction. In fact, CLUSS gives an efficient evo-
lutionary representation of the phylogenetic relationships
between protein sequences. This algorithm constitutes a
significant new tool for the study of protein families, the
annotation of newly sequenced genomes and the predic-
tion of protein functions, especially for proteins with
multi-domain structures whose alignment is not defini-
tively established. Finally, the tool can also be easily
adapted to cluster other types of genomic data. The appli-
cation server and the implementation are available at
CLUSS website.

Availability and requirements
Project name: CLUSS

Project home page: http://prospectus.usherbrooke.ca/
CLUSS

Operating system(s): MS Windows

Programming language: C++

Other requirements: /

License: Freely offered

Any restrictions to use by non-academics: /

33 (α/β)8-barrel group phylogenetic analysisFigure 9
33 (α/β)8-barrel group phylogenetic analysis. The data-
base entries of the 33 (α/β)8-barrel group are indicated: 
GaEco(GenBank: AAA24053), GaA(GenBank: AAA69907), 
GaK(GenBank: AAA35265), GaC(GenBank: AAA23216), 
GaEcl(DDBJ: BAA07673), GaL(GenBank: AAK06078), 
GIC(GenBank: AAC48809), GIE(GenBank: AAC74689), 
GIH(GenBank: AAA52561), GIL(GenBank: AAK07836), 
GIM(GenBank: AAA37696), GIF(GenBank: AAD01498), 
GIS(GenBank: AAR75615), MaA(EMBL: CAB63902), 
MaB(GenBank: AAC48460), MaC(GenBank: AAD42775), 
MaH(GenBank: AAC39573), MaM(GenBank: AAK18177), 
MaT(EMBL: CAD33708), CsAo(GenBank: AAX62629), 
CsS(DDBJ: BAC68933), CsG(NCBI: XM_382490), 
CsM(NCBI: XP_369600), CsN(NCBI: XP_331434), 
CsAn(GenBank: EAA63395), CsH(DDBJ: BAD99604), 
CsE(NCBI: XP_746417), UnA(GenBank: AAL43556), 
UnBv(GenBank: ABB11922), UnBc(NCBI: ZP_00425692), 
UnBm(GenBank: AAU48942), UnBp(NCBI: YP_107240), 
UnR(GenBank: AAZ64708).
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