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Abstract
Background: Detection of short, subtle conserved motif regions within a set of related DNA or
amino acid sequences can lead to discoveries about important regulatory domains such as
transcription factor and DNA binding sites as well as conserved protein domains. In order to help
assess motif detection algorithms on motifs with varying properties and levels of conservation, we
have developed a computational tool, rMotifGen, with the sole purpose of generating a number of
random DNA or protein sequences containing short sequence motifs. Each motif consensus can
be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM).
Insertions and mutations within these motifs are created according to user-defined parameters and
substitution matrices. The resulting sequences can be helpful in mutational simulations and in
testing the limits of motif detection algorithms.

Results: Two implementations of rMotifGen have been created, one providing a graphical user
interface (GUI) for random motif construction, and the other serving as a command line interface.
The second implementation has the added advantages of platform independence and being able to
be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing
DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME
packages.

Conclusion: rMotifGen provides an efficient and convenient method for creating random DNA
or amino acid sequences with a variable number of motifs, where the instance of each motif can be
incorporated using a position-specific scoring matrix (PSSM) or by creating an instance mutated
from its corresponding consensus using an evolutionary model based on substitution matrices.
rMotifGen is freely available at: http://bioinformatics.louisville.edu/brg/rMotifGen/.

Background
Detection of short, subtle conserved regions within a set
of related sequences can be beneficial in determining bio-
logically important regulatory elements such as transcrip-
tion factor and DNA binding sites, and conserved protein
domains. Over 30 software solutions have been published
with the underlying goal of detecting subtle, conserved

motif sequences within a set of related sequences [1],
including implementations using Gibbs sampling rou-
tines [2-9], expectation-maximization (EM) [10-12], par-
ticle swarm optimization (PSO) [13] and a variety of
other methods [12,14-20]. Motif detection algorithms are
known to be limited, producing accuracies on the order of
15–25% at the nucleotide level, and 25–35% at the bind-
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ing site level [1]. Despite the large number of detection
algorithms and high levels of inaccuracy, only a limited
number of assessments of motif discovery tools have been
performed [21,22]. Tompa et al. [22] describe the creation
of a DNA benchmarking dataset using the binding sites of
known promoter sequences from the TRANSFAC database
[23] along with DNA motifs creating using a Markov
chain. Creation of this dataset is critically important for
the assessment of motif detection approaches. However,
the benchmark dataset is limited only to DNA sequences,
and those randomly created are done so using a stochastic
approach rather than one directed by a mutational model.
rMotifGen has been developed as a solution to test vari-
ous aspects of these limitations by creating simulated
DNA and protein sequences where the motifs within the
amino acid sequences are allowed to mutate according to
a substitution matrix model.

A number of different approaches for generating random
biological sequences have previously been presented. The
majority of these programs have focused on generating
random sequences for the purpose of simulating evolu-
tion through mutation events [24-26] or by emitting
sequences to resemble those from a particular statistical
model. More recently, the program GenRGenS [27]
describes a software tool that can expand upon these by
incorporating structure into random sequences using con-
text-free grammars and regular expressions.

While each of these approaches is adequate in simulating
sequence events on a whole sequence level, a solution has
not previously been described to generate completely ran-
dom sequences that contain regions of similar signals
within them. rMotifGen addresses this need by providing
a method for randomly creating DNA or amino acid
sequences using a simple background model, and then
introducing into these sequences subtle motifs. rMotif-
Gen allows for each of the motifs to be incorporated into
the individual sequences with different probabilities. In
addition, each motif instance is allowed to mutate from
the consensus within each sequence using substitution
matrix models and PSSMs.

Implementation
User input
rMotifGen generates random motifs and sequences based
upon two levels of user inputs. The first level requires the
user to declare the length, number, and type of sequences
(DNA or amino acid), as well as the number of different
motifs to create. Based upon the sequence type, the user
must provide a background frequency for each residue to
create the random sequences. These frequencies are
treated as proportionate, which are normalized to one in
order to be further considered as percentages. Once the
user has entered the first level of overall information, the

user is then required to provide the properties for each
motif, which can be based on a user-entered consensus,
randomly generated sequence, or PSSM. Residue frequen-
cies for each randomly generated consensus must be pro-
vided. As a result, the user can provide such information
as an amino acid region that is hydrophobic or
hydrophilic in nature. Random DNA motifs can be
designed to maintain reverse complementary palindromic
properties.

Two versions of rMotifGen are provided depending on the
needs of the user. The first is a command line interface
developed using ANSI g++ that should be portable to any
operating system. The second is a GUI developed using
Visual Studio® 2005 C# that has been tested extensively on
Windows® XP. User inputs will be handled differently
based upon which version is being used.

Command line mode
The command line version of rMotifGen version 3.0 is
distributed as a gzipped tarball file consisting of four .H
header files and four .cpp implementation files. Develop-
ment of the command line version has proceeded to pro-
vide researchers with the ability to use rMotifGen on a
variety of computing platforms in an interactive environ-
ment and also to allow for creation of input via files so
that rMotifGen can be called from batch scripts.

Interactive mode
Once the executable for rMotifGen has been created, the
interactive mode can be invoked by typing rMotifGen at
the command line prompt without any parameters. The
user is prompted for each of the overall inputs one at a
time via the console, followed by the individual parame-
ters for each motif. The resulting random sequences can
be output either to a specified file or to the console,
depending on the user's desire.

Batch mode
Simulations are often very useful to study the behavior
patterns of algorithms. This is true as well for motif detec-
tion algorithms. Setting up a large number of variable
inputs for each of the algorithms may be desired. As a
result, the command line version of rMotifGen allows
users to read motif parameters from input files that can be
automatically generated. This allows rMotifGen to be cal-
lable from within a shell script to efficiently design ran-
dom sequences containing motifs of different
composition. The batch mode is invoked with the usage:
rMotifGen [P|N] -f <Filename> where P signifies that the
random sequences generated will be protein sequences
and N signifies they will be amino acid sequences.
Filename refers to the name of the file where the input
data is stored. The input filename is structured using Boul-
der Data Interchange Format [28] which formats the data
Page 2 of 8
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:292 http://www.biomedcentral.com/1471-2105/8/292
in a TAG = VALUE format that can be easily parsed. Two
sample input files are provided in the tarball, DNAin-
put.dat for an example of how to create the file for DNA
sequences and AAinput.dat for amino acid sequences.
Since the input originates from a file, and the output can
be written to a file, the batch mode allows for the possibil-
ity of creating a large number of random sequences for
simulation purposes.

GUI mode
An initial screen prompting the user for overall sequence
properties first pops up when run in GUI mode (Figure 1).
The user must provide the initial background frequencies
for the desired sequence type. Defaults for DNA sequences
are 25% for each residue. For amino acid sequences, the
background frequency of each amino acid is set according
to the observed frequencies within the SWISS-PROT data-
base [29] release 52.0. When the user presses the "CON-
TINUE" button, s/he is prompted to enter in the details
for each motif consensus to be generated (Figure 2). In
this screen, a decision can be made as to whether the con-
sensus is created based on a user-defined sequence, posi-
tion specific scoring matrix, or if it will be created
randomly. In the case that it that it is randomly generated,
the user will provide the residue frequencies for motif gen-
eration. This allows motifs to be constructed based on a
number of different properties. If the motif is a DNA
sequence, it can additionally be constrained to be a palin-
drome. Each randomly generated sequence can have zero
or one occurrence of the motif, which is incorporated by
the specified percentage of sequences in which it is con-
tained. Two or more occurrences of the same motif into
each sequence can be incorporated by adding duplicate
records for the same motif. The level of conservation
between the consensus motif and each randomly gener-
ated instance is provided. In the case where the consensus
is not defined by a PSSM, DNA sequences use a straight-
forward percent conservation of the consensus to deter-
mine the sequence for each motif occurrence, while
amino acid sequences are generated from the consensus
based on the provided PAM substitution matrix model
[30]. The larger the number is for the PAM, the more
divergent the motifs will be. A PAM of 0 can be used if
complete conservation is desired. When the motif param-
eters are set, the user presses the "Generate Sequences"
button which creates the sequences and presents them in
a formatted output screen (Figure 3) where they can be
copied to the clipboard or saved to a file.

Random sequence generation
For both the GUI and command line interfaces, the
sequences are randomly generated based upon the back-
ground residue frequencies. In order to make rMotifGen
more robust, the frequencies entered are not required to
sum to either 1 or 100. Rather, they are treated as ratios

which are subsequently normalized. Each position within
the sequence is treated as a completely separate entity. For
the command line interface, the ANSI standard drand48
family of pseudo-random number generators is used.

After the sequences have been randomly generated, con-
sensus motifs are created. These can either be set accord-
ing to the user-defined consensus pattern or randomly
generated based upon the motif residue frequencies. Each
random sequence is then considered to determine
whether or not it will contain an instance of the current
motif. If the motif is selected for inclusion, the back-
ground sequence is examined to see which sites are avail-
able for the motif position such that two motifs are not
overlapping in order to prevent truncated motifs. The cur-
rent version of rMotifGen does not allow for overlapping
motifs, but does allow for them to be randomly ordered.
The motif instance is then created using the model of con-
servation provided, via a PAM lookup table, PSSM, or by
a percent conservation variable.

Output
Each random sequence is presented in FASTA file format.
The descriptor line begins with a '>' followed by an iden-
tifier rMotifGen_RandSeq_<seqnum> which uniquely
identifies the sequence. The remainder of the header con-
tains the number of motifs created, followed by each indi-
vidual beginning location. If a motif is omitted, its
positional value is -1. The remainder of the FASTA file is
the actual sequence data. Figure 3 illustrates an example
FASTA sequence.

Results
A sample amino acid sequence set of ten sequences of
length 500 residues with six allowed motifs per sequence
was generated from rMotifGen. Background residue fre-
quencies for the data set was taken from the observed
amino acid frequencies in SWISS-PROT [29] release 52.0
dated 06-Mar-07 [28,31]. The first motif consensus, LYD-
VAEYAGVSYQTVSRVV, was entered in as a helix-turn-
helix (HTH) motif from E. coli lactose operon repressor
Lac1 [32]. The second and third consensuses were ran-
domly generated, where the motif residue frequencies
were heavily weighted towards hydrophobic and
hydrophilic amino acids, respectively. The fourth motif
consensus, DVYYISPQGKKFRSKPQ, represents a partial
region from the methyl CpG binding domain (MBD)
extracted from PROSITE [33] entry PDOC50982. The fifth
consensus, VCVHQACYGILKV, was taken from the multi-
ple alignment for the plant homeodomain (PHD) type
zinc finger (PROSITE entry PDOC50016). The final motif
was generated from a PSSM for the outer membrane motif
described in Neuwald, et al. [3]. PAM matrices used for
each of these sequences were 10, 100, 200, 20, and 0
respectively, indicating that the second and third motifs
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are more likely to incorporate mutations, and the fifth
motif is 100% conserved from the consensus sequence.
Note that since the sixth motif is PSSM-generated, it does

not have an associated PAM matrix. Conservation of the
motifs within each sequence was set to 100%, 80%,
100%, 50%, 70%, and 75% respectively, indicating the

Initial input screen for rMotifGenFigure 1
Initial input screen for rMotifGen. This screen illustrates an example where the user will be generating amino acid 
sequences. The default background frequencies presented to the user are based upon the observed residue frequencies in the 
SWISS-PROT database release 52.0 [29].
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likelihood that each sequence contains each of the six
motifs. The resulting motifs generated are listed in Table
1, and their locations are listed in Table 2. Complete
sequences are available [see Additional file 1].

rMotifGen can be used to create benchmark data sets for
motif detection algorithms. In order to demonstrate this
capability, the test set described above was used as input
into the MEME web server [34] and the Gibbs motif sam-
pler [35]. Results for MEME and Gibbs sampler are found
in Table 2.

MEME had the parameters set for zero or one occurrence
per sequence, and a total of six motifs to detect. MEME
was able to locate the exact positions for each occurrence
of motif one, four, and five while finding all but one
occurrence of motif six (Table 2). However, MEME was
unable to locate motifs two and three in any part. Since
MEME was forced to find a total of six motifs, two addi-
tional patterns were found where each pattern had two
occurrences (results not shown) [see Additional file 2].

For the Gibbs sampler, the number of motif patterns was
set to six with motif widths of 10, 10, 12, 17, 19, and 11.
The estimated site count for each motif type was set to 10.

The remaining parameters were left at the default values.
As Table 2 indicates, the Gibbs sampler was not as effec-
tive at locating the motif sites as MEME. Gibbs found the
exact locations for the motifs one and four, while find the
locations with a three base offset for motif five. Gibbs was
unable to find the occurrences for the motif patterns two,
three and six. An additional three motif patterns were
found (results not shown – see supplementary materials)
which do not correspond to either the MEME patterns or
the expected motif patterns. Results for the Gibbs sampler
are provided [see Additional file 3].

Discussion
rMotifGen provides an effective method for constructing
motifs in DNA and amino acid sequences according to
substitution matrices and PSSMs which have biological
relevance. One of the limitations to the current approach,
however, is that the background residues are randomly
chosen using a Bernoulli methodology. The implementa-
tion generates the random background sequences such
that each of the sequences generated has the same residue
distribution. A more biologically relevant approach
would be to assign each individual background sequence
a distribution which takes into account a higher order
sequence organization. A model (such as a hidden

Motif description pageFigure 2
Motif description page. In this screen, the user will be allowed to specify the parameters for each motif, including a descrip-
tion of whether it is random or user-defined, what sort of conservation each instance will have to the consensus, what per-
centage of sequences will have the motif, and the background composition (if the motif is randomly generated).
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Markov model approach) which takes into account factors
such as dinucleotide and hexamer frequencies for DNA
sequences would provide sequences more likely to occur
in nature. rMotifGen does not incorporate these higher

order methodologies for the background sequences at this
point in time in order to maintain a reasonable number of
parameters (each background sequence could potentially
belong to a unique organism with a different underlying

Table 1: Motifs for randomly generated sequences

Seq. # Motif 1 Motif 2 Motif 3 Motif 4 Motif 5 Motif 6

CONS. LYDVAEYAGVSYQTVSRVV FAIVFVVAIA KDKNPRNDRR DYYISPQGKKFRSKPQ VCVHQACYGILKV PSSM

1 LYDVANYAGVNYQTVPRVV YVICFVIQIK GNKDMRAQRQ DYYISPQGKKFRSKPQ -- DAHYVRVNYRF
2 LYDVAEYAGVSYQTVSRTV YSLPYCLTKF KNNFLPEDRK GYYISPHGKKFRSKHQ VCVHQACYGILKV KTFYLGAGYRY
3 LYDVAEYAGVSYQTVSRVV YALGGLIESA NDRSNRGKPW --- VCVHQACYGILKV KAVYAGLGVKF
4 LYDVADYAGVSYQAVSRVV FDAGFVLPAT HGTKSDKTIR --- VCVHQACYGILKV DQVTLGAGMDF
5 LYNVAEYIGVSYNTVSRVV AQIVVCLAGG KEKIPKEVRK --- --- DQYHASAGYKF
6 LYDVAEYAGVSYQTVSRVV FGIVYVLANA KDEDLRNSRR DFYISAQGKKFRSKPQ VCVHQACYGILKV RNWYVRAGYDY
7 LYDVAEYAGVVYQTVSKVV PSMLLFVEIA KDKNNPNQSS -- VCVHQACYGILKV NAVYIGLGVRY
8 LYDVAEYAGVSYQTVSRVV FFVVFSVVIT RQKNAEHDRR -- VCVHQACYGILKV KTYHVGLGFDY
9 LYDVAEYNGISYEVVSRVV DAIIFANNID MEKNLWDERM DYYISPQGKKFRVNPN VCVHQACYGILKV DAYYARAGVDF
10 LYDIAEYAGVSYQTVSRVV FAMVIGVSIG GKKEPRYEQP DYYIWPKGKKFKSKPQ VCVHQACYGILKV PNYHAGLGLRY

Resulting random sequencesFigure 3
Resulting random sequences. This screen shows the consensus motifs and the resulting random sequences. Each of the 
motif instances can be highlighted and the sequences can be copied or saved to a file.
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model), and since doing so may help create sequences
that are in effect trained for a particular motif detection
approach. Future releases will provide for more intelligent
background sequence modeling.

Conclusion
Detection of short, subtle motif signals within DNA and
amino acid sequences remains a difficult problem due to
the fact that biological signals may not be highly con-
served. Testing of motif detection approaches using
benchmark standards is important. Our solution, rMotif-
Gen, demonstrates that creation of random motif datasets
under certain evolutionary constraints can be used to
determine the limitations of motif detection algorithms.
By providing both GUI and command line versions, rMo-
tifGen should be flexible to suit any desired need, includ-
ing the construction of large scale sets for simulations.

Availability and requirements
rMotifGen can be accessed at: http://bioinformatics.louis
ville.edu/brg/rMotifGen/. Two versions, one providing a
graphical interactive environment, and the other serving
as a more portable command line interface, are available.
In addition, an html form-based interface into the com-
mand line version is available at the above website.

The interactive version was developed using C# within
VisualStudio® 2005 on a Windows® XP system. The GUI
executable is freely available to all users. Microsoft's® .NET
Framework Version 2.0 Redistribution Package (×86) is
required, and can be freely downloaded from http://
www.microsoft.com. It has been tested on a Windows® XP
Professional system, but should also run on any Win-
dows® system using Windows® 98 or later.

Distribution of the command line interface is accom-
plished under the GNU public license for all users. It was

developed using ANSI C++, and should be portable to any
system with an ANSI C++ compiler, such as gnu's g++. It
has been fully tested using g++ 4.0.2 on a system using
SUSE® Linux 10.0.
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American National Standards Institute (ANSI), Bioinfor-
matics Research Group (BRG), expectation-maximization
(EM), graphical user interface (GUI), helix-turn-helix
(HTH), methyl CpG binding domain (MBD), multiple
expectation-maximization for motif elicitation (MEME),
plant homeodomain (PHD), point accepted mutation
(PAM), particle swarm optimization (PSO), position spe-
cific scoring matrix (PSSM)
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Additional material

Additional file 1
rMotifGen-SAMPLE_AA.fa. Example randomly generated amino acid 
sequence file used in the manuscript.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-292-S1.fa]

Additional file 2
Meme-21932.results.html. Resulting motif detection for the random 
sequences using MEME.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-292-S2.html]

Table 2: Actual and predicted motif begin locations

SEQ. NUMBER Motif 1 Motif 2 Motif 3 Motif 4 Motif 5 Motif 6

R M G R M G R M G R M G R M G R M G

1 85 85 85 263 -- -- 164 -- -- 33 33 33 -- -- -- 215 215 --
2 290 290 290 129 -- -- 106 -- -- 36 36 36 461 461 464 195 195 --
3 332 332 332 286 -- -- 203 -- -- -- -- -- 354 354 357 93 93 --
4 20 20 20 112 -- -- 74 -- -- -- -- -- 378 378 381 239 239 --
5 150 150 150 26 -- -- 133 -- -- -- -- -- -- -- -- 170 170 --
6 187 187 187 17 -- -- 455 -- -- 247 247 247 473 473 476 413 291 --
7 334 334 334 461 -- -- 488 -- -- -- -- -- 394 394 397 80 80 --
8 259 259 259 396 -- -- 163 -- -- -- -- -- 70 70 73 445 445 --
9 197 197 197 330 -- -- 480 -- -- 443 443 443 314 314 317 397 397 --
10 359 359 359 51 -- -- 337 -- -- 108 108 108 31 31 34 141 141 --

R: rMotifGen randomly assigned motifs; M: MEME assigned motifs; G: Gibbs Sampler assigned motifs. Each of the start positions have been modified 
so that each sequence begins at 0, to comply with rMotifGen. Sites incorrectly found are listed in a bold, italic font. This includes the motif 5 
positions found by the Gibbs Sampler which are offset by three bases
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