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Abstract

Background: The number of algorithms available to predict ligand-protein interactions is large
and ever-increasing. The number of test cases used to validate these methods is usually small and
problem dependent. Recently, several databases have been released for further understanding of
protein-ligand interactions, having the Protein Data Bank as backend support. Nevertheless, it
appears to be difficult to test docking methods on a large variety of complexes. In this paper we
report the development of a new database of protein-ligand complexes tailored for testing of
docking algorithms.

Methods: Using a new definition of molecular contact, small ligands contained in the 2005 PDB
edition were identified and processed. The database was enriched in molecular properties. In
particular, an automated typing of ligand atoms was performed. A filtering procedure was applied
to select a non-redundant dataset of complexes. Data mining was performed to obtain information
on the frequencies of different types of atomic contacts. Docking simulations were run with the
program DOCK.

Results: We compiled a large database of small ligand-protein complexes, enriched with different
calculated properties, that currently contains more than 6000 non-redundant structures. As an
example to demonstrate the value of the new database, we derived a new set of chemical matching
rules to be used in the context of the program DOCK, based on contact frequencies between
ligand atoms and points representing the protein surface, and proved their enhanced efficiency with
respect to the default set of rules included in that program.

Conclusion: The new database constitutes a valuable resource for the development of
knowledge-based docking algorithms and for testing docking programs on large sets of protein-
ligand complexes. The new chemical matching rules proposed in this work significantly increase the
success rate in DOCKing simulations. The database developed in this work is available at http://

cimlcsext.cim.sld.cu:8080/screeningbrowser/.
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Background

Improving our understanding of protein-ligand interac-
tions at the molecular level plays an important role in the
discovery process of new drug candidates. The Protein
Data Bank (PDB) [1] is the main source of structural infor-
mation on protein-ligand complexes. It is constantly
being improved through the addition of on-line tools and
links to complementary datasets.

Current virtual screening methodologies for in-silico dis-
covery process of new leads rely on databases of chemical
complexes with structural information and also chemical,
physical and biological properties, when available. Exam-
ples of these datasets are the Cambridge Structural Data-
base [2], NCI [3], ZINC [4] and ChemStar [5]. These
databases, however, do not provide clues on the ways
these molecules may interact with proteins or other mac-
romolecules, which is important for the task of develop-
ing knowledge-based docking algorithms.

Several databases containing information on ligand mol-
ecules found in the PDB, and on protein-ligand interac-
tions (e.g. PDB-ligand [6], PLD [7], PDBsum [8], Hic-Up
[9], Relibase [10,11] and MOAD [12]) have been released.
Furthermore, a few databases collecting data on protein
binding sites found in the PDB have been recently
reported [13-16]. Creative data mining may provide use-
ful knowledge on protein-ligand interactions from these
databases, with potential use in the design of docking
algorithms or scoring functions. Testing of docking algo-
rithms, on the other hand, requires a particular processing
of both the protein and ligand structures, so that the given
docking program has all the data it needs (and in the
required format) to perform the simulation. The above
mentioned databases were not intended for this purpose.

The number of algorithms available to assess and ration-
alize protein-ligand interactions has increased during the
last years [17,18], but the number of test cases used to val-
idate methods keeps being small (from tens to a few hun-
dreds of complexes) and problem dependent [19]. A few
datasets have been developed for testing the performance
of some of the most popular docking programs. One of
them is the GOLD validation test set [20], comprising 100
different complexes extracted from the Protein Data Bank.
FlexX-200 [21] is also a dataset consisting of 200 protein-
ligand complexes selected and modified by hand from
original PDB files. The developers of the DOCK program
[22] also compiled a small dataset of 49 small molecules
in complex with a variety of macromolecular targets [23].
In these datasets, the structural and chemical information
is stored in the right format used by the corresponding
programs.
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In this work, we report the compilation of a large set of
protein-ligand complexes extracted from the Protein Data
Bank, which is tailored both for extracting knowledge on
these interactions via data mining and for large scale test-
ing of docking algorithms. The term "large scale" means
the use of thousands of protein-ligand complexes that
were identified in the PDB and processed in an automatic
manner. A key element in the extraction procedure was
the use of our own definition of molecular contact to
identify protein-ligand interactions at the atomic level.
The database of protein-ligand complexes was further
enriched in molecular properties such as atom types,
atomic charges, etc, needed for the scoring functions of
many of the docking programs.

In the final part of this paper, we demonstrate how our
new database can be a valuable resource in the process of
developing knowledge-based docking algorithms. We car-
ried out a research exercise that started with data mining
of protein-ligand interatomic interactions, leading then to
a modification of the matching rules of the chemical filter
used by the program DOCK to speed up the generation of
ligand orientations in the binding site, and finished with
testing the new rules and comparing them with the old
ones by running docking simulations for several hundreds
of protein-ligand complexes.

Methods

Identifying small ligands in complex with proteins in the
PDB

Determining whether a PDB entry contains a non-cova-
lent complex of a protein with one or several small mole-
cules (ligands) may be a complicated task for several
reasons. First, there is not explicit information in the PDB
entries that would make clear which records contain
atomic data belonging to each small molecule, if present
in the structure. Usually, small ligands are listed within
HETATM records, but this doesn't apply to amino acids or
nucleic acids, which may also constitute small ligands.
Furthermore, some small molecules are a mixture of
amino acids and/or nucleic acids with other chemical
groups, being listed both under HETATM and ATOM
records. On the other hand, some of the small molecules
present in the PDB, especially many sugars, are covalently
bound to proteins, being therefore not of interest for the
purpose of this work. The solution given here to these
problems was to analyse the atomic connectivity within a
PDB entry.

We wrote our own program (called 'complex_info') to
process the whole PDB. For peptides and nucleotide
chains, we set a limit of eight and four residues, respec-
tively, to consider them as ligands. First, all the amino
acid and/or nucleotide chains present in an entry were
identified. Entries containing nucleotide chains having
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more than four residues were not further analysed. Water
molecules and metal ions were stored apart. Hydrogen
atoms, if present, were deleted (and constructed later for
ligands, see below).

The remaining heteroatoms, as well as the small peptides
and nucleotide chains were all processed together and
grouped by their connectivity into fragments (molecules).
Two atoms were considered to be covalently bonded if the
distance between them was less than 2.1 A. This number
was selected to cover the larger covalent distances we
found in the PDB (between sulphur atoms: 2 - 2.05 A).
Fragments having less than 10 atoms were removed, as
well as those fragments that were covalently bonded to a
protein chain.

Ligands were classified in seven categories according to
their chemical nature: peptide, nucleotide, hetero, pep-
tide-nucleotide, peptide-hetero, nucleotide-hetero and
peptide-nucleotide-hetero. Ligand residues listed under
the ATOM keyword in the PDB files were identified as
peptide or nucleotide by checking their residue names.
Every residue listed under the HETATM keyword was
included in the broad category of 'hetero'.

Computing protein-ligand contacts

Atomic contacts between two molecules are typically
determined based on a distance criterion. Thus, in several
reports a contact between two atoms is registered if the
distance between them is below a fixed cut-off value. For
example, in Relibase [10,11], a value of 7 A was used. In a
previous work, we used a cut-off of 4.3 A to collect pro-
tein-small ligand interactions [24]. In a stricter approach,
a contact is postulated if the distance between the two
atoms is not larger than the sum of their van der Waals
radii, plus certain tolerance value (generally in the range
of 0.5-1.0A) [7,10,11,24].

In this work, we introduced a new definition of atomic
contact that takes into account a possible screening of the
direct interaction between two atoms, produced by a third
atom that is covalently bonded to one of them, as illus-
trated in Figure 1A. The oxygen O, and the carbon atom
represented in this figure would be considered as being in
contact if a purely distance criterion is used. Following our
definition, however, they are not contacting each other.

Our definition of atomic contact takes also into account a
distance criterion, but with an additional refinement. In
our approach, the Connolly's molecular surfaces [25] of
the two interacting molecules are employed to determine
whether two atoms are in direct contact. The surfaces were
calculated using a dot density of 4 A2 and a radius of 1.4
A for the rolling probe. The van der Waals atomic radii
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were taken (with just a slight rounding) from the AMBER
united-atom force field [26].

So, two atoms belonging to different molecules are said to
be in contact if: a) the distance between them is not
greater than the sum of their van der Waals radii plus a tol-
erance distance (0.5 A), and b) if both atoms have associ-
ated surface points located around a line joining their
centres, and covering at least an area of 1.5 A2 for each of
the two atoms (see Figure 1B).

Following this definition, the program complex_info
computes, for each protein-ligand complex, a list of
atomic contacts, as well as a more concise list of the pro-
tein residues that make contact with the ligand.

Interface water molecules and ions. Buried surfaces

The program complex_info also determines which of the
water molecules, if present in a PDB entry, are located at a
protein-ligand interface. In addition, it gives the total sur-
face area of the ligand and the surface areas buried on the
ligand and on the protein as a result of the interaction.
This analysis was based on the calculated Connolly's sur-
faces, since his program MS DOT [25] specifies in the out-
put file which of the surface dots (and their associated
areas) are buried by other atoms surrounding the mole-
cule of interest.

For each water oxygen that is close to the ligand (distance
< 3.5 A), its Connolly surface was computed taking into
account all the surrounding atoms within a cut-off dis-
tance of 8 A. Water molecules having > 90% of their sur-
face buried by ligand and protein atoms were considered
as interface water. The same type of analysis was per-
formed for any metal ion present in the structure.

Figure |

lllustration of the new definition of intermolecular atomic
contact. A) Distance criterion: all atoms within a threshold
distance are in contact. According to this, the oxygen O, and
the carbon are considered as being in contact. B) Surface cri-
terion: two atoms are in contact only if their corresponding
surfaces are close enough across an area of at least 1.5 A2
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The calculation of the ligand surface buried by the protein
was performed including the interface water molecules
and ions as if they were part of the protein. Conversely,
the interface water and ions were considered as extensions
of the ligand surface to compute the area of the protein
surface buried by the ligand.

Typing protein and ligand atoms

When studying molecular interfaces it is important to
consider the nature of the atomic interactions, for exam-
ple, the presence of hydrogen bonds, salt bridges or
hydrophobic contacts. For this purpose, it is necessary to
know what chemical properties the atoms at the molecu-
lar interface have. This information, however, is not
included in a PDB file. In particular, the absence of hydro-
gen atoms in most PDB structures makes it difficult in
many cases to determine whether a polar atom can be a
donor or an acceptor of a hydrogen bond. In order to
overcome these problems, we implemented a procedure
for automatic atom type assignment.

For ligand atoms, a few atom types were defined on top of
the chemical elements for nitrogen, oxygen and carbon
(see Table 1). Nitrogen atoms were classified as donor
(N_d), acceptor (N_a), positive (N_p), aromatic (N_r) or
"hydroxyl" (N_h, see below); oxygen atoms as acceptor
(O_a), negative (O_n) or hydroxyl (O_h); and carbons
were divided into aliphatic (C_l) and aromatic (C_r). Sim-
ilar classifications have been reported elsewhere, for
example, the one made by Abola et al. [27] for automated
analysis of interatomic contacts in proteins.
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Protein atoms were classified according to seven catego-
ries: donor, positive, acceptor, negative, hydroxyl, hydro-
phobic and aromatic, without indicating explicitly the
chemical element. This classification matches the defini-
tion of chemical types for the "attached point" representa-
tion of protein binding sites, as described in [24],
designed to be used with the program DOCK. The assign-
ment of atom types for the protein receptors was per-
formed simply from the standard PDB atom names for
amino acids. Aspartic and glutamic acids were considered
as not protonated, and therefore their carboxylic oxygens
were classified as negative. The delta and epsilon nitro-
gens of histidine were classified as "hydroxyl", as a way to
leave undefined their protonation state.

For ligand molecules, atom typing was carried out using
the well-known program Babel-1.6 [28], with a few mod-
ifications. One of the changes made in the program had
the purpose of translating its internal atom types into the
newly defined types. Other changes were introduced to
correct some errors that we obtained when processing a
group of test molecules, as explained below.

Babel-1.6 uses bond distances, bond angles and torsion
angles to assign atom types, using methods similar to
those described in [29,30]. After determining the chemi-
cal element and hybridization corresponding to each
atom, hydrogens are placed on atoms to fill up the empty
valences. The algorithms implemented in Babel work fine
when the geometry of the molecule does not deviate
much from the ideal values. The small molecules found in

Table I: Atom types defined in this work and their correspondence with MOL2 types

Atom type Description MOL2 types
C Aliphatic carbon — sp3 hybridized C.l,C2,C3
C.r Aromatic carbon — sp2 hybridized, included in  C.ar, C.cat, C.2
aromatic rings and in guanidine or carboxyl
groups
N_+ Positive nitrogen — sp2 or sp3 hybridized, N.4, N.pI3
protonated, forming a group with a positive
charge (e.g. guanidine group)
N_d Nitrogen donor of a hydrogen bond — sp2 N.2, N.ar, N.am
hybridized, protonated (e.g. amine group)
N_a Nitrogen acceptor of hydrogen bond —notall  N.2, N.ar, N.3, N.1
valences covered by heavy atoms, not
protonated
N_r Aromatic nitrogen — sp2 hybridized, with all its  N.ar, N.pI3

valences covered by heavy atoms
N_h "Hydroxyl" nitrogen in histidines — sp2 N.2
hybridized, undefined protonation

O_a Oxygen acceptor of hydrogen bond — not 0.2,03
protonated

O_- Negative oxygen — negatively charged (e.g. O.co2
nitro group, carboxyl group)

O_h Hydroxyl oxygen — protonated (OH group) 0.2,03
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the PDB, however, often show large deviations from opti-
mal bond distances and angles.

To cope as much as possible with these problems, we
modified some of the parameters coded in Babel-1.6. Fur-
thermore, we added a criterion based on measuring
improper dihedral angles (the dihedral angle determined
by an atom and three of its connected atoms) to differen-
tiate between sp2 and sp3 hybridizations. If an atom has
three connections to heavy atoms and the absolute
improper dihedral is smaller than 18 degrees, then it is
sp2 hybridized (18 degrees is halfway between the opti-
mal value for a sp2 atom and that of a sp3 atom [29,30]).
New cut-off values for some geometric parameters were
obtained by analysing a group of molecules with sul-
phate, phosphate and carboxyl groups (see Table 2).

The assignment of 'donor' and 'acceptor' atom types per-
formed by Babel 1.6 for some nitrogen atoms, which
depends on their protonation, was not always correct.
This kind of problem appeared mainly with heterocyclic
structures. To improve the capabilities of Babel to proto-
nate correctly these structures, we included some empiri-
cal rules generally accepted in organic chemistry [31].

Finally, the protonation of nitrogen atoms in ligand ring
structures was checked against the crystal structure of the
corresponding protein-ligand complex. The influence of
every polar protein atom contacting with a ring nitrogen
in a ligand was evaluated. This evaluation took into
account the distances between the nitrogen and the pro-
tein atoms and the angle formed by a possible hydrogen
bond donated by the ligand nitrogen. The influence is
positive if hydrogen placement favours the formation of a
hydrogen bond, but is negative if the added hydrogen is
facing a hydrogen from a donor atom in the protein, as
illustrated in Figure 2. The final decision on whether to
keep or remove the hydrogen atom from the ring nitrogen
is taken after weighting all the influences from the neigh-
bouring polar atoms.

http://www.biomedcentral.com/1471-2105/8/310
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Figure 2

Protonation of the ligand molecule by analysing the protein
environment. Protonation of nitrogen atom N9 of molecule
ADE339 depends on three parameters: the distance from lig-
and atom N9 to protein atom NHI of ARG163, and the
angles H-N9-NH 1 and HI-NHI-NS9. If hydrogen atoms H
and H1 fall within a cone described by a solid angle of 60
degrees, then the hydrogen atom attached to the ligand
ADE339 is removed (as indicated with a red X), even though
the atom OE2 of GLUI60 is in a favourable position to
accept a hydrogen bond.

Once a molecule is protonated Babel 1.6 can also assign
partial charges to atoms, using the Gasteiger algorithm
[32]. The information on atom types, hybridization and
partial charges was stored in a separate file for each ligand.

Testing the atom typing with reference datasets

Two reference datasets were used to test the typing of lig-
and atoms with the modified Babel-1.6 program: the
DOCK 4.0 dataset [23], consisting of 49 small molecules
randomly selected from the Current Medicinal Chemicals
(CMC) molecular database (MDL Information Systems,
San Leandro, CA), which was used for testing the imple-
mentation of the empirical rules to protonate nitrogen
atoms in heterocyclic structures, and the FlexX-200 valida-

Table 2: Statistics from the Babel 1.6 runs on the DOCK 4.0 dataset to test the protonation

Chemical element Number of atoms Errors * %
Nitrogen 85 41 48
Oxygen 128 0 0
Carbon 871 | 0.1
Others 30 0 0
Total 1114 42 3.7

*) Number of atoms carrying a different protonation, as compared with the original dataset files.
Errors in the protonation resulted either from an incorrect assignment of the hybridization or from an incorrect filling of a valence of a sp2 nitrogen

in a ring structure.
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tion dataset [21], which consists of 200 protein-ligand
complexes selected from the PDB. For each complex in the
FlexX-200 dataset, an active site file for the proteins as well
as two MOL2 files for the ligand (one file with the crystal
geometry and another file with a protonated, energy min-
imized structure) are provided. The FlexX-200 dataset was
used to check the performance of the empirical rules
introduced in Babel to protonate nitrogen atoms and the
final refinement of the protonation against the structures
of the protein-ligand complexes. To perform these tests,
hydrogen atoms were removed from the original files,
which were converted from the MOL2 to the PDB format.
The obtained PDB files were then used as input to the
Babel program.

Filtering to create a "non-redundant dataset

A filtering procedure was applied to the collected protein-
ligand complexes aiming to create a non-redundant data-
set for data mining. The term "non-redundant”, for this
particular work, means that the dataset should not con-
tain entries for which both the structures of the ligand and
the protein-binding site are similar. Following this princi-
ple, the comparison of the complexes was focused mainly
on the protein amino acids and the ligand atoms that are
in contact with each other. Thus, we compared the ligand
structures and the protein-ligand contact tables. The com-
parison took into account the atom types previously
assigned.

First, the filtering procedure was performed within each
PDB entry. Afterwards, all pairs of protein-ligand com-
plexes obtained after the first round were compared
against each other. If both the ligand structures and the
contact tables for two complexes were similar, the com-
plex with lower resolution was discarded.

Comparison of the ligand structures was centred on the
atoms contacting the protein. From the list of protein-lig-
and contacts computed by our contact definition, a graph
representation of the interaction is built to find the molec-
ular similarity between two structures. The maximum
common sub-graph (MCS) between two structures is used
to express molecular similarity. From the MCS, an analysis
of the protein-binding site is carried out to eliminate
redundancies. Since finding the MCS is a NP-complete
graph-matching problem, it is computationally expensive
to locate an optimal mapping in a realistic time frame
without the application of heuristics. Several approaches
have been reported to tackle this kind of problem. Here,
our heuristic to find MCS starts with a clique detection
algorithm, as described in [33], which constrains the
match using our previous atom type definition and suc-
cessively adds small subgraphs of both ligands. The simi-
larity of the ligands in terms of three-dimensional
structure is also taken into account by checking the root
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mean square deviation (RMSD) of the MCS for every
newly included subgraph.

Data mining study on interactions between atom types
The assignment of atom types carried out in this work,
together with all the structural information stored in the
database, allows performing different types of studies
regarding the chemical nature of the protein-ligand inter-
actions. The extracted knowledge may have important
applications, for example, in the design of docking algo-
rithms. In this paper, we explored the data mining possi-
bilities given by our new database of protein-ligand
complexes by compiling statistics about the frequencies of
interaction between different protein and ligand atom
types, and using the obtained data to tune the chemical
matching filter implemented in the well known program
DOCK [34].

In this study we introduced the term "relative contact fre-
quency" (FCry) for different pairs of ligand-protein atom
types, e.g. N_d-acceptor, which was defined as follows:

FCr;; = k Cij/(p; p;), where Cij is the number of contacts
counted for ligand atom type "i" and protein atom type
"j", divided by the total number of computed ligand-pro-
tein contacts; p; and p; are the proportions in which atom
types i and j, respectively, are found in the database; and
k is a normalization constant, computed so that the sum
of the frequencies by all protein-ligand pairs yields one.

Simulations using the program DOCK with a few
modifications

To test the performance of different versions of the chem-
ical filter implemented in the program DOCK, we ran a
series of simulations with this program for a selected set
of hundreds of protein-ligand complexes.

The algorithm implemented in the program DOCK uses a
representation of the binding site based on points
("spheres"), which are intended to occupy positions
favourable for ligand atoms to be placed there. Then, sets
of ligand atoms are matched onto sets of spheres to gen-
erate different orientations of the ligand [22]. A chemical
filter may be used in this process to speed up the calcula-
tions, by discarding matches that do not fulfil a defined
set of chemical complementarity, or matching rules [34].
In order to use this chemical filter, chemical labels (col-
ours) must be assigned both to site points and ligand
atoms.

Modifying the chemical filter that comes by default with
the program DOCK was easily done by just replacing the
original input files containing atom type definitions and
matching rules.
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To create a negative image of the active site, we used our
own method for generating binding site points, called
"attached points" (ATPTS) [24]. In this approach, the site
points are generated in an automated way from templates
constructed for each amino acid type, and chemical labels
are assigned to these points also in an automatic fashion.
Each ATPTS point is linked to a protein atom (its "parent
atom") and its label or colour carries chemical informa-
tion on this atom in its particular chemical context. Fur-
thermore, each ATPTS point is located at a distance from
its parent atom which is optimal for an intermolecular
atomic interaction.

ATPTS binding site representations were generated in a
totally automated way, following the algorithm described
in [24]. The selection of the protein residues that form the
binding site was made on the basis of their proximity to
the ligand in the crystal complex: every protein residue
within a distance of 5 A from at least one of the ligand
atoms was included. Bump distances of 2.2 and 2.8 A were
used for polar and nonpolar protein atoms, respectively.
A merging distance of 1 A was used to fuse points of the
same colour that were too close to each other.

Since we were interested only in the functioning of the ori-
entation part of the program DOCK with different ver-
sions of the chemical filter, we did not perform any
scoring of the generated ligand geometries. Instead, we
ran "truncated" docking simulations - the code of the pro-
gram was slightly modified to output to a file the RMSD
value, with respect to the crystal structure geometry, of
every generated ligand orientation, and then skip the scor-
ing routines. The docking simulations were carried out
also in automated way, using simple scripts.

Results and discussion

We processed the whole PDB release of August 2005
(32069 files) using our program 'complex_info' in order
to detect ligand molecules bound to proteins, extract a
variety of information on these protein-ligand complexes
and calculate several atomic and molecular properties. As
result, 22513 complexes from 10694 files were extracted
and analysed.

Typing of ligand atoms

One important part of the calculations performed on the
extracted protein-ligand complexes was the assignment of
atom types to both the protein and the ligand. We defined
a simple set of atom types, as described in the Methods
section (Table 1), aiming mainly at classifying the molec-
ular interactions in a few elementary types such as hydro-
phobic contacts and hydrogen bonding. We decided to
employ the popular program Babel-1.6 to perform the
typing of ligand atoms. One important reason behind this
decision was the possibility of modifying the code to
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implement our new atom type definitions, and making
other changes as necessary.

Typing of protein atoms was easily done from the PDB
atom names. Typing of ligand atoms, however, presented
some difficulties due mainly to the imperfect stereo chem-
istry of ligand molecules extracted from the PDB and
imprecisions in the protonation of nitrogen atoms.

First we tested the performance of the original Babel-1.6
in protonating correctly polar atoms and assigning correct
atom types on the DOCK 4.0 dataset. As result, 32 out of
49 molecules were reported as having errors related
mainly to nitrogen atoms in heterocyclic structures. All
these errors were eliminated after introducing the modifi-
cations that were explained in the Methods section. For
example, in the Biotin molecule (see Figure 3A) the atom
C2, which is sp3-hybridized, has an average bond angle
higher than the cut-off value set in the Babel-1.6 code for
this type of hybridization. For this reason, it was assigned
an incorrect sp2 hybridization. By checking the improper
dihedral angle formed by C2 and its connected atoms C1,
C6 and N5, a correct sp3 hybridization was assigned. For
the Moxiraprine molecule (see Figure 3B), a sp2 hybridiza-
tion was correctly assigned by Babel to atoms N4 and N8,
but the protonation of these atoms was wrong because
Babel tries to fill up all empty valences with hydrogens. By
adding an empirical rule stating that a nitrogen in a six-
member ring with all its atoms sp2-hybridized is not pro-
tonated, the problem was solved. Table 2 shows some sta-
tistics from the test runs on the DOCK 4.0 dataset.

In a second step, the modified Babel-1.6 was tested on the
FlexX-200 dataset, using the ligand structures with their
geometries extracted directly from the PDB. Some of these
molecules had atoms that in the original PDB files are cov-
alently bonded to the protein, and consequently had a
modified protonation. These atoms were not taken into
account. Table 3 shows the obtained results.

Table 3: Errors in atom typing/protonation process with FlexX-
200 dataset, for the original and modified versions of the Babel
1.6 program

Chemical Number Babel (original) Babel
element of atoms (modified)

Error %  Error %

s s
Nitrogen 431 54 12.5 34 7.8
Oxygen 1036 4 0.3 0 0
Carbon 2979 40 1.3 0 0
Others 120 I 0.8 0 0
Total 4566 99 22 34 0.7
Page 7 of 15
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Figure 3

Examples of molecules that were correctly protonated by
the modified Babel program. A) Biotin. The atom C2 was
correctly typed as sp3, and then a hydrogen was added to fill
the empty valence; B) Moxiraprine. The hydrogen atoms
marked with red X's were removed by applying an empirical
rule that allows correct protonation of this type of ring.

The final checking of the protonation performed against
the crystal structures of the protein-ligand complexes
allowed to correct some of the remaining errors in the pro-
tonation of ligand nitrogen atoms, but only for those
atoms in contact with the protein receptors. Therefore,
some errors still remained for nitrogen atoms that are out-
side the protein-ligand contact tables. Similar problems
have been reported for other atom-typing programs [35]).

Selecting a non-redundant set of protein-ligand complexes
Once the atom typing was performed for all the extracted
complexes, a filtering procedure was carried out with the
purpose of creating a non-redundant dataset, following
the principles delineated in the Methods section. First,
obvious redundancies such as repeated complexes at dif-
ferent resolutions and repeated copies of the same ligand
within an entry were eliminated. In most cases, these cop-
ies are found for proteins having several identical binding
sites, for instance, the cholera toxin B pentamer (entry
3chb), or for entries containing copies of the same com-
plex in the asymmetric unit of the crystal. In either case,
the protein-ligand contact patterns displayed by the differ-
ent ligand copies are almost identical.

http://www.biomedcentral.com/1471-2105/8/310

On the other hand, there are several small groups of
entries containing the same protein, but in complex with
different ligands, or mutants of the same protein in com-
plex with the same or different ligands. We did not elimi-
nate any of these complexes a priori because each of them
might contribute different protein-ligand contacts. For
instance, different versions of the same protein very often
contain mutations in the binding site region, which most
likely results in distinct new contacts with the ligand.

After a first filtering round where copies of the same lig-
and within the same PDB entry were removed, 12360
complexes out of 22513 remained. Afterward, a second
filtering round was carried out where all complexes were
compared against each other. As result, 6586 complexes
were obtained.

Some statistics extracted from the collected protein-ligand
complexes

All information about extracted protein-ligand complexes
was stored in a SQL server database, as illustrated in Figure
4. The implementation of the database in a SQL server
makes it easy to perform different types of queries. Figures
5 and 6 show, as examples, some collected statistics from
the database, using histograms and correlation plots.
These statistics were collected for the selected non-redun-
dant set. Figure 5A shows the distribution of ligand sizes
expressed as the number of heavy atoms. As the number
of complexes where the ligand has more than 100 atoms
is very small, only ligands smaller than 100 atoms are
shown in the histograms.

As shown in Figure 5B, in most of the complexes of the
database the ligand has more than 60% of its surface in
contact (buried) with the protein. Fifteen protein residues
as average are contacting ligand atoms (Figure 5C), with a
contact area smaller than 1000 A2 for all complexes. The
buried ligand surface is always slightly smaller than the
corresponding buried protein surface because the ligand is
embedded within the protein site and because of the pres-
ence, in many cases, of water molecules at the interface.
Figure 5D shows the important role that water molecules
play in many cases, serving as bridges in protein-ligand
interactions. About 5500 complexes out from the selected
6586 contain interface waters, with several hundreds of
these complexes containing five or more. There are a few
complexes with more than 20 water molecules at the pro-
tein-ligand interface.

Some of these properties are correlated, for example, Fig-
ure 6A shows that the higher the ligand size the higher the
number of ligand atoms making contact with the protein.
However, there is no correlation between the fraction of
ligand surface buried by the protein and the ligand size, as
shown in Figure 6B. Most of the smallest ligands are
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Implementation of the database in a SQL Server.
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almost or completely embedded in the protein, but there
are also many of them that make contact with only a frac-
tion of their surfaces. For larger ligands (> 50 heavy
atoms), in most cases a big part of the molecule is outside
the binding site. Figure 6C shows that there is no correla-
tion between the number of water molecules at the pro-
tein-ligand interface and the buried ligand area.

Also by doing simple queries to the database, it is possible
to know how the different atom types defined in this work
are represented in the PDB ligands, and their ratio of par-
ticipation in contacts with the protein receptors. Table 4
shows these results for the selected non-redundant set.
Nitrogen and oxygen atoms in ligand molecules have a
higher ratio of contacts with proteins than carbon atoms,
although the sp2-hybridized "aromatic nitrogens" (N_r)
have a low contact ratio, due to the fact that their three

Table 4: Number of ligand atoms and number of contacts with protein amino acids by ligand atom type, extracted from the non-

redundant set selected from the database

Atom Type Number of atoms (Na) Contacts (C) C/Na
Cl 51223 23891 0.466
C.r 25287 12000 0.475
N_+ 1633 1061 0.650
N_d 6257 4031 0.644
N_a 4722 3090 0.654
N_r 2448 426 0.174
O_a 15286 8272 0.541
O._- 12503 9277 0.742
O_h 9939 6893 0.694
Others * 4928 - -
Total 129298 68941 0.533
*) Atoms corresponding to chemical elements other than C, O or N.
T) The total values do not include the unclassified atoms ("others")
Page 9 of 15
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Figure 5

Examples of statistical data extracted from the database. A)
Distribution of ligand size; B) Percent of ligand surface buried
by the protein; C) Number of protein residues per complex
that contact the ligand molecule; D) Number of water mole-
cules at the protein-ligand interface.

valences are occupied by heavy atoms that screen most
part of their atomic surface. Negatively charged oxygens
have the highest ratio of interaction (~75%).

http://www.biomedcentral.com/1471-2105/8/310

Data mining in the database: Application in docking

We further performed a series of data mining and docking
simulations, in order to show the potentialities of our
database in terms of extracting useful data that could be
incorporated into knowledge-based docking algorithms,
and testing these algorithms using a large number of pro-
tein-ligand complexes. For this purpose we used two dif-
ferent non-redundant data sets compiled from the
database. One of them, called PDB2003 and containing
4243 complexes, was obtained from the complexes
deposited in the PDB before March 2003, using the filter-
ing procedure explained in the Methods section, while the
second dataset, called PDB2005 and having 2931 com-
plexes, was obtained from the rest of the structures, up to
August 2005. PDB2003 was used to derive statistics on
protein-ligand interactions by atom type, whereas
PDB2005 was employed in testing newly designed chem-
ical matching rules, as described below.

Protein-ligand interactions by atom type

We further queried the database to determine the number
of interatomic contacts by both ligand and protein atom
types. Table 5 collects the results from these queries. As
shown in this table, hydrophobic contacts between car-
bon atoms account for most of the collected interactions,
while some strong interactions such as those between a
positively charged nitrogen and a negatively charged oxy-
gen are less represented. These results, obviously, are a
direct consequence of the large differences among atom
type populations in the database.

We then defined what we called "relative contact frequen-
cies" (FCr) for ligand-protein atom type pairs, aiming at

Table 5: Number of contacts in the database between the defined ligand atom types and protein atom types, as extracted from the

PDB2003 dataset

Ligand atom Number of Number of contacts with protein atom types *

type contacts

ACC NEG DON POS HDX PHO ARM
C 1 1404 600 694 507 473 634 3145 5351
C.r 5900 304 79 171 168 228 1884 3066
N_+ 569 80 263 15 19 57 37 98
N_d 1784 533 406 71 52 159 173 390
N_a 1407 33 23 169 165 150 393 474
N_r 231 43 0 | 2 7 53 125
O_a 3750 229 110 567 754 389 703 998
O_- 5147 307 181 8l8 2009 1313 216 303
O_| 3863 404 1333 473 565 380 275 433
Total 34055 2533 3089 2792 4207 3317 6879 11238

*) Protein atoms types are: acceptor (ACC), negative (NEG), donor (DON), positive (POS), hydroxyl (HDX), hydrophobic (PHO) and aromatic

(ARM).
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Relationships between different variables in the database. A) Number of ligand atoms contacting the protein vs. the ligand size;
B) Percent of ligand surface buried by the protein vs. the ligand size; C) Number of water molecules at the protein-ligand inter-

face vs. the ligand surface buried by the protein.

removing the biases in contact frequencies caused by the
differences in atom type populations. The relative contact
frequencies were obtained by normalising the values dis-
played in Table 5 according to the total number of con-
tacts and the population frequencies of the different
ligand and protein atom types, as explained in the Meth-
ods section. The results of these calculations are shown in
Table 6.

After the performed normalization, it turned out that
atomic interaction pairs formed by a positively charged
nitrogen in the ligand and a negatively charged atom in
the protein (an oxygen atom from the carboxyl group of
asparagine or glutamine) have the highest relative fre-
quency in protein-ligand complexes. In general, positively
charged and hydrogen bond donor nitrogen atoms in lig-
ands have high relative frequencies of interaction with
hydrogen bond acceptors and negatively charged atoms in
the protein. On the other hand, negatively charged oxy-
gens in ligands interact with high relative frequencies with
positively charged nitrogens and hydroxyl oxygens. Lig-
and hydroxyl oxygens are more prompt to donate a
hydrogen bond that accepting one from the protein.

In summary, interactions between charged and polar
atoms have much higher relative frequencies than interac-

tions with or between hydrophobic or aromatic atoms.
This means that when present both in the ligand molecule
and in the protein binding site, nitrogens and oxygens
have a much higher probability of being involved in inter-
actions with the protein than individual carbon atoms.

To reflect these relative contact preferences by atom type
in a discrete way, the interactions were classified into three
categories: highly probable, probable and less probable,
as defined in Table 7. It should be noted that the proba-
bility intervals were chosen ad-hoc, aiming to include
only a very few types of interaction in the "highly proba-
ble" and "probable" categories.

Evaluating chemical complementarity in protein-ligand
complexes

With the aim of making a practical use of the obtained
probabilities of interaction by atom types, we designed a
set of chemical complementarity rules that could be used
as a filter to discard wrong ligand orientations by a dock-
ing program, such as DOCK [34].

As explained in Methods, DOCK uses a representation of
the binding site based on points. Then sets of ligand
atoms are matched onto sets of points to generate differ-
ent orientations of the ligand. A chemical filter imple-
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Table 6: Probabilities of interaction between the ligand atom types and protein atom types

Ligand atom Protein atom types
types
ACC NEG DON POS HDX ALP ARM

C 0.0104 0.0099 0.0080 0.0050 0.0084 0.0201 0.0210
C.r 0.0102 0.0022 0.0052 0.0034 0.0059 0.0233 0.0232
N_+ 0.0279 0.0752 0.0047 0.0040 0.0152 0.0048 0.0077
N_d 0.0593 0.0370 0.0072 0.0035 0.0135 0.0071 0.0098
N_a 0.0047 0.0027 0.0216 0.0140 0.0162 0.0204 0.0151
N_r 0.0369 0.0000 0.0008 0.0010 0.0046 0.0168 0.0242
O_a 0.0121 0.0048 0.0272 0.0240 0.0157 0.0137 0.0119
O_- 0.0118 0.0057 0.0286 0.0466 0.086 0.0031 0.0026
0] 0.0207 0.0561 0.0220 0.0175 0.0149 0.0052 0.0050

mented in the program helps discarding matches that do
not fulfil a defined set of chemical (or matching) rules,
thus speeding up the calculations.

Here we used our own method to generate binding site
points, called "attached points" (ATPTS), as briefly
explained in Methods and in more details in ref. [24].
Each ATPTS point carries a label that reflects the chemical
nature of its parent protein atom. Not as a casual coinci-
dence, these labels correspond to the atom types that were
defined in this work for protein atoms. Since a spatial
matching of an ATPTS point with a ligand atom corre-
sponds to a contacting interaction between its parent
atom and this ligand atom, we can extrapolate the statis-
tics obtained for ligand-protein contacts to ligand-ATPTS
matches.

Thus, ATPTS binding site representations were generated
for the 4243 protein-ligand complexes included in the
PDB2003 dataset, in a totally automated way. The calcu-
lation time per structure was, on average, less than 0.1 s.

The quality of the ATPTS representation of protein bind-
ing sites, in terms of its success in matching point and lig-
and atom positions for the correct (crystallographic)
orientation of ligand molecules, was thoroughly demon-
strated in a previous paper [24]. For this purpose, we
defined and calculated a magnitude called "number of
matching atom-point pairs" (N, ). A matching atom-
point pair is formed by a site point and a ligand atom
being within certain "matching cut-off distance" (1.5 A)
from each other. Then we showed that for the vast major-
ity of the tested complexes, more than 70% of the ligand
atoms that are in contact with the protein are matched by
ATPTS points. Here we repeated the same type of calcula-
tion for the PDB2003 dataset and obtained roughly the
same result (not shown).

In this work, taking profit of the atom type data included
in the database, we could also evaluate the quality of the
formed matching pairs, according to the classification of
the atomic interactions defined in Table 8. The results of
this evaluation are shown in Figure 7. For most of the
complexes in the PDB2003 dataset, more than 40% of the
matching pairs correspond to probable (F) or very proba-
ble (VF) interactions.

400 -

300

200 NN

100 +

Number of complexes

N |
o =<\ —
0 20 40 60 80 100

(F+VF)IN_ %

Figure 7

Distribution of probable (F) and very probable (VF) protein-
ligand complexes, given in percent relative to the number of
matching pairs. A cut-off matching distance of 1.5 A was used
to compute the ligand atom-attached point matching pairs.
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Table 7: Classification of the interactions based on interaction
probabilities

Type Classification Probability interval

0 Less probable <0.0216
| Probable 0.0216-0.0360
2 Highly probable >0.0360

Defining and testing new matching rules for DOCKing
simulations

If the number of matching pairs with probable and very
probable interactions is high enough, the stringency of the
matching rules to be used in the docking runs may be
increased, for example, by enabling only matching of very
probable pairs in the ligand orientation process. This
would significantly accelerate the calculations by reducing
the number of ligand orientations to generate and evalu-
ate. On the other hand, the use of these rules must allow
the generation of a sufficient number of correct orienta-
tions, otherwise the program may fail in predicting a right
solution.

Here we defined two different sets of matching rules: one
that permits very probable and probable interactions
(R1), and a second set that permits only very probable
matches (R2). Then we tested their performance as com-
pared with the chemical complementarity rules coming
with the DOCK program (Rpgck), which are much more
permissive.

The test of the three sets of matching rules was carried out
for a selected set of complexes from the PDB2005 dataset.
To rule out other variables that may affect the results of a

Table 8: Classification of the different types of protein-ligand
atom contacts in three categories: less probable (0), probable (1)
and very probable (2)

Ligand atom
types

Protein atom types

ACC NEG DO POS HDX ALP ARM

N
C_I 0 0 0 0 0 0 |
Cr 0 0 0 | |
N_+ | 2 0 0 0 0 0
N_d 2 2 0 0 | 0 0
N_a 0 0 | 0 0 0 0
N_r 2 0 0 0 0 0 |
O_a 0 0 | | 0 0 0
O_- 0 0 | 2 2 0 0
©) 0 2 | 0 0 0 0

http://www.biomedcentral.com/1471-2105/8/310

docking simulation, such as big ligand size and a small
contact area with the protein, which are not the subject of
this particular study, we restricted the test set to complexes
in which ligands have between twenty and forty heavy
atoms and more than 70% of their molecular surface
embedded in the protein binding site. As we were inter-
ested in evaluating the accuracy of the postulated match-
ing rules, the chosen complexes also should have atom
types included in the rules sets R1 and R2. Finally, 542
complexes were selected from the PDB2005 dataset, and
ATPTS binding site representations were generated for all
of them.

For all the selected complexes we ran "truncated" docking
simulations, as explained in Methods. No scoring was car-
ried out since we were not interested in the performance
of the scoring functions, but only in evaluating the
number of correct ligand orientations that are produced
by the program. The maximum number of orientations to
be generated was limited to 10°. This number was high
enough to explore all the combinations generated by the
matching algorithm for most of the complexes, and was
much higher than the value used by default (103). Ligands
were kept rigid in these simulations.

In order to check the efficiency of the chemical rules, we
computed the number of "good" ligand-receptor configu-
rations generated by the DOCK program in the ligand ori-
entation process. As "good orientations" were considered
those whose RMSD value with respect to the crystal geom-
etry was less than 2 A.

The simulations for the 542 complexes took just a few
hours. A comparison of the results obtained for the three
sets of matching rules is shown in Figure 8. The compari-
son is focused on the analysis of the RMSD of the best ori-
entation generated by the DOCK chemical matching
algorithm, the total number of orientations explored (N,)
and the number of "good" orientations obtained.

When using its default set of chemical matching rules, the
program DOCK fails in producing a good solution for
about 30% of the complexes (Figure 8A), even though the
program reached, for almost all the complexes, the maxi-
mum number of ligand orientations that was allowed
(Figure 8D). For the 70% of complexes showing a success-
ful result, an average number of 2985 good solutions was
produced by the program.

Using the R1 set of matching rules significantly improves
the performance of the simulations, with only a very few
complexes having their best orientation with an RMSD >
2 A (Figure 8B). For this set of rules the number of possi-
ble ligand atom-site point matches was still high enough
as to make the program produce the allowed 105 orienta-
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Results from the docking simulations performed for 542 complexes from the PDB2005 dataset, using three different sets of
chemical matching rules. Panels A, B and C show the distribution of RMSD values of the best found solution using the native
DOCK, RI and R2 sets of matching rules, respectively. Panels D, E and F show the distribution of the total number of orienta-
tions (N,) explored in the simulations, for the same sets of matching rules.

tions for most of the complexes (Figure 8E). The average
number of produced good solutions was 4062.

Finally, when the R2 rules were employed, a good solu-
tion was always found (Figure 8C). For this more restric-
tive set of rules, the number of explored orientations was
reduced notably, as shown in Figure 8F, and nevertheless,
a high number of good orientations was obtained (2138
as average) for each protein-ligand complex. These results
demonstrate that the matching rules used to limit the
exploration of the conformational space between the pro-
tein and the ligand can be more stringent and still produce
very good results if the ligand molecules have atom types
with statistically high probabilities of interaction with
proteins.

On the other hand, the fact that using the matching rules
given by default for the DOCK runs made the program fail
in about 30% of the tested cases causes concern. Since the
ensemble of ligand atom-site point matches produced
with the R1 or R2 rules must be a subset of the ensemble
of matches produced using more permissive rules, or not
using any filter at all, the reason for the failure must be
that the maximum allowed number of ligand orientations

was not enough to give the program the chance of explor-
ing the right sector of the orientational space. Even for
small and medium size ligands, the total number of atom-
point combinations that can be produced may be so large,
that the probability of obtaining correct matches within
the first 103, or even more unfavourably, within the first
103 explored conformations, can be small.

Conclusion

We compiled a large database of small ligand-protein
complexes derived from the PDB that currently contains
more than 6000 non-redundant structures. In processing
the PDB structures, we characterized in details the protein-
ligand interactions, using a new definition based on the
proximity of the molecular surfaces. Furthermore, the
structural data was enriched with chemical properties that
we calculated using our own as well as existing algo-
rithms. As an example to demonstrate the value of the
new database for data mining and testing of docking algo-
rithms, we derived a new set of chemical matching rules
to be used in the context of the program DOCK, based on
contact frequencies between ligand atoms and points rep-
resenting the protein surface, and proved their enhanced
efficiency with respect to the default set of rules included
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in the program. One important finding in this study is the
high rate of failure of the program DOCK in finding ori-
entations close to the crystal structure when using the
default chemical filter, even in the case when the maxi-
mum number of allowed ligand orientations is set 100
times larger than the default value.
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