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Abstract
Background: In proteomic analysis, MS/MS spectra acquired by mass spectrometer are assigned
to peptides by database searching algorithms such as SEQUEST. The assignations of peptides to MS/
MS spectra by SEQUEST searching algorithm are defined by several scores including Xcorr, ΔCn,
Sp, Rsp, matched ion count and so on. Filtering criterion using several above scores is used to
isolate correct identifications from random assignments. However, the filtering criterion was not
favorably optimized up to now.

Results: In this study, we implemented a machine learning approach known as predictive genetic
algorithm (GA) for the optimization of filtering criteria to maximize the number of identified
peptides at fixed false-discovery rate (FDR) for SEQUEST database searching. As the FDR was
directly determined by decoy database search scheme, the GA based optimization approach did
not require any pre-knowledge on the characteristics of the data set, which represented significant
advantages over statistical approaches such as PeptideProphet. Compared with PeptideProphet,
the GA based approach can achieve similar performance in distinguishing true from false assignment
with only 1/10 of the processing time. Moreover, the GA based approach can be easily extended
to process other database search results as it did not rely on any assumption on the data.

Conclusion: Our results indicated that filtering criteria should be optimized individually for
different samples. The new developed software using GA provides a convenient and fast way to
create tailored optimal criteria for different proteome samples to improve proteome coverage.

Background
Because of the high sensitivity, mass spectrometry has
been widely used for protein identification and character-
ization in proteome researches within the past dec-
ade[1,2]. Shotgun proteome approach, which is based on
analysis using liquid chromatography coupled with tan-
dem mass spectrometry (LC-MS/MS), can be applied to

analyze complex protein mixtures directly even without
any prior purification step. Large-scale proteome profiling
using multidimensional LC-MS/MS has become increas-
ingly applied for the analysis of many biological samples,
including various mammalian tissues, cell lines, and
serum/plasma [3-8]. In shotgun proteomics, complex
protein mixtures are first digested by the enzyme (e.g.
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trypsin) to produce peptide mixtures. Then the peptide
mixtures are subjected to extensive separations such as
strong cation exchange chromatography (SCX) coupling
with on-line or off-line reversed-phase capillary LC
(RPLC). Peptides eluting from the reversed phase capillary
LC column are sprayed into tandem mass spectrometer to
produce MS/MS spectra. And then peptide sequences are
assigned to experimental MS/MS spectra by database
searching algorithm.

SEQUEST[9], Mascot[10] and other database searching
algorithms match experimental spectra with theoretical
spectra which are generated from peptide sequences in sil-
ico, and then calculate scores to evaluate how well they
match. These scores help discriminating between correct
and incorrect peptide assignments. One of the major
issues in database search for proteome analysis is to deter-
mine the false-discovery rate (FDR) of the identifications.
FDR is the rate at which significant identifications are
actually null[11]. A variety of methods were developed to
determine FDR for peptide identifications. Some efforts
have been made on establishing statistical analysis meth-
ods [11-17] to determine the possibility of positive iden-
tifications, e.g. PeptideProphet[12]. Complicated
statistical algorithms are often needed in these methods.
Another simpler way to evaluate FDR is using decoy pro-
teome approach which was introduced by Peng et al[18].
Determination of FDR in this method is based on the
database searching using a composite database including
original protein database and its reversed version. Statisti-
cally, the probability that a peptide is identified incor-
rectly from reversed database is expected to be same as the
probability that it is identified incorrectly from original
protein database as the sizes of reversed database and
original database are the same [19-21]. Therefore, FDR
can be calculated using the following equation:

FDR = 2*n(rev)/(n(rev)+n(forw)), (1)

where n(forw) and n(rev) are the number of peptides
identified in proteins with forward (original) and reversed
sequences, respectively[18,22]. The database searching
strategy using composite database is also known as
reversed database searching strategy. Because of the sim-
ple usage, it has been widely used in the evaluation of pro-
teomic search results[18,22-26] including post-
translation modification (PTM) researches[19,27,28].

SEQUEST[9] is one of the commonly used database
searching algorithms. It first counts the peaks which are
common in experimental and theoretical spectra, and
computes a preliminary score (Sp). Then it selects a pro-
portion of top candidate peptides based on the rank of
preliminary score (Rsp) for cross-correlation analysis. So,
for each candidate peptide identification, several scores

and rankings are determined. To distinguish correct iden-
tifications from incorrect identifications, filters using a set
of database searching scores are applied, including two
commonly used scores, Xcorr and ΔCn. In order to evalu-
ate FDR of the identifications, reversed database searching
could be performed and the FDR could be determined by
Equation (1). To control FDR, many research groups usu-
ally use fixed Xcorr values and manually increase ΔCn to
get peptide identifications with specific FDR[25], or use a
fixed ΔCn value and manually increase of Xcorr scores
[18]. However, these new criteria which were determined
by adjusting only one score filter to reach a specific FDR
may be not optimal.

Genetic algorithm (GA) belongs to evolutionary algo-
rithms and applies natural selection process, where better
fitted species are selected. The optimization process of this
algorithm is based on multi-point-search for which many
solutions are calculated simultaneously[29]. If the fitness
function is properly designed, GA has the ability to search
through very large sets of possible solutions and converge
to an optimal or near optimal solution quite quickly. It
has been successfully applied to process MS data in pro-
teome researches [30-32].

In this work, we combined the decoy database searching
approach with automated filter criteria optimization, and
developed a software suite named SFOER (SEQUEST Fil-
ter Optimizer Using Genetic Algorithm) using GA which
enables simultaneous optimization of multiple SEQUEST
score filtering criteria. The optimized criteria were used to
filter datasets which were generated from two different
human samples and resulted in approximate 20%
increase of peptide identifications than that using conven-
tional criteria[14,25,33] while FDR were kept the same
(<1%). Direct comparison between SFOER and Peptide-
Prophet has been performed using both complex human
samples and standard protein mixtures. Compared with
PeptideProphet, SFOER showed nearly same ability in dis-
tinguishing correct peptide identifications from incorrect
ones with only 1/10 of the processing time. And because
SFOER doesn't rely on models which are based on possi-
ble unfounded assumptions, it provides a safe way for fast
determination of tailored optimal filtering criteria for dif-
ferent proteome samples, thus, higher proteome coverage
can be achieved.

Results and discussion
To evaluate the confidence of peptide assignments by
SEQUEST and generate the score distribution for peptide
identifications, we have generated large datasets of human
proteome samples by SCX/RPLC-MS/MS[34]. Approxi-
mately 277,000 MS/MS spectra were generated from
human liver tissue lysate. All MS/MS spectra were
searched by SEQUEST against a composite database con-
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taining human IPI proteins in both forward and reversed
orientation. Herein only the top matched peptide from a
spectrum with specific charge state was accepted. Approx-
imate 11,000, 186,000 and 181,000 peptides according to
the charge states of 1+, 2+ and 3+ were finally generated.
165,966 (43.86%) peptides were derived from reversed
protein database and 212,430 (56.14%) were from for-
ward protein database.

True and false assignment distribution
To investigate whether it was necessary to optimize the fil-
tering criteria after SEQUEST database search, we first
investigated the distribution of peptides identified from
forward protein database and reversed protein database.
The distributions of peptides with different Xcorr and ΔCn
values are shown in Figure 1A, 1B and 1C according to the
charge states of 1+, 2+ and 3+, respectively. Evidently,
peptides with reversed sequences (represented as crosses)
centralized at the region with low Xcorr and ΔCn scores,
which indicated that peptide assignments with SEQUEST
scores lying in this region were more likely to be random
matches. And in the region where Xcorr scores were high
enough, there was nearly no peptide with reversed
sequence, and ΔCn scores of peptides in this region were
always high. Therefore, peptides which were identified
with high Xcorr and ΔCn scores were more likely to be
true assignments.

To obtain confident identifications with specific FDR (<
1%), filter criteria with two SEQUEST scores, Xcorr and
ΔCn, need to be adjusted. A series of filtering criteria using
these two cutoff scores can be determined in this way:
Xcorr cutoff scores were increased by a specific value (e.g.
0.05) step by step, and ΔCn cutoff scores were decided
accordingly with the Xcorr cutoff values for the aim that
identifications passed the filtering criterion had an overall
FDR less than 1%. Cumulate curves of these filters deter-
mined above were shown in each graph of Figure 1
according to the charge states of 1+, 2+ and 3+, and every
point on each curve indicated a set of criteria leading to
FDR < 1% for peptide identifications with a specific
charge state. These curves indicated that to achieve pep-
tide identifications with FDR less than 1%, various criteria
can be used.

To demonstrate the dependence of the number of identi-
fied peptides on the application of different filter criteria
at same FDR (<1%), relation between the number of iden-
tified peptides and Xcorr cutoff values in different criteria
which result in these identifications is shown in Figure 2.
Evidently, the number of peptide identifications changed
greatly when criteria with different Xcorr cutoffs were
used. For example, as shown by curve C in Figure 2, the
number of identified doubly charged peptides was 18,218
when criterion with Xcorr cutoff value of 2.37 was used,

but this number changed to 15,261 when criterion with
Xcorr value of 2.8 was used. Approximately 20% differ-
ence in number of peptide identifications between these
two sets of criteria was observed. In addition, to reach FDR
< 1%, ΔCn cutoff values of these two criteria were 0.213
and 0.069, respectively. According to above results, simul-
taneous optimization of different SEQUEST score combi-
nations for filtering criteria can result in more positive
peptide identifications and reduce false-negative detec-

Distribution of peptides identified from human liver tissue lysate by SEQUESTFigure 1
Distribution of peptides identified from human liver 
tissue lysate by SEQUEST. A) Singly charged peptides; B) 
Doubly charged peptides; C) Triply charged peptides. Each 
data point represents a peptide identification from the com-
posite database: cross represents peptide identification from 
reversed sequence while square indicates peptide identifica-
tion from forward sequence. Cumulate curves drawn in each 
graph are 1% false-discovery curves. Each point on curves 
indicates a filtering criterion leading to peptide identification 
with FDR of 1%, and the identified peptides by each criterion 
present in the region where Xcorr and ΔCn scores are 
higher than the Xcorr and ΔCn cutoffs in each set of criteria. 
Graphs were drawn using the Speed Model by Origin 7.5 
with 5000 max points per curve, and three raw graphs with 
all data points were shown [see Additional file 1].
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tions which are true assignments but may be rejected by
conventional filtering criteria while confidence levels
keep the same.

Optimization of filtering criteria by genetic algorithm
Our aim of this study was to develop an approach to opti-
mize the filtering criteria which maximized the number of
peptide identifications without increase of FDR. To
achieve this purpose, genetic algorithm[29] was used to
develop a Java software suite named SFOER which took
SEQUEST scores such as Xcorr, ΔCn etc. as its weights and
number of peptide identifications as its scale. Fitness was
calculated using equation (2). The optimization was com-
posed of 200 generations. Each generation had 100 indi-
viduals, and these individuals were of three types, one
came from parents, another which contained combined
information from two parents was generated by the cross-
over of individuals in current generation, and the third
was the "mutant" one which contained new introduced
information. Probabilities of mutation and cross-over
were set to 0.01 and 0.2, respectively. Each individual con-
tained four genes including Xcorr, ΔCn, Sp and Rsp. Limit
of FDR was set to 1%. After optimization, the resulting fit-
test individual was considered to be the optimized set of
weights. Since the distributions of SEQUEST scores for dif-
ferent charge states are different as shown in Figure 2,
optimization of filtering criteria for different charges
states were conducted independently. Details of criterion

optimization for peptides with double charge state are
represented in Figure 3. As the convergence was obtained
over the first 100 generations, we allowed GA to continue
to evolve another 100 generations for further improve-
ment of the optimization.

On the basis of above GA optimization procedure, SFOER
was utilized to optimize the filtering criteria for dataset
generated from human liver tissue lysate. Finally, we got
the following optimized criteria (FDR <1%): according to
the charge states of 1+, 2+ and 3+, Xcorr scores should be
bigger than 1.76, 2.31 and 2.41, ΔCn should be bigger
than 0.061, 0.199 and 0.265, Sp should be bigger than
44.42, 104 and 276.9 and Rsp should be within 3, 4 and
2. Filtered by this set of criteria, 29,934 positive peptides
were generated, including 162 singly charged peptides,
18,513 doubly charged peptides and 11,259 triply
charged peptides.

To evaluate the performance of this set of optimized filter-
ing criteria, we then compared it with the conventional
criteria[14,25,33]. Similar to them, criteria were deter-
mined as follows: Xcorr cutoffs were set as 2.0, 2.5 and 3.8
for singly, doubly and triply charged peptides and ΔCn
cutoff was determined by the increase of its value until
FDR for peptide identifications was less than 1%. Finally
the ΔCn cutoff was determined to be 0.164 for the human
liver tissue dataset. When above criteria were applied, 99,
17,827 and 7,385 singly, doubly and triply charged pep-
tides were identified. Using the filtering criteria optimized
in this study, there was an 18.27% increase of peptide
identifications (29,934 vs 25,311) with same FDR (<1%)

Dependence of fitness on generations for doubly charged peptidesFigure 3
Dependence of fitness on generations for doubly 
charged peptides. Fitness for each individual (criterion) 
represents the number of peptide identifications filtered by 
this criterion. Fitness of the fittest individual in each genera-
tion was represented as black dots.
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Relationship between the number of peptide identifications and Xcorr values in different criteria which leaded to these identifications for human liver tissue lysate at same FDR (<1%)Figure 2
Relationship between the number of peptide identifi-
cations and Xcorr values in different criteria which 
leaded to these identifications for human liver tissue 
lysate at same FDR (<1%). To achieve less than 1% FDR, 
ΔCn cutoff for each criterion changes with the Xcorr cutoff. 
Curves for three different charge states were drawn sepa-
rately: A) for singly charged peptides, B) for triply charged 
peptides and C) for doubly charged peptides. D) is the 
zoomed curve for singly charged peptides.
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after combining the results of all charge states. And
15.11% more unique peptides (5285 vs 4591) were gen-
erated by the optimized criteria (Table 1).

When the optimization was performed on another very
different sample, human blood plasma, different set of
optimal filtering criteria was generated. According to the
charge states of 1+, 2+ and 3+, Xcorr scores should be big-
ger than 1.88, 2.31 and 2.40, ΔCn should be bigger than
0.179, 0.27 and 0.319, Sp should be bigger than 238, 71
and 215.6 and Rsp should be within 80, 2 and 1. Filtered
by this set of criteria, 14,218 peptides were generated. And
there was an 15.3% increase of peptide identifications
than those resulted from conventional criteria (Xcorr cut-
offs bigger than 2.0, 2.5 and 3.8 for singly, doubly and tri-
ply charged peptides and ΔCn scores bigger than
0.265)[14,25,33].

Evidently, optimized criteria for datasets from these two
different human samples were different even with same
separation and analysis conditions (Table 2). While the
optimized Xcorr cutoffs for datasets from these two sam-
ples were almost the same (1.76, 2.31, 2.41 vs 1.88, 2.31,
2.40), other score and ranking cutoffs were quite different:
according to the charge states of 1+, 2+ and 3+, these cut-
offs for human liver tissue were ΔCn > 0.061, 0.199 and
0.265, Sp > 44.42, 104 and 276.9 and Rsp rankings
should be within 3, 4 and 2; but for human blood plasma,
these cutoffs were ΔCn > 0.179, 0.27 and 0.319, Sp should
be bigger than 238, 71 and 215.6 and Rsp should be
within 80, 2 and 1. Similar phenomena have also been
observed by Smith and Colleagues[35], and they attrib-

uted this to the different protein abundances in different
samples.

In most cases, the differences on proteome analysis were
inevitable: protein samples may come from different tis-
sues or even different species, mass spectra may be col-
lected by different type of mass spectrometers under
different separation conditions and so on. These differ-
ences will result in the generation of datasets with differ-
ent characteristics. Statistical approaches based on
training with some assumptions on one type of dataset
may only work well on datasets with that particular type.
However, for other type of datasets with different charac-
teristics, these approaches may need retraining or rede-
sign. While SFOER does not employ any statistical
method and no training was required. So SFOER can be
applied to process any database search results as long as
the searches were performed against decoy database
where FDR could be easily determined. By using this GA
based software suite, optimized criteria for different data-
sets can be easily determined, and these tailored optimal
criteria should be very effective to improve the coverage
for proteome analysis.

Discrimination powers of the filtering criteria optimized
by SFOER with different combinations of SEQUEST scores
were also evaluated. The numbers of peptide identifica-
tions from liver tissue sample by applying these filtering
criteria are shown in Table 3. For filtering criteria using
three cutoff scores, the one using Rsp, Xcorr and ΔCn
yielded more peptide identifications than that using Sp,
Xcorr and ΔCn. And the number of identified peptides by
using the first set of criteria was very close to that obtained

Table 1: Comparison of the performance of conventional criteria, PeptideProphet and SFOER in peptide identifications for the 
analysis of human liver tissue lysatea

Conventional criteriab PeptideProphetc SFOERd

# 1+ 99 26 162
# 2+ 17950 17451 18606
# 3+ 7388 12587 11313

# total 25428 30064 30081
%incr / 18.2% 18.3%

# false pep 126 113 147
FDR 0.99% 0.75% 0.98%

#unique pep 4591 5175 5285
%incr unique pep / 12.7% 15.12%

# proteins 1467 1596 1665

a. Summary of each category returned by different strategies: #1+, #2+ and #3+ indicates the number of peptide identifications for charge states of 
1+, 2+ and 3+ respectively. #total = (#1+) + (#2+) + (#3+). #false pep indicates the number of peptides from reversed database, while #unique pep 
is the number of total unique peptides. Increase of peptide identifications (%incr) and unique peptide identifications (%incr unique pep) by SFOER 
and PeptideProphet are shown. #proteins are the number of positive proteins identified by the strategies. FDR of identifications are also shown.
b. Conventional criteria. Xcorr > 2.0, 2.5 and 3.8 for singly, doubly and triply charged peptides, respectively and ΔCn > 0.164 for all charge states 
[25, 33].
c. Cutoff is set as PeptideProphet probability > 0.9 [13, 36-38].
d. Optimized criteria determined by SFOER are: according to the charge states of 1+, 2+ and 3+, Xcorr scores > 1.76, 2.31 and 2.41, ΔCn > 0.061, 
0.199 and 0.265, Sp > 44.42, 104 and 276.9 and Rsp < 3, 4 and 2.
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by the optimized criteria using all four scores. Thus, Sp
scores had less important contribution to the discrimina-
tion than Rsp did. Compared to the optimized criteria
using all four scores, criteria using only two commonly
used scores were also effective in reducing false-negative
peptide identifications as only 3.35% decrease of peptide
identifications were observed. This indicated that com-
monly used criteria which consisted of two cutoff scores,
Xcorr and ΔCn, were effective in proteome researches, but
if wanting to get higher proteome coverage, optimized cri-
teria using other SEQUEST scores and rankings were
needed.

Classification performance of SFOER
PeptideProphet is a statistical approach, based on the
expectation maximization algorithm (EM), for validation
of peptide identifications made by tandem mass spec-
trometry and database searching[12]. Database search
results for human liver and plasma samples were also
processed by PeptideProphet. Probability thresholds of
0.9 were set for which empirical error rates for these two
datasets were 1.1% and 1.2% respectively[13,36-38]. And
the corresponding FDR were determined as 0.75% and
1.13% for these two datasets by employing reversed data-
base searching strategy. There were 29,951 and 14,101
peptides identified by PeptideProphet for liver tissue sam-
ple and plasma sample, respectively. Compared with
PeptideProphet, the numbers of peptides identified for
the two human proteome samples by SFOER were nearly
the same (29,934 vs 29,951 for liver tissue sample and
14,218 vs 14,101 for plasma sample). There was 91.2%
overlap of the peptide identifications between Peptide-
Prophet and SFOER, which means majority of the identi-
fied peptides were same for both approaches (Figure 4).
Detail comparison of the performances on human liver
lysate between conventional criteria, PeptideProphet and
SFOER is shown in Table 1. The total numbers of identi-
fied proteins are also given in Table 1. Because of the
increase of peptide identifications, the protein identifica-
tions also increased obviously when SFOER was used.

Compared with the conventional approach, the numbers
of identified peptides increased significantly when the fil-

tering criteria optimized by SFOER were applied. A con-
cern for this is that whether the increased peptide
identifications are true identifications. For datasets from
human liver tissue sample, 5,588 extra peptide identifica-
tions were achieved when the filtering criteria optimized
by SFOER were applied. It is impossible to manually vali-
date all of these peptide identifications. A practical way is
to randomly select small portion of the increased peptide
identifications and manually check with their spectra.
Thus 300 out of from 5,588 extra peptides identifications
were randomly selected. Each of these spectra was
assessed for acceptable signal-to-noise ratio and the pres-
ence of at least three consecutive b or y ion fragments[39].
Finally 98.3% (295 out of 300) of these peptides were true
positive and the false-discovery rate was very close to the
overall predicted FDR. It was found that 84% (4,693 out
of 5,588) of the increased peptides can also be detected by
PeptideProphet at a probability cutoff of 0.9 for which the
empirical error rate was 1.1%. Above results clearly dem-
onstrated that the additional peptide identifications
obtained by SFOER were quite confident. (MS/MS spectra
of the increased peptide identifications using our opti-
mized criteria can be downloaded from our website[40]).

Table 3: Summary of the peptide identifications from human 
liver tissue by applying filtering criteria optimized using different 
score combinations

All four 
scores

Xcorr ΔCn Rsp Xcorr ΔCn Sp Xcorr ΔCn

# peptides 30,081 29,996 29,595 29,248
# increase 2.87% 2.56% 1.19% /

FDR 0.977% 0.980% 0.980% 0.998%

Overlap of peptides identified by SFOER and PeptideProphet for human liver tissue lysateFigure 4
Overlap of peptides identified by SFOER and Pepti-
deProphet for human liver tissue lysate. The numbers 
of peptide identifications by one or both algorithms are indi-
cated, e.g., 27,272 peptides are identified by both algorithms 
(intersection).

272722662 2679SFOER
Peptide 
Prophet

Table 2: The optimized criteria of peptide identifications from 
human liver tissue lysate and human plasma by SFOER with FDR 
less than 1%

Charge Xcorr ΔCn Sp Rsp

liver tissue 1+ 1.76 0.061 44.42 3
2+ 2.31 0.199 104 4
3+ 2.41 0.265 276.9 2

plasma 1+ 1.88 0.179 238 80
2+ 2.31 0.270 71 2
3+ 2.40 0.319 215.6 1
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Classification performance of SFOER was further vali-
dated by standard protein mixture. Tryptic digest of seven
standard proteins was selected as the sample. And the
acquired MS/MS spectra were searched against a compos-
ite database containing both forward and reversed
sequences of all control proteins (including trypsin) as
well as forward and reversed protein sequences from
yeast, chosen for its low homology with readily available
control proteins. Because the proteins present in the sam-
ple were known, correct and incorrect peptide assign-
ments can be easily distinguished by the rule whether it is

from known standard proteins. Thus actual FDR, i.e. the
observed FDR, can be determined by the percentage of
peptide identifications not from standard proteins among
all peptide identifications, while predicted FDR was deter-
mined by Equation (1). If not otherwise stated, FDR refers
to the predicted FDR. The classification performance of
SFOER could be evaluated by comparing the actual and
predicted FDR.

LC-MS/MS analyses of 7 standard protein mixture digest
resulted in a collection of 105,000 spectra. Performance of
SFOER was also compared with that of PeptideProphet
using this standard protein dataset. A series sets of filtering
criteria were optimized by SFOER with FDR increased
from 0.005 to 0.32. Then peptide identifications with dif-
ferent confidence levels were generated by utilizing these
optimized criteria. For PeptideProphet, manual adjust-
ment of the probability threshold was used to generate
peptide identifications with different FDR. The number of
correct peptide identifications (peptide from standard
proteins) and the number of incorrect peptide identifica-
tions (peptide from forward protein sequences in yeast
database) are shown in Figure 5A. With the increase of
FDR, SFOER showed nearly same performance with Pepti-
deProphet except a slight improvement in the number of
correct peptide identifications. And PeptideProphet
showed a small increase of power in trading-off incorrect
peptide identifications. Plot in Figure 5B are the observed
FDR as function of the predicted FDR. It can be seen that
the observed and predicted FDR matched very well for
both SFOER and PeptideProphet. However, small
increases of observed FDR were found for both cases. This
probably because that our evaluation method didn't take
commonly contaminants such as keratins into account.
On the basis of above results, reversed database searching
algorithm essentially provided a reasonable estimation of
the actual error. The optimization by SFOER based on
reversed database strategy was reasonable and FDR of
peptide identifications evaluated by reversed database
strategy can essentially reflect the actual FDR.

GA is a very efficient algorithm and is widely used in
searching for optimal or near optimal solutions. Thus,
SFOER which employing GA should inherit this advan-
tage. Approximately 277,000 spectra (12 LC-MS/MS runs)
were processed by PeptideProphet and SFOER on a Pen-
tium 4 (3.0 GHz) computer separately. The optimization
procedure using SFOER took less than 4 min (10 s for 1+,
100 s for 2+ and 99 s for 3+), while the procedure for cal-
culation of probability by PeptideProphet took about 38
min. And the IO procedures (for PeptideProphet, it con-
sisted of assembling peptides from out files to html files
and the conversion of files from html format to xml for-
mat, while for SFOER it only included the assembling of
peptides from out files to plain text files) took about 40

Evaluation of the classification performances of SFOER and PeptideProphet with standard protein mixtureFigure 5
Evaluation of the classification performances of 
SFOER and PeptideProphet with standard protein 
mixture. A) Number of correct and incorrect peptide iden-
tifications by SFOER and PeptideProphet under different 
FDR, where incorrect peptide identification indicates peptide 
assignment from forward yeast database while correct one is 
from known standard proteins and trypsin. B) Predicated and 
observed FDRs. Observed FDR is calculated as the number 
of peptide identifications not from standard proteins over 
total peptide identifications, while predicated FDR is calcu-
lated using equation (1). Observed FDR for SFOER are pre-
sented by open circles, while observed FDR for 
PeptideProphet are represented by filled circles.
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min and 28 min for PeptideProphet and SFOER, respec-
tively. Evidently, SFOER was much faster than Peptide-
Prophet for which only 1/10 of time was needed for the
searching of optimal criteria (without consideration of IO
procedures).

For model based algorithm like PeptideProphet, accuracy
relies on the fitness between the empirical model and
obtained datasets. If the model accurately reflects the
physical processes by which the data are generated, it can
work well even for a small amount of training data. On
the other hand if the data distributes in a significant way,
classification errors proportional to the degree of diver-
gence result. However, SFOER is less risky for that it does
not rely on model. The pre-knowledge on the property of
the dataset or making assumptions about the dataset is
not required. Therefore, this approach is equally applica-
ble to many datasets with different characteristics. How-
ever, there is one requirement for application of SFOER.
As FDR for peptide identification is required during the
optimization, SFOER can only process database search
results performed with decoy database.

SFOER can also be easily extended to some special appli-
cations by slightly revision. Currently, SFOER only takes
several SEQUEST scores such as Xcorr, ΔCn, Sp and Rsp as
its weights. It was reported that some peptide properties
obtained from the experiments of proteome analysis
could be used to increase the confidence of peptide iden-
tifications. These properties including the pI values
obtained from the isoelectric focusing (IEF)[41], hydro-
phobicity or elution times obtained from reversed phase
LC separation (NET)[24], high accurate masses obtained
from using of FT mass spectrometer[42] and so on. In
principle, these properties as well as SEQUEST scores can
be optimized simultaneously for filtering criteria by this
software suite. And significant improvement in proteome
coverage for proteome analysis is expected. Though
SFOER was developed to optimize filtering criteria for
SEQUEST database search, after slightly revision it should
also be easily applied to the optimization of filtering cri-
teria for other database search engines such as Mascot as
long as the decoy database search strategy is applied.

Conclusion
A software suite, named as SFOER, was developed using
predictive genetic algorithm (GA) to optimize filtering cri-
terion for SEQUEST database searching. The optimization
was based on reversed database search where FDR can be
easily determined. It was demonstrated that SFOER was
able to maximize the number of identified peptides with-
out increase of FDR. Compared with statistical approach
– PeptideProphet, SFOER has nearly the same classifica-
tion performance but cost much less processing time.
Moreover, as it did not rely on possibly unfounded

assumptions about the data, SFOER can create tailored cri-
teria for datasets which are obtained from different sam-
ples, generated from different mass spectrometers, even
searched with different database searching algorithms
(weights need to be altered).

Methods
Materials and reagents
Magic C18AQ (5 μm, 100 Å pore size) was purchased
from Michrom BioResources (Auburn, CA, USA), and
Polysulfoethyl Aspartamide (5 μm, 200Å pore) was from
PolyLC Inc (Columbia, MD, USA). PEEK tubing, sleeves,
microtee and microcross were obtained from Upchurch
Scientific (Oak Harbor, WA, USA). Fused-silica capillaries
(50, 75 and 100 μm I.D.) were purchased from Polymicro
Technologies (Phoenix, AZ, USA). All the water used in
the experiment was purified using a Mill-Q system (Milli-
pore, Bedford, MA, USA). Dithiothreitol (DTT), iodoa-
cetamide were all purchased from Sino-American
Biotechnology Corporation (Beijing, China). Urea,
ammonium acetate, ammonium bicarbonate and acetic
acid were obtained from Sigma (St. Louis, MO, USA).
Trypsin was from Promega (Madison, WI, USA). Tris was
from Amersco (Solon, Ohio, USA). Formic acid was
obtained from Fluka (Buches, Germany). Acetonitrile
(ACN, HPLC grade) was from Merck (Darmstadt, Ger-
many). Protease inhibitor cocktail tablets (Complete
Mini) were purchased from Roche.

Sample preparation
Human blood plasma was obtained from one healthy
male donor (age 37, O type), provided by Zhuanghe
Blood Center (Dalian, China). An initial protein concen-
tration of ~95 mg/mL was determined in plasma using
Bardford method. Human liver tissue was homogenized
in lysis buffer (40 mM Tris, 6 M guanidine HCl, 65 mM
DTT, 310 mM NaF, 3.45 mM NaVO3, protease inhibitor
cocktail) and then sonicated for 180 s followed by centrif-
ugation at 25,000 g for 1 h. The supernatant was collected
as protein sample and the concentration was determined
by Braford assay.

The human plasma sample and human liver tissue lysate
were reduced by DTT and alkylated by iodoacetamide.
Then the solutions were diluted to 1 M guanidine-HCl,
and pH values were adjusted to 8.1. Finally, trypsin was
added (trypsin:protein, 1:50) and the protein samples
were incubated at 37°C for 20 h. Tryptic digests were
desalted with a C18 solid – phase cartridge.

Tryptic digests of standard proteins were prepared by
digesting of 500 pmol reduced, iodoacetamide alkylated
bovine serum albumin, horse myoglobin, horse cyto-
chrome c, chick ovalbumin, human hemoglobin, bovine
β-casein and bovine α-casein. Bovine serum albumin was
Page 8 of 12
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purchased from Roche and all other standard proteins
were from Sigma-Aldrich. These digests were pooled to
prepare seven protein digest mixture. The final concentra-
tions of these proteins were ranged from 16 to 300 fmol
per microliter.

LC-MS/MS analysis and database search
The configurations for 1D and 2D LC-MS/MS analysis
were set as reported previously[34]. Therein, a Finnigan
LTQ linear ion trap mass spectrometer (Thermo, San Jose,
CA) was coupled with capillary reversed phase LC for col-
lection of MS/MS spectra. The tryptic digest of 7 standard
proteins was analyzed by 1D LC-MS/MS with 7 replicate
runs and the Human sample digests were analyzed by 2D
LC-MS/MS.

The acquired MS/MS spectra were searched using Turbo
SEQUEST in BioWorks 3.2 software suite (Thermo Finni-
gan, San Jose, CA). For 7 standard proteins, database was
the composite of protein sequences from yeast (9,492
entries) in forward and reverse orient as well as the for-
ward and reversed sequences of all control proteins with
trypsin and α-s2-casein (for the impurity of α-casein). The
database used for two human proteome samples was a
composite of normal IPI human database (v3.04, 49,078
entries) from European Bioinformatics Institute with
reversed version of the same database attached in the end.
MS/MS spectra were searched using fully tryptic cleavage

constraints and up to two missed cleavage sites were
allowed. Cysteine residues were set as static modification
of +57.0215 Da and methionine residues were set as vari-
able modification of +15.9949 Da. Mass tolerances were 2
Da for peptide and 1 Da for fragment. FDR was deter-
mined by Equation (1).

Development of software suite SFOER using GA
A Java software suite named SFOER was developed to
optimize filtering criteria using GA[29]. In GA, genes
(SEQUEST scores for the criteria in this study) are gener-
ally encoded into binary character strings including only
0 and 1. Chromosome is composed of a single binary
string where encoded genes are assembled one by one.
Each chromosome in a generation is called an individual.

Table 4: Parameter settings for the genetic algorithm

GA configuration

Variables 4
Population size 100
Crossover probability 0.2
Mutation probability 0.01
Bits Xcorr 9

ΔCn 9
Sp 12
Rsp 8

Fitness evaluation n (peptides)

Flowchart of the optimization procedure using genetic algorithmFigure 6
Flowchart of the optimization procedure using genetic algorithm. It starts with the initialization phase, which ran-
domly generates the initial population P0. Population in the next generation Pi+1 is obtained by applying genetic operators on 
current population Pi. Fitness for each individual (criterion) is evaluated as the number of filtered peptides. Evolution continues 
until a terminating condition is reached. The selection, mutation and cross-over operator are used in genetic algorithm.

Peptides from 
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Pep

Lib
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For our GA, four cutoff values including Xcorr, ΔCn, Sp
and Rsp were encoded into binary strings respectively.
And chromosome which indicated filtering criterion was
encoded into a 30-bit-long string. Details are shown in
Table 4.

Definition of a fitness function for evaluating individual
members of a population is perhaps the most crucial step
in designing genetic algorithm. The goal in this study was
to derive optimized filtering criteria that achieved maxi-
mal separation between correct and incorrect peptide
identifications and generated maximum sensitivity for
true positive peptide identifications under specified confi-
dence level (e.g. >99%). However, in most proteome
researches, numbers of total positive peptides were com-
monly unknown. Thus, we utilized the following fitness
function:

F(p) = n(p), (2)

where F(p) was the fitness value for a given filtering crite-
rion which was consisted of several cutoff values for differ-
ent scores, n(p) would be the number of overall positive
peptide identifications passed this filtering criterion. And
when FDR of peptide identifications filtered by a criterion
was higher than specification, fitness of this criterion was
set to zero. This function indicates the sensitivity of a spe-
cific criterion.

The genetic algorithm makes an optimization within a
cycle of several stages. It includes creation of a population
of individuals (criteria), evaluation of these individuals,
selection of individuals and breeding aided by genetic
manipulation to create offspring population (schematic
shown in Figure 6):

1. Creation of the starting population: The starting point
in genetic algorithm of the initial population was ran-
domly generated. One complete chromosome was assem-
bled of a certain number of different SEQUEST scores and
the population size was set as 100.

2. Selection: Roulette wheel selection pattern was chosen
for the determination of each individual's probability for
reproduction and breeding, concerning the policy that the
better a chromosome of a parent was the more descend-
ants with the same chromosomes were reproduced. When
the fitness of an individual became zero, this individual
was selected as death, and replaced by a new initial indi-
vidual.

3. Genetic manipulation: Two new breed chromosomes
were then performed by a single-point cross-over, whereas
genes were randomly altered along the length of a chro-
mosome at one point according to a natural occurring

cross-over. The cross-over rate was set to 0.2 and the rate
of a subsequently performed point mutation, thus a
binary character was changed from 1 to 0 or vice versa,
was set to 0.01.

Steps 2, 3 were repeated until termination of the optimi-
zation. A stop criterion was not pre-defined, owing to lim-
ited data known about the search space. In this study, we
used specific generations which can be set manually to ter-
minate optimizations.

All database search results were processed by SFOER to
generate optimized criteria on different confidence levels,
and then peptide identifications were filtered by these sets
of criteria. PeptideProphet which was downloaded as part
of Trans-Proteomics Pipeline (TPP)[43] from The Seattle
Proteome Center was also used to process these datasets.
All peptides assigned from database searching were parsed
by PeptideProphet to generate PeptideProphet-probabil-
ity using default parameters. Manual adjustment of pep-
tide probability threshold was used to generate peptide
identifications with different confidence levels.

Availability and requirements
The SFOER is developed using Java 2 Platform Standard
Edition (J2SE) Development Kit 5.0 (Sun Microsystems,
Inc) and is platform independent. Java Runtime Environ-
ment 1.5.0 or higher is required. It is distributed under a
GNU General Public License (GPL) and is available at
http://bioanalysis.dicp.ac.cn/proteomics/software/
SFOER.html.
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