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Abstract
Background: To date more than 2,1 million gene products from more than 100000 different
species have been described specifying their function, the processes they are involved in and their
cellular localization using a very well defined and structured vocabulary, the gene ontology (GO).
Such vast, well defined knowledge opens the possibility of compare gene products at the level of
functionality, finding gene products which have a similar function or are involved in similar biological
processes without relying on the conventional sequence similarity approach. Comparisons within
such a large space of knowledge are highly data and computing intensive. For this reason this
project was based upon the use of the computational GRID, a technology offering large computing
and storage resources.

Results: We have developed a tool, GENe AnaloGue FINdEr (ENGINE) that parallelizes the
search process and distributes the calculation and data over the computational GRID, splitting the
process into many sub-processes and joining the calculation and the data on the same machine and
therefore completing the whole search in about 3 days instead of occupying one single machine for
more than 5 CPU years. The results of the functional comparison contain potential functional
analogues for more than 79000 gene products from the most important species. 46% of the
analyzed gene products are well enough described for such an analysis to individuate functional
analogues, such as well-known members of the same gene family, or gene products with similar
functions which would never have been associated by standard methods.

Conclusion: ENGINE has produced a list of potential functionally analogous relations between
gene products within and between species using, in place of the sequence, the gene description of
the GO, thus demonstrating the potential of the GO. However, the current limiting factor is the
quality of the associations of many gene products from non-model organisms that often have
electronic associations, since experimental information is missing. With future improvements of
the GO, this limit will be reduced. ENGINE will manifest its power when it is applied to the whole
GODB of more than 2,1 million gene products from more than 100000 organisms. The data
produced by this search is planed to be available as a supplement to the GO database as soon as
we are able to provide regular updates.
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Background
Gene ontology (GO) [1-4], with the corresponding asso-
ciations with the gene products, is becoming a very valua-
ble and important form of knowledge in bioinformatics.
GO is already frequently used to analyse and cluster
results of many bioinformatics applications and espe-
cially high-throughput applications [5]. Such tools are
mainly used to elaborate an overrepresentation of a few
functions and processes in a large list of gene products in
order to provide clues as to what the gene products in the
list might have in common and to better understand the
biological background of the biological experiments
under investigation.

The GO model is a directed acyclic graph (DAG) in which
the terms and the term-to-term relationships provide the
conceptualisation of the biological domain of knowledge
[2]. The knowledge is split into three topics (term types),
namely 'biological process', 'molecular function' and 'cel-
lular component' and therefore into three independent
DAGs, used to describe gene products for all organisms. A
repository of the current GO terms and gene products
with GO associations is frequently compiled in a MySQL
database, the GO database (GODB) [3].

Collaborating institutions maintaining the major biolog-
ical databases provide sets of data consisting of links
between the database entries and GO terms, the so-called
associations. These associations are well documented and
characterized by the type of evidence supporting the associ-
ation. High-quality associations are available, structured
into 13 classes, normally based on a curatorial review of
the literature, experimental evidence or computational
analysis methods. Many associations were made using a
number of different automatic comparative methods cov-
ering both model and less experimentally traceable organ-
isms. More information about evidence classes can be
found on the Gene Ontology web site [6].

GO is a recent effort to provide a unique description of
gene products from a wide range of different organisms
and it is therefore still heterogenic in terms of precision
and reliability. Since experimental information is often
missing, gene products from less well-studied organisms
often inherit low level GO terms from orthologous gene
products of well-studied organisms such as human or
mouse. Therefore the precision and reliability of such
descriptions are much lower and this influences the qual-
ity of knowledge of the GO.

However, with the increasing number of gene products
described using GO terminology and the daily increase in
the precision of their description, GO will play an ever
more important role in comparing as well as establishing
links between gene products, of the same or across differ-

ent organisms, on the level of functionality. Finding gene
products from different species with similar functionality,
or those involved within biological processes similar to
the gene product in which they are interested, will benefit
researchers in many fields.

GRID computing is a quickly evolving technology driven
by several initiatives all over the world. In Europe the
EGEE (Enabling Grids for E-sciencE) project [7] is the
major driving force, beside smaller but no less important
national projects, to build on recent advances in GRID
technology and build a service GRID infrastructure which
is available to scientists 24 hours a day. In recent years the
GRID service has become a technique for users such as
physicists, chemists and biologists. In brief, the computa-
tional GRID connects under unique middleware a certain
number of computers representing the resources for com-
putation and storage. The connection is loose, as all the
computers involved are still independent. Jobs are sub-
mitted to the GRID by means of the User Interface (UI).
After submission, computers dedicated to job submission
management, known as resource brokers (RB), distribute
the jobs to free computers, the worker nodes (WN), for
execution. In this way a large number of computational
resources can be formed, such as the EGEE infrastructure
connecting more than 25000 CPUs [8]; it is theoretically
possible to use all these computational resources for a sin-
gle problem with a large number of jobs. However, the
EGEE infrastructure is divided into virtual organizations
(VO), and for biological and biomedical applications a
VO 'biomed' has been created, recently reaching a total of
more than 5000 CPUs.

In our study we presented Gene Analogue Finder
(ENGINE), an application of the GO to compare gene
products at the level of their description and to suggest
gene products that are functionally analogous to each
other. Conventional methods of comparing different gene
products are principally based on a comparison at the
level of the corresponding sequences. According to the
sequence similarity, the gene products are considered sim-
ilar also in respect to their function. However, the
"sequence – function" correlation is only partially appli-
cable. With ENGINE, using the GO, we are able to com-
pile comparisons between gene products on the level of
their descriptions, profiting from the large and continu-
ously increasing knowledge about all the annotated gene
products.

Such a comparison [SGC1] within such a large amount of
gene products already associated to GO terms, and the
resulting high number of associations, the search has
become a data- and process-demanding task and would
occupy our cluster for months or even years. The approach
we were followed to solve this resource problem was to
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distribute the MySQL database GODB over the available
computational GRID resources, paralleling the search
process and reducing the load on the single computers
involved to several hours, processing the total search in
about 3 days.

Hence, we have demonstrated the potential of the GO to
find functionally analogous gene products and the power
of the computational GRID to solve such large data com-
parisons.

Results
The algorithm
Path information
To calculate similarity between gene products based on
gene ontology (GO), we cannot consider only the associ-
ated gene ontology terms (GO terms). Apparently differ-
ent associated terms might share parental terms with
similar global functionality. To profit from this informa-
tion we need to search for all the parental terms of the
associated terms; in other words, we need to build the
paths from the associated terms to the root of the tree, and
then compare the whole paths of associated GO terms
between two gene products. All the path's GO terms dif-
ferent from the directly associated ones are called indirectly
associated terms. The advantage of this approach over a pre-
viously proposed one in which only the first common par-
ent was used for the comparison [9] lies in the observation
that a longer path characterizing an associated GO term
corresponds to better knowledge of the specific gene prod-
uct as well as the corresponding functions and processes
the gene product is involved in. Using all members in the
path for a comparison of two gene products, the similarity
value increases when more terms are shared between the
two gene products, but it also decreases when many terms
not in common are present. With this approach of using
the path for the comparison we take into account all the
known knowledge. However, just comparing the number
of common and non-common terms is not an accurate
approach, since the information content of different GO
terms is different and should be weighted accordingly.

Semantic similarity measurement
Moving along the path of a specific GO term away from
the root, the detail of the information of a given term
increases from node to node. The specificity of informa-
tion is directly dependent upon the level of the node
within the path, but it is not comparable between two dif-
ferent paths. A GO term at level 6 in one path can be much
less descriptive than a term at the same level in another
path. Therefore, using the level within a path as a meas-
urement of similarity is a poor technique. One method of
determining the semantic similarity of two terms is to
examine how frequently those terms are used to describe
different gene products [9,10] considering the notion of
'information content'. The less a term of a vocabulary is
used the higher the information content and the more
descriptive it is.

We therefore calculated the probability p(term) for every
term by counting the number of gene products associated
with a term or any of its children, divided by the number
of total associations between the GO terms and gene
products. Information content (detail level of the descrip-
tion) is inversely proportional to p(term) (Table 1). The
highest p(term) values are found for GO terms 'molecular
function', 'biological process' and 'cellular component',
which are the roots of the three DAGs, however, their
p(term) value is not 1 (Table 1), since not every gene
product has an association with all three term types. Table
1 demonstrates that terms of the same level in different
paths can have clearly different information content and
therefore different p(term) values. The p(term) value was
then used as a weight within the statistical analysis and
entered as 1-p(term) to obtain an additive weight system
for high 'information content' GO terms.

Statistics for comparison
The non-parametric χ2 – test is a typical statistical test used
to compare two different samples, in our case two gene
products A and B, according to some characteristics or
aspects, in our case the GO terms directly or indirectly
associated with the gene products. Since every gene prod-
uct can be described using a different number of GO

Table 1: Examples of p(term) values

name level term-type count p(term)

molecular_function 1 molecular_function 3471081 0.477303
biological_process 1 biological_process 2243629 0.308518
cellular_component 1 cellular_component 1864423 0.256374
hormone activity 4 molecular_function 4504 0.000619338
gliogenesis 4 biological_process 95 1.30633e-05
cell fate specification 5 biological_process 204 2.80517e-05
angiogenesis 7 biological_process 363 4.99156e-05

Examples of GO terms and their level in the tree are listed including their frequency of use (count) to describe gene products and the 
corresponding p(term) value.
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terms, the table of values was designed as a 2 × 2 array
containing the sum of 1-p(term) of present or absent GO
terms according to the two compared gene products.
(Table 2) [11]. In this way we have the same degree of
freedom for all gene-product-to-gene-product compari-
sons; therefore the χ2 – values are comparable. All three
term-types were taken into account for the main search in
order to increase the total description and to enable sepa-
ration of, for example, two gene products with the same
function acting in different cellular components. How-
ever, we also calculated the statistics for each separate
term-type to have a 'molecular function', 'biological proc-
ess' and 'cellular component' specific comparison to find
functional analogues based only on one term-type. This is
an example of how our method can be used to find gene
products exhibiting a particular functionality which is
independent of their cellular localization.

To reduce the vast amount of output data, we stored only
the best 100 hits in the output file, including, according to
a pre-evaluation of the algorithm (data not shown), the
most significant candidates for a functional analogy. The
best 100 hits were chosen by sorting the components of
the total output list by their χ2 – squared values and select-
ing the 100 highest values.

The computing
Data set
The version of the GO database (GODB) used for the
present study (version 2005-11-1) contained 20088 terms
within the three trees. Those terms described more than
1760000 gene products with more than 7200000 associa-
tions.

To ensure that for all gene products we found the best
functional analogues within the whole GODB, the GO
terms of one gene product should have been compared
with all other gene products in the GODB. However,
many gene products are associated with only a few and/or
low 'information content' GO terms. A previous test run
comparing more than 100000 gene products showed that
those with fewer than 15 directly or indirectly (parents)
associated GO terms should not be considered by the
search for the first 100 best hits (unpublished data). For
this reason, all gene products with 15 or fewer directly or
indirectly associated GO terms were eliminated from both
the input list and the total list of gene products with GO
terms associated. With this restriction, the total gene prod-
uct list of 1763776 entries was drastically reduced to
1076279 gene products (61% of total). Our input list
included all gene products related to 13 fully sequenced
organisms annotated within Ensembl [12], namely
Caenorhabditis elegans, Caenorhabditis briggsae, Anopheles
gambiae (African malaria mosquito), Drosophila mela-
nogaster (fruit fly), Apis mellifera (honey bee), Danio rerio
(zebrafish), Gallus gallus (chicken), Pan troglodytes (chim-
panzee), Homo sapiens (human), Mus musculus (house
mouse), Rattus norvegicus (Norway rat), Takifugu rubripes,
and Tetraodon biocellatus. A total of 125791 gene products
in the GODB belong to these organisms. Applying the '15
directly or indirectly associated GO terms' rule results in a
final input list of 79125 gene products (63% of candi-
dates). Therefore the search compares 79125 with
1076279 gene products, resulting in more than 85 billion
comparisons.

Computational solution
The algorithm for the statistical comparison of two gene
products according to their description was implemented

Table 2: The 2 × 2 array for the χ2 calculation

Terms present in gene product A Terms not present in gene product A

Terms present in gene product B

Terms not present in gene product B

The 2 × 2 array used for the χ2 – calculation to compare gene product A with gene product B.
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in Perl. The necessary information was retrieved by access-
ing the GODB by means of the Perl 'DBI' modules, while
the 'Statistics_chisquare' module was used for the χ2 – cal-
culation [13]. The analysis of one gene product against all
other selected gene products occupies one CPU (1.0 GHz
Pentium III) for between 30 and 45 min., depending on
the number of associated GO terms. The analysis of all
79125 gene products would require approximately 5
CPU-years.

Due to the enormous quantity of computer resources
available, the GRID enables splitting a large, complex
application into many smaller jobs running in parallel,
greatly reducing execution time. For this specific case,
however, splitting the full search into several smaller jobs
does not increase the speed of the search, because the lim-
iting factor is the limited bandwidth of the single database
which contains all the required information. Improving
the performance of the search application will require
increasing the number of data sources; the best possible
performance will be obtained by providing a database
server for each job running on the GRID.

An important new capacity of ENGINE is its ability to dis-
tribute and temporally install a relational database such as
MySQL on the same WN on the GRID where ENGINE is
running. In most applications simple files are distributed
and used for calculation. ENGINE can distribute and
install on each WN the GODB downloaded from the
godatabase site without further modification, thus reduc-
ing maintenance time for the application. A locally
installed database not only drastically reduces processing
time, since there is no competition between several paral-
lel queries, but also there is and no network transition
time, which is very important for data-access intensive
processes.

The INFN production GRID [14] was used for the search.
Its primary scope is to provide computational resources to
INFN high-energy physics experiments, but it is also open
to other sciences. It is part of the EGEE infrastructure,
comprising more than 20 sites all over Italy and, at the
time of the search, integrating more than 1500 CPUs,
mostly Pentium IIIs and IVs or equivalents, all running
the Linux Red Hat 7.3 operating system. Most of the farms
were using Open-PBS [15] as their local batch system,
while some used LSF [16]. The GRID middleware was
LCG2.6 [17].

That functionally equivalent computers, all running the
same operation system, were used throughout the GRID
infrastructure helped simplify the database installation
procedure; a static linked binary MySQL server was used.
To guarantee faster data installation, the database content
was transferred from the central repository to the worker

nodes using the MySQL binary format. Before the actual
search job was started, a bash script, launched on the WN,
performed the entire installation procedure by executing
all needed operations in a well-defined order and by mak-
ing all necessary checks to verify whether the created envi-
ronment was adequate to run the job.

After installing the database, ENGINE installs and sets up
the Perl libraries for use by the ENGINE Perl script. Since
the use of Perl and its modules is very common in bioin-
formatics, this type of distributed installation may also be
of interest for other applications.

The installation procedure described above was executed
without incident on all sites of the INFN production
GRID infrastructure which support virtual organization
(VO) "bio".

Submitting the job to the GRID
To perform the analogous genes search, the entire list of
reference gene products (79125) was split into sub-lists of
20 gene products each. The number of gene products per
job was chosen to produce jobs with execution times
short enough to avoid problems due to accidental hard-
ware or software crashes, but long enough to keep envi-
ronment set-up time negligible compared to the total job
execution time. With the chosen number of genes, the
jobs lasted ten hours on average, while environment set
up time was on the order of only 6% of job execution
time.

The jobs were submitted by means of a Perl script, run-
ning on the User Interface (UI), which first created the job
input file with the sub-list of gene products assigned to
that particular job by splitting the full list of reference
gene products. Then the job description file (jdl file) was
created with appropriate input and output file names,
which varied from job to job for bookkeeping reasons.
Finally, the script consecutively submitted each job, with
its corresponding input file, bash script, and jdl file, for
parallel execution. It also initialized the monitoring of the
job by activating JAM, a Job and Application Monitoring
tool [18]. JAM made it possible to follow the steps per-
formed by the bash script during the WN environment
installation phase and to keep track in real time of all gene
products already examined by all jobs running on the
GRID. JAM registered all failed comparisons, which were
then re-submitted to successfully complete the full search.

At fixed time intervals, output files produced by com-
pleted jobs were retrieved and checked for missing infor-
mation caused by job failures. A different Perl script was
used to identify the missing genes, to generate new lists
with those gene products and to re-submit jobs to com-
plete the whole search.
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In Figure 1 a schematic view of the different processes is
shown, including job submission, creation of the local
running environment (MySQL server installation and
database population), job monitoring (by JAM) and data
retrieval.

The search for the analogous candidates for the list of ref-
erence gene products (79125) required the submission of
a total of 5200 jobs to the GRID, each with 20 gene prod-
ucts as search input. The jobs were distributed to as many
as 950 WN assigned by the Resource Broker. Failed jobs
(about 16%) were restarted. Total computing time was
more than 52000 CPU hours (~ 6 CPU years), including
the time needed to set up the running environment, data
base and library installations (6% of overall job length).
The search was completed in about three days. The accel-
eration of the process was about 580 times, taking into
account the re-running of failed processes, the time for
necessary installations per job, and that not all those 950
WN were available at any time.

Significance of the search results
To demonstrate the value of the search results, we per-
formed a variety of different analyses on the data. One
measure of how well a gene product is described, among
others, is the number of other gene products having
exactly the same description; the description of a gene
product is the non-redundant list of all directly and indi-
rectly associated GO terms. We divided the results into
three groups according to the number of identically anno-
tated gene products. Group 1 (26587; 33.6%) comprised
those analyzed gene products which had a unique descrip-

tion. In group 2 (10251; 13.0%), the analyzed gene prod-
ucts shared exactly the same description with fewer than
100 other gene products, and in group 3 (42286; 53.4%),
more than 100 other gene products. About half of the
gene products (groups 1 and 2) have quite detailed
descriptions, which makes it possible to distinguish them
from the majority of the analysed gene products. This pro-
portion should increase for each new GODB release, since
the list of GO terms is increasing and, more importantly,
the quality and the number of associations are improving.

Another measure of the quality of the description is the
total number of directly and indirectly associated terms
(parents). As mentioned before, as the total number of
directly and indirectly associated terms increases, the gene
product's description becomes more detailed; therefore,
the more common terms two gene products share, the
higher the quality of the comparison. The average number
of common terms in group 1 is higher than within the
other groups but decreases with increasing ranking
number of the hits (Figure 2). However, the first 25 ranks
still have a higher average number of common terms than
groups 2 and 3, demonstrating that the quality of compar-
ison is higher in group 1 than in groups 2 and 3.

The same analysis, carried out individually for term types
'molecular function' and 'biological process', clearly

Common term distributionFigure 2
Common term distribution. The average number of 
common terms between the input gene product and the 
analogous gene product found is plotted against the ranking 
of hits. Group 1 members are plotted in yellow, group 2 in 
purple, and group 3 in blue. x-axis: Ranking of the search hits 
according the χ2 – value; y-axis: Average of total common 
terms between the input gene product associations and the 
hit gene product associations.

Job submission schema and data flowFigure 1
Job submission schema and data flow. A job is initiated 
at the user interface (UI) and forwarded by the resource 
broker (RB) to the worker nodes or farms. In parallel a job 
monitoring procedure (JAM) is started to test the success of 
the executed job. The execution on the farms firstly initiates 
a download of the required data from a storage element (SE) 
followed by the effective computing. Then the results can be 
recovered from the farm via the UI.
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showed that the combination of the three term types pro-
duces a much better description than any term type alone.
For example, by using only term type 'biological process',
the search found that 95% (75442) of the input gene
products were described by GO terms of type 'biological
process'. Of this number, only 17.2% (12943) belonged
to group 1, 14.0% (10571) to group 2 and the majority,
68.8% (51928) to group 3. By using only term type 'molec-
ular function', the corresponding values were as follows:
94% (74088) had association terms of type 'molecular
function', 12.3% (9092) of which belonged to group 1,
20.1% (14882) to group 2, and 67.6% (50114) to group
3. Limiting the comparison to only a single term type, the
number of significantly described gene products (groups
1 and 2) dropped drastically. However, we expect that the
improvement of the GO and its associations will increase
the percentage of well described gene products, i.e., those
falling in groups 1 and 2.

These latter results also confirmed the success of the '15
directly or indirectly associated GO terms' rule to elimi-
nate the low level described gene products before the
search; most of the gene products have associations with
GO terms of all term types. Of the total number of gene
products covering the chosen species, only 89% had an
association to term type 'molecular function' terms and
only 76% to term type 'biological process' terms. Those val-
ues were increased to 94% and 95%, respectively, when
the '15 directly or indirectly associated GO terms' rule was
applied.

Another measure of the quality of the search results is an
analysis of the frequency of use of the involved types of evi-
dence. There are 13 different codes for the type of evidence
validating the GO association, of which 8 are based on
experimental information and 3 on computational meth-
ods (Table 3). The more types of evidence based on experi-

mental information are involved in our comparative
analysis, the more the search results differ from computa-
tional methods based on sequence comparison, and the
more biological information influences our functional
analogy search.

A graphic was compiled with an average frequency of use
of every type of evidence code at every position of the rank-
ing of the best 100 hits (Figure 3). This graph demon-
strates that the evidence 'Inferred from Electronic
Annotation' (code IEA) is the most used type of evidence
and that it is equally applied throughout all three groups
we defined above. The IEA evidence is critical, since it can
add valuable additional information to the gene product
description, but it can also add incorrect information due
to incorrect assumptions. However, it is more important
that the frequency of use of all experimental evidence codes
such as 'Traceable or Non-traceable Author Statements'
(TAS or NAS) are significantly higher in the first two
groups to validate our results in those groups. Further-
more, the frequency of use drops towards the end of the
ranking, indicating a decrease not only in the similarity
but also in the specificity and number of descriptions. In
group 3, evidence codes such as IEA and ISS are more prom-
inent, pointing out that the electronically associated GO
terms are overrepresented in gene products with poorer
descriptions. In group 2, most of the frequencies of use of
the experimental evidence behave similarly to the group 1
members and therefore can be evaluated as significantly
described gene products. This evidence code usage speaks in
favour of our analysis of analogous gene products, show-
ing that the significant hits (groups 1 and 2) are domi-
nated by experimental evidence and that they clearly
distinguish their information content from sequence
comparison.

Table 3: Evidence description and codes

Description Code

Inferred by Curator IC experimental
Inferred from Direct Assay IDA experimental
Inferred from Electronic Annotation IEA computational
Inferred from Expression Pattern IEP experimental
Inferred from Genetic Interaction IGI experimental
Inferred from Mutant Phenotype IMP experimental
Inferred from Physical Interaction IPI experimental
Inferred from Sequence or Structural Similarity ISS computational
Non-traceable Author Statement NAS experimental
No biological Data available ND --
Inferred from Reviewed Computational 
Analysis

RCA computational

Traceable Author Statement TAS experimental
Not Recorded NR --

Description of the evidence code and assignment to experimental or computational methods.
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Both analyses of the nature of the GO show that the state
of knowledge is mature for running comparative analysis
but that it is not yet sufficient to efficiently include data
from the whole set of gene products. However, and more
importantly, we demonstrate that the GO has the poten-
tial to harbour knowledge for such an analysis.

For quality control on a biological level, we analyzed two
gene products: BCL2_HUMAN [UniProt: P10415], a well
studied apoptosis gene; and Q88869_MIDDV [UniProt:
Q88869] a non-structural polyprotein gene of a mosquito
alphavirus, the Middelburg virus. The latter represents a
well described gene product of a non well known organ-
ism, which adds valuable information to a functional ana-
logue search. We limited this analysis to the 30 best hits.
Table 4 lists a collection of information describing the
biology of the 30 best suggested analogous gene products
of BCL2_HUMAN. Firstly, BCL2_HUMAN was found as
the only best hit and therefore is a well-described gene
product. Within the 30 best hits we found 12 other gene
products which, according to the protein family database
(Pfam) [19,20], belong to the same family, the Bcl-2 fam-
ily. 4 gene products belong to another apoptosis protein
family, the apoptosis inhibitory protein 5 (API5) family.
This demonstrates how ENGINE can find members of the
same or of a similar protein family, which is an important
confirmation of our algorithm. It is important to mention
that members of gene families within Pfam are assigned
by sequence similarity and therefore can be found by
sequence based approaches. Focusing on the Bcl-2 family,
ENGINE found 5 out of 6 BCL2 orthologous gene prod-

ucts present in the SwissProt database [21-23] with high
sequence similarity (Figure 4a, line). Only the mouse
orthologue was missing. It seems that there were prob-
lems in the mouse association data set of the GODB we
used; therefore, it was hard to find any mouse analogues
in any search. This problem will be resolved by a future
update of our search results, which will use a new version
of the GODB.

Most Bcl2 orthologues, however, have a significantly
lower-than-maximum χ2 – value. Figure 4a shows the
number of common (purple columns) and non-common
(blue columns) terms and indicates that those ortho-
logues do not have nearly as many associated terms as do
the BCL2_HUMAN and the rat orthologues. An examina-
tion of the evidence code for these associations shows that
the orthologous ones inherited the GO terms from well
described orthologues, often via common functional
domains, and are not yet as well described by experimen-
tal evidence as are the human and rat Bcl2. Figure 4a also
shows that most of the gene products within the first 30
ranks have 50% or more terms in common with
BCL2_HUMAN but the χ2 – value is reduced because of
the high number of non-common terms pointing out
other functions than those shared with BCL2_HUMAN.

Among the 13 non-Bcl-2 and non-API5 gene products, 8
are, according to their gene descriptions, related to apop-
tosis, 1 oncogene homolog, 3 inflammation related and
one unknown gene product. Evaluating the common GO
terms we find in all, except in the inflammation related

Frequency of evidence codesFigure 3
Frequency of evidence codes. The average frequencies of use of the 13 evidence codes are plotted against the ranking of 
the hits. For every evidence code the frequencies were split according to the three groups 1 (blue), 2 (purple) and 3 (yellow). 
x-axis: evidence code and the corresponding first 100 ranks for each evidence code (see Table 2), y-axis: frequency of usage of 
the evidence codes.
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Table 4: Example with BCL2_HUMAN

Ranking Symbol UniProt χ2 Common 
terms

Pfam Organism Local alignment  

hit size Identity %

1 BCL2_HUMA
N

P10415 20080,7 62 Bcl-2 Homo sapiens 239 100.0

2 Bcl2 P49950 19405,8 61 Bcl-2 Rattus 
norvegicus

239 89.1

3 BCLX_HUM
AN

Q07817 13329,9 44 Bcl-2 Homo sapiens 238 45.0

4 Becn1 Q91XJ1 10944,1 43 APG6 Rattus 
norvegicus

108 23.1

5 BNIP3_HUM
AN

Q12983 10529 39 BNIP3 Homo sapiens 263 18.3

6 Bcl2l1 P53563 10426,8 45 Bcl-2 Rattus 
norvegicus

238 44.5

7 ATBI-1 Q9LD45 10199,5 34 UPF0005 Arabidopsis 
thaliana

152 18.4

8 API5_PONPY Q5R644 10015,8 34 API5 Pongo 
pygmaeus

80 25.0

9 Q7ZY79_XE
NLA

Q7ZY79 10015,8 34 API5 Xenopus 
laevis

36 30.6

10 Mcl1 Q9Z1P3 9987,1 42 Bcl-2 Rattus 
norvegicus

185 30.3

11 MCL1_HUM
AN

Q07820 9987,1 42 Bcl-2 Homo sapiens 265 23.4

12 AIF1_HUMA
N

P55008 9494,6 37 - Homo sapiens 33 30.3

13 O60667 O60667 9365,6 32 - Homo sapiens 50 38.0
14 BI1_HUMAN P55061 9345,2 34 UPF0005 Homo sapiens 155 19.4
15 Ets1 P41156 9302,5 42 Ets Rattus 

norvegicus
53 28.3

16 API5_CHICK Q5ZMW3 9245,1 34 API5 Gallus gallus 107 23.4
17 Bcl2l2 P70345 9232,3 30 Bcl-2 Mus musculus 235 37.0
18 Bnip1 Q8VHI8 9206,8 29 Sec20 Rattus 

norvegicus
25 32.0

19 BNIP1_HUM
AN

Q12981 9206,8 29 Sec20 Homo sapiens 13 38.5

20 Son_predicte
d

Q6PDU3 9160,2 33 - Rattus 
norvegicus

21 BNIPL_HUM
AN

Q7Z465 9114,8 33 - Homo sapiens 73 23.3

22 BCL2_BOVI
N

O02718 9109,8 29 Bcl-2 Bos taurus 239 90.4

23 BCL2_CHIC
K

Q00709 9109,8 29 Bcl-2 Gallus gallus 246 74.4

24 BCL2_CRIGR Q9JJV8 9109,8 29 Bcl-2 Cricetulus 
griseus

239 89.1

25 Api5 O35841 9083,1 32 API5 Mus musculus 80 25.0
26 Il1a P16598 9080,0 43 IL1 Rattus 

norvegicus
92 21.7

27 IL1A_HUMA
N

P01583 9077,8 43 IL1 Homo sapiens 42 26.2

28 Q9HD91 Q07820 9060,0 39 Bcl-2 Homo sapiens 265 23.4
29 Q9UNJ1 Q07820 9060,0 39 Bcl-2 Homo sapiens 265 23.4
30 Q8HYS5_CA

NFA
Q8HYS5 9060,0 39 Bcl-2 Canis 

familiaris
215 28.4

The table contains the following information: The ranking of the potential functional analogues of BCL2_HUMAN according the χ2 – value, the gene 
name and the UniProt accession number, the χ2 – value, the number of common terms between a hit and BCL2_HUMAN, the Pfam name with 
short domain description the gene product belongs to, the organism the gene products is from, and the local alignment characteristics, such as hit 
length and the % identity of the hit, of the alignment between BCL2_HUMAN and the hit sequence.
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gene products, terms related to apoptosis and more spe-
cific anti-apoptosis. The inflammation related gene prod-
ucts have terms linked to regulation of cell proliferation in
common with BCL2_HUMAN.

Comparing the results by means of sequence similarity
(Figure 4a, line), it becomes clear that apart from the
orthologous gene products, all sequences have a similarity
value below 0.5; for genes products not belonging to the
Bcl-2 family the value is below 0.2. Therefore it is very dif-
ficult to define them as 'similar to BCL2_HUMAN' accord-
ing to the sequence comparison; they were selected by
ENGINE because of their similar description.

The second example, Q88869_MIDDV, is illustrated in
Table 5, a collection of information about analogous gene
products. Q88869_MIDDV also has a unique description

and appears to be the best hit. This example was chosen
because it is an example of a well described gene product
from a non-model organism having non-electronic evi-
dence for all its associated terms. Since Q88869_MIDDV
is a short gene product (37 amino acids), there are no
known protein domains reported (Table 5); a tblastn
search found only fragments of other virus which have
mostly GO associations to RNA polymerase activity and
RNA processing (data not shown). However, with the
help of ENGINE, and because the researcher had commu-
nicated some experimental information to GOA, we could
find functionally analogous gene products with a similar
GO term profile in organisms such as human, rat, mouse,
Arabidopsis, fruitfly (as a representative of insects), and the
protozoan cause of the sleeping disease, Trypanosoma bru-
cei; a total of 10 different organisms. Q88869_MIDDV has
general functional annotations such as 'transporter activ-

Sequence identity versus number of common and non-common GO termsFigure 4
Sequence identity versus number of common and non-common GO terms. A comparison of the sequence similarity 
is plotted together with the percentage of common terms (purple columns) and the non-common terms (blue columns) of 
potential functional analogues of a) BCL2_HUMAN and b) Q88869_MIDDV. The percentages of the common terms are in 
relation to the number of terms associated to a) BCL2_HUMAN and b) Q88869_MIDDV, whereas the percentage of the non-
common term is calculated in relation to the total associated terms of the same gene product. x-axis: gene products with 
decreasing ranking; y-axis: percentage of common or non-common terms and percentage of sequence identity.
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Table 5: Example with Q88869_MIDDV

Rating Symbol UniProt χ2 Common 
terms

Pfam Organism Local alignment  

Hit 
length

Identity 
%

1 Q88869_MIDDV Q88869 20080,7 54 No Middelburg virus 37 100.0
2 O75901 O75901 19332,8 54 RA, RasGTP effectors Homo sapiens 28 25.0
3 Pamci O88869 17455,7 54 RA, RasGTP effectors Rattus norvegicus 6 66.7
4 Tb09.244.2760 Q38CZ1 12733,8 44 -, Golgi dynamics Trypanosoma brucei 36 27.8
5 Tb11.01.6880 Q381R2 12733,8 44 GP25L, Golgi dynamics Trypanosoma brucei 44 22.7
6 TOM1_HUMAN O60784 11529,8 35 VHS; membrane targeting Homo sapiens 42 23.8
7 Vps28 Q9D1C8 11486,0 32 VPS28, Vacuolar protein 

sorting
Mus musculus 40 32.5

8 AT1G28490.1 Q946Y7 11360,8 32 SNARE, vesicular fusion Arabidopsis thaliana 33 21.2
9 AT1G28490.2 11360,8 32 SNARE, vesicular fusion Arabidopsisthaliana 21 23.8
10 AT5G16830 Q39233 11011,1 35 SNARE, vesicular fusion Arabidopsis thaliana 27 29.6
11 AT5G46860.1 P93654 11011,1 35 SNARE, vesicular fusion Arabidopsis thaliana 30 30.0
12 CG9308 Q9W2A6 11007,0 36 GP25L, Golgi dynamics Drosophila 

melanogaster
14 28.6

13 AT5G26980.1 O65359 10926,6 34 SNARE, vesicular fusion Arabidopsis thaliana 24 29.2
14 AT4G02195.1 Q9SWH4 10926,6 34 SNARE, vesicular fusion Arabidopsis thaliana 24 33.3
15 AT5G26980.2 10926,6 34 SNARE, vesicular fusion Arabidopsis thaliana 24 29.2
16 SPBC4F6.05c O42707 10881,4 35 Lectin_leg-like Schizosaccharomyces 

pombe
31 25.8

17 COPB_HUMAN P53618 10873,7 39 No Homo sapiens 23 30.4
18 VPS27 P40343 10803,4 33 VHS; membrane targeting Saccharomyces 

cerevisiae
32 31.2

19 tlg1 Q9HGN3 10758,7 32 SNARE, vesicular fusion Schizosaccharomyces 
pombe

38 18.4

20 ENT5 Q03769 10505,4 38 ENTH, membrane 
interacting

Saccharomyces 
cerevisiae

27 14.8

21 sft2 Q9P6K1 10398,2 33 SFT2, vesicular transport Schizosaccharomyces 
pombe

11 36.4

22 Cope O89079 10365,0 32 Coatomer_E, Golgi to ER 
transport

Mus musculus 29 27.6

23 Copb1 P23514 10363,2 37 Adaptin_N; coated vesicles Rattus norvegicus 23 30.4
24 Tgoln2 Q4G0B6 10255,5 34 No Rattus norvegicus 14 28.6
25 Vps26 P40336 10182,5 29 Vps26, Vacuolar protein 

sorting
Mus musculus 7 57.1

26 SPAC630.11 Q9UUH1 10182,0 30 Vps55, Vacuolar protein 
sorting

Schizosaccharomyces 
pombe

9 44.4

27 apl4 Q9UU81 10141,8 37 Adaptin_N; coated vesicles Schizosaccharomyces 
pombe

17 35.3

28 apm1 Q9HFE5 10141,8 37 -, Clathrin coated vesicles Schizosaccharomyces 
pombe

24 25

29 apl2 O43079 10141,8 37 Adaptin_N; coated vesicles Schizosaccharomyces 
pombe

16 37.5

30 Q6DE70_XENLA Q6DE70 10135,7 33 C2, Ca2+-dependent 
membrane-targeting

Xenopus laevis 8 50.0

The table contains the following information: The ranking of the potential functional analogues of Q88869_MIDDV according the χ2 - value, 
the gene name and the UniProt accession number, the χ2 - value, the number of common terms between a hit and Q88869_MIDDV, the Pfam 
name with short domain description the gene product belongs to, the organism the gene products is from, and the local alignment 
characteristics, such as hit length and the % identity of the hit, of the alignment between Q88869_MIDDV and the hit sequence.
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ity' and 'protein binding', is involved in more specific
processes such as 'protein targeting' and 'endosome trans-
port', and has the specific locus descriptions 'endosome'
and 'trans-Golgi network transport vesicle membrane'.
Functional analogues ranked 2 and 3 (a human and a rat
endosomic gene product with a RasGTP effectors domain)
have almost identical term profiles, as confirmed by their
χ2 – values. However, sequence similarity is very low (Fig-
ure 4b) and it would be improbable to find them using a
sequence based approach. All other hits are involved in a
kind of vesicle transport activity, which can be deduced
from the kinds of domains those gene products contain,
with some common directly associated terms and mostly
common parental terms. This example demonstrates that
ENGINE can assist a scientist with a gene product with
experimental annotations to find functionally similar
gene products, which could provide further information
for future experiment planning.

In both test gene products we found hits in more than 10
different organisms, proving that ENGINE finds function-
ally similar gene products across several organisms, not
only human or model organisms.

Comparison with similar tools
ENGINE was compared with the GO-family tool, a mem-
ber of the long list of tools using GO, which calculates a
functional similarity measurement using the GO. The
GO-family tool is part of the package called GOToolBox
[24], that uses a statistical method to compare two gene
products according to their descriptions via the GO and
calculates a list of functionally similar gene products for a
gene product of interest.

The main differences between the tools are:

- GO-family is limited to 7 organisms, all of them model
organisms (Arabidopsis thaliana, Caenorhabditis elegans,
Drosophila melanogaster, Homo sapiens, Mus musculus, Rat-
tus norvegicus, Saccharomyces cerevisiae), whereas ENGINE
compares the gene products from 13 model organisms
with gene products of all available organisms within the
GODB.

- GO-family uses the method of DICE distance (alias
Sorensen, Czekanowski), giving double-weighting to the
common terms, whereas ENGINE uses a χ2 – approach,
including a semantic measurement to weight the informa-
tion content of each term used for the comparison.

A common search was performed with both tools for the
BCL2_HUMAN gene product. Comparing only the 30
best hits shows that only 7 gene products are in common,
and they all belong to the Pfam BCL2 protein family. Fur-
ther, ENGINE finds 14 BCL2 family members, whereas

GO-family finds 7; ENGINE's 30 best hits contain gene
products from 8 different protein families, whereas the
output from GO-family is distributed over 14 protein
families; and ENGINE's output contains gene products
from 8 different species, whereas the output of GO-family
is from 4 different species.

Discussion and conclusion
With ENGINE we demonstrate that GO has the potential
to be used not only for analysis of biological data but also
directly for comparative researches like the search for
functional analogues we implemented in ENGINE. When
compared with other similar tools, in particular with the
GO-family tool, we find that ENGINE provides different
and complementary information.

However, it is important to mention that although there
is a large space of knowledge provided by the GO, there
are still limitations for an optimal comparative analysis.
Too many gene products and mainly from non-model
organisms have low level and/or prevalently electronically
evaluated associations. For this reasons too many gene
products have an identical description: only additional
experimental knowledge will differentiate those gene
products from each other. There is also a certain redun-
dancy for the same biological abstraction leading to a sep-
aration of the same biological function and therefore also
to the separation of the corresponding gene products. This
limitation of the GO has to be taken in account, also from
the side of all other tools using this knowledge. Due to the
fact that GO is daily updated, it is conceivable that most
of these problems will progressively be reduced. It is
worth to state again that additional effort is required to
improve the GO by adding more experimental informa-
tion for non-model organisms and really push the GO
over the crucial limit for being used for optimal compara-
tive analysis.

The run of ENGINE over the GRID showed to be highly
effective: the functional analogy search was divided in a
large number of jobs and distributed over the INFN pro-
duction GRID to reduce the processing time from about 5
years on a single machine to about 3 days occupying up to
950 worker nodes. The acceleration of the process was
measured to be 580 times. The prototype framework used
by ENGINE for the remote installation of the MySQL DB
and of the Perl Library, the application monitor per-
formed by JAM and the job submitting mechanism
showed to be highly reliable and quite general to be
applied in other bioinformatics applications as well as in
other research fields.

Recently we have been working on a new version of
ENGINE applicable to the steadily increasing whole set of
more than 2 millions gene products in the GODB using
Page 12 of 13
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:329 http://www.biomedcentral.com/1471-2105/8/329
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

the GRID infrastructure of EGEE, and, importantly, an
efficient updating procedure to profit from the new
monthly GODB versions and increasing knowledge to be
able to provide with the same frequency the new search
data.
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