
BioMed Central

Page 1 of 10
(page number not for citation purposes)

BMC Bioinformatics

Open AccessMethodology article
A Bayesian nonparametric method for prediction in EST analysis
Antonio Lijoi1, Ramsés H Mena*2 and Igor Prünster3

Address: 1Department of Economics and Quantitative Methods, University of Pavia, 27100 Pavia and Institute for Applied Mathematics and 
Information Technology, National Research Council, 20133 Milan, Italy, 2Research Institute for Applied Mathematics and Systems, National 
Autonomous University of Mexico, Mexico City, A.P. 20-726, Mexico and 3Department of Statistics and Applied Mathematics and ICER, University 
of Turin, 10122 Turin and Carlo Alberto College, 10024 Moncalieri, Italy

Email: Antonio Lijoi - lijoi@unipv.it; Ramsés H Mena* - ramses@sigma.iimas.unam.mx; Igor Prünster - igor@econ.unito.it

* Corresponding author    

Abstract
Background: Expressed sequence tags (ESTs) analyses are a fundamental tool for gene
identification in organisms. Given a preliminary EST sample from a certain library, several statistical
prediction problems arise. In particular, it is of interest to estimate how many new genes can be
detected in a future EST sample of given size and also to determine the gene discovery rate: these
estimates represent the basis for deciding whether to proceed sequencing the library and, in case
of a positive decision, a guideline for selecting the size of the new sample. Such information is also
useful for establishing sequencing efficiency in experimental design and for measuring the degree of
redundancy of an EST library.

Results: In this work we propose a Bayesian nonparametric approach for tackling statistical
problems related to EST surveys. In particular, we provide estimates for: a) the coverage, defined
as the proportion of unique genes in the library represented in the given sample of reads; b) the
number of new unique genes to be observed in a future sample; c) the discovery rate of new genes
as a function of the future sample size. The Bayesian nonparametric model we adopt conveys, in a
statistically rigorous way, the available information into prediction. Our proposal has appealing
properties over frequentist nonparametric methods, which become unstable when prediction is
required for large future samples. EST libraries, previously studied with frequentist methods, are
analyzed in detail.

Conclusion: The Bayesian nonparametric approach we undertake yields valuable tools for gene
capture and prediction in EST libraries. The estimators we obtain do not feature the kind of
drawbacks associated with frequentist estimators and are reliable for any size of the additional
sample.

Background
Expressed Sequence Tags (ESTs) are generated by partially
sequencing randomly isolated gene transcripts that have
been converted into cDNA. From their introduction
in Adams et al. [1], ESTs have played an important role in
the identification, discovery and characterization of

organisms as they provide an attractive and efficient alter-
native to full genome sequencing. The resulting transcript
sequences and their corresponding abundances are the
main focus of interest providing the identification and
level of expression of genes. Important issues to be
addressed in terms of design of a future study are: (1) a
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comparison among different cDNA libraries of the same
organism with the aim of detecting the least redundant
library; (2) the determination of an "optimal" number of
genes to be sequenced by the experimenter. Indeed, these
issues are relevant since, despite the novel advances in
technology, see [2], sequencing is still expensive and
therefore suitable cost-effectiveness thresholds must be
established. This suggests that there is the need for assess-
ing the relative redundancy of various libraries prepared
from the same organism in order to detect which one
yields new genes at a higher rate. Indeed, there are 'nor-
malization' protocols which aim at making the frequen-
cies of genes in the library more uniform thus typically
improving the discovery rate. However, performing such
protocols is also expensive. Hence, the decision, whether
to proceed with sequencing of a non-normalized library
or to resort to a normalization procedure, has to balance
carefully the involved costs: such a decision is necessarily
based on statistical estimates of the coverage of the given
sample, of the expected number of new genes in a future
sample and on the future discovery rate. Note that ideally
one would like to sequence the smallest possible portion
of the library and, based on the outcome, predict the ten-
tative future sequencing well beyond the size of the given
dataset.

The practical issues discussed above naturally translate in
statistical problems which, given an initial sample of EST,
can be described as follows:

a) Coverage: Coverage can be seen as the proportion of
genes in the library represented in the initial sample or,
equivalently, the probability that a new read will not pro-
duce a new gene. The coverage estimate provides a first
description of redundancy of the library.

b) Expected number of new genes: Having observed an initial
sample of size n generated from the cDNA library and esti-
mated its coverage, prediction of outcomes of further
reads is in order. The first question to answer is: 'How
many new unique genes are expected to be detected in an
additional EST dataset of targeted size m?' Such estimates
provide, then, an overall measure of redundancy of the
library with reference to a further EST survey.

c) Discovery rate: In addition to the expected number of
genes in a future sample of size m, it is also important to
establish the rate at which the probability of discovering a
new gene decays as more and more reads are recorded. In
other words, interest lies in determining the probability
that the (n + m + 1)-th read leads to a new gene, given the
observed initial sample of size n and regardless of the
experimental outcome yielded by the m intermediate
draws. The availability of the discovery rate as a function
of the size of the future sample m, represents then a

pointwise predictive measure of the evolution of
redundancy as the sequencing ideally proceeds.

Note that the combination of the measures under b) and
c) provides a natural guideline for selecting the size of a
future sample m. Supposing the targeted number of new
genes is j, the estimator in b) guides the selection of the
minimum sample size  which should lead to j new
genes. Then, one can resort to the discovery rate: in case it
is relatively low around , it may be convenient to reduce

the size of the future sample in a way that the discovery
rate does not fall below a threshold suggested by the prob-
lem at issue. In such a case, one obviously would not be
able to achieve the targeted number j of newly observed
genes: costs considerations may indeed suggest that, with
such a low discovery rate, sequencing is too expensive. On
the other hand, if the discovery rate around  is still rel-
atively high, one may decide to enlarge the survey size.
Moreover, the information conveyed by b) and c) is useful
in comparing libraries and, again, it is worth considering
these estimates together. Indeed, suppose we have to com-
pare two libraries and that, for a fixed size m of the addi-
tional sample, library 1 yields a larger expected number of
new genes but a lower discovery rate in comparison with
library 2. If the sample size m is increased to m + m', for m'
sufficiently large, the comparison between the two librar-
ies can lead to different conclusions in the sense that a
larger number of new genes is predicted for library 2. This
happens because library 1 features a lower discovery rate,
which implies that, within the additional m' draws, the
expected number of new genes is lower for library 1. With
reference to 'normalization' protocols, this means that the
decision whether to carry it out or not should also depend
on the foreseen sample size. For instance, the normalized
Mastigamoeba balamuthi data we analyze exhibit a higher
discovery rate, with respect to the non-normalized one,
for small m. But, since the discovery rate has a faster decay,
it appears that, already for moderately large m, the effect
of the 'normalization' is exhausted producing fewer
number of new genes. The three questions raised above
can be seen as particular instances of classical species sam-
pling problems: indeed, in the present context each spe-
cies takes on the meaning of gene and the population is
given by the library. Species problems appear in a variety
of different applied situations such as astronomy, ecology,
linguistics, machine learning, population biology. We
now briefly recall well-known estimation methods which
have recently been applied to EST data and then outline
the key ideas of our Bayesian nonparametric approach.

m

m
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Estimation methods
The main frequentist tools, that are useful for inference on
the cDNA library properties described in the previous
section, are based on the theory set forth in Good [3] and
Good and Toulmin [4], where nonparametric estimators
for the sample coverage and the expected number of new
species to be detected in a future sample of size m, given
the initial sample, are provided. The estimator of the
sample coverage in [3] coincides with the proportion of
distinct species represented by at least two units in the
sample. Good attributes the original idea to Turing and
this explains why it is usually referred to as Turing estima-
tor. The popular Good-Toulmin estimator for the number
of new species to be observed in a future sample is derived
in [4] and, as a by-product, an evaluation of the discovery
probability is achieved. Recently, the interest in species
sampling problems has remarkably grown, mainly due to
their importance in genomics. Indeed, Mao [5] studies
various properties of the Good-Toulmin estimator and
shows that it can be also viewed as a nonparametric
empirical Bayes estimator. In [6], the authors suggest a
parametric variation of the Good-Toulmin estimator. An
alternative to it is presented in [7], where the detection of
ESTs from each gene in EST sequencing is modeled by
means of a Poisson process whose intensity is governed by
some unknown distribution. It is to be noted that all
frequentist nonparametric approaches lead to reliable
estimates for the number of new genes in an additional
sample only if its size is not too large. For instance, if the
size of the additional survey m is larger than the initial
sample n, it is well-known that the Good-Toulmin
predictor can become a monotone decreasing function of
m: this leads to the paradox of predicting fewer new genes
by enlarging the additional sample size m. Even the
nonparametric alternative proposed in [7] yields reliable
results only when m ≤  2n. This fact is also outlined in [8].
Hence, if one wishes to predict the number of new genes
for large m, one needs to resort to a parametric framework.
As we will see, the relative dimension of m with respect to
n is not an issue in a Bayesian nonparametric framework,
and the expected number of new genes that will be
discovered in m further reads is monotone increasing with
respect to m.

The application of Bayesian methods in this area of
research is, to the authors' knowledge, quite modest even
if the Bayesian learning scheme is very well suited for
making predictions with EST data. An early contribution,
based on a model for sampling from a finite population,
is provided by Hill [9] where posterior estimates of the
coverage are obtained. However, computational problems
do not allow, in this approach, a direct and effective
evaluation of the expected number of new species in a
future sample. Recently, Lijoi et al. [10] have proposed
new Bayesian nonparametric estimators for the problems

a)-c) mentioned above. The prior distribution they
employ is induced by a family of exchangeable Gibbs
random partitions. See Pitman [11] for an interesting
review of recent advances and applications of the theory
of Gibbs random partitions. Their application to a Baye-
sian inferential framework is very useful since they pro-
vide a general scheme which encompasses some of the
most notable nonparametric priors such as the Dirichlet
and the two parameter Poisson-Dirichlet process. In this
paper, we apply the general formulas derived in [10] with
the two parameter Poisson-Dirichlet process as prior
distribution. It will be seen that the resulting expressions
can be evaluated exactly and do not need for any supple-
mentary simulation scheme. Moreover, such a Bayesian
approach does not incur in any problem for large values
of m since all possible behaviors of future EST data are
incorporated in the probabilistic model.

Results and Discussion
EST Datasets
The datasets we analyze consist of ESTs samples obtained
from cDNA libraries from two different organisms: the
amitochondriate protist Mastigamoeba balamuthi (non-
normalized and normalized libraries, where the normal-
ized library was prepared from the non-normalized
library) and Naegleria gruberi libraries, prepared from cells
grown under different culture conditions, aerobic and
anaerobic. These data sets have been previously analyzed
in [6], where a full account of their preparation is detailed.
It is worth mentioning that our approach assumes full-
length cDNA clones and high quality sequence reads.

Therefore, possible errors associated with the clustering
procedure are not considered. For the statistical identifica-
tion and evaluation of types of clustering errors one may
incur in EST sequencing, the reader is referred to Wang
et al. [12].

Specifically, each EST survey consists of n reads with k
unique genes and corresponding frequencies n1,...,nk, i.e.

ni is the number of tags displaying the i-th gene in the ini-

tial sample of size n. Clearly, . The reads can

equivalently be clustered according to their level of
expression, that is

where I(A) is an indicator of A: I(A) = 1 if A is true and 0
otherwise. Note that s represents the maximum level of
expression among unique genes in the sample and that
the number of positive rl's is typically smaller than s.
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Table 1 summarizes the four EST samples using the com-
pact notation set in (1). For example, the survey of the
naeglaria aerobic library produces n = 959 reads with k =
473 unique genes, which are clustered into 17 levels of
expression 1, 2,...,12, 16, 17, 18, 27, 55. For the first level
we have r1 = 346, meaning that 346 genes appear
just once, that is n1 = n2 = … = n346 = 1. For the second level
r2 = 57 implies that 57 genes appear twice and, hence, n347
= n348 = … = n403 = 2 and so on up to r55 = 1, which means
that 1 gene is represented 55 times yielding n473 = 55.

Coverage, estimation of the number of new genes and 
discovery rate
We applied the Bayesian nonparametric method, detailed
in the following section, to these datsets and obtained the
following results. Denote the unknown proportion of
genes (in the whole library) belonging to the i-th class by
pi. Then, the coverage of the initial sample of size n is
given by

which is precisely the proportion of unique genes repre-
sented in the initial sample. Our estimates for the cover-
age are 0.47 and 0.45 for the non-normalized (n = 715)
and normalized (n = 363) Mastigamoeba, respectively. This
means that, by virtue of the 'normalization', an initial
sample of about half the size produces almost the same

coverage. Moreover, we get 0.64 and 0.49 for the aerobic
(n = 959) and anaerobic (n = 969) Naegleria, respectively:
clearly, the tissue cultured aerobically achieves a remarka-
bly higher coverage with an initial sample of the same
size, which may lead to conclude that the sequencing of
the aerobic tissue is more effective. However, such a find-
ing could also be the consequence of a higher redundancy
in the aerobic library. Finally, it is worth noting that our
results for the coverage match exactly the ones obtained in
[6], where the frequentist estimator described in [3] was
exploited.

Turning attention to predicting the outcomes of future
sequencing for the libraries at issue, we focus on the
expected number of new genes in an additional sample of
size m and on the discovery rate. The first index provides
an overall measure of redundancy with respect to the
additional sample of size m, whereas the discovery rate
predicts the trend at which the discovery probability
decays as more and more reads come in. If one adopts a
Bayesian nonparametric approach, these quantities can be
estimated rigorously and exactly since such an approach is
naturally designed for prediction. In contrast note that, as
already anticipated, the Good-Toulmin estimator
becomes highly variable and unstable if the size of the
additional sample m is larger than the size of the initial
sample n. In particular, the Good-Toulmin estimator
often produces negative values as estimates for the
number of new genes if m ∈ (n, 2n) and almost always

C pi
i ni

=
>

∑
:

,
0

(2)

Table 1: EST surveys information clustered into levels of expression

Library l 1 2 3 4 5 6 7 8 9 10 11

Naeglaria 
Aerobic

346 57 19 12 9 5 4 2 4 5 4

Naeglaria 
Anaerobic

491 72 30 9 13 5 3 1 2 0 1

Mastigamoeba 
Non-
normalized

378 33 21 9 6 1 3 1 1 1 0

Mastigamoeba 
Normalized

200 21 14 4 3 3 1 0 1 0 0

Library l 12 13 14 15 16 17 18 27 55 k n

Naeglaria 
Aerobic

1 0 0 0 1 1 1 1 1 473 959

Naeglaria 
Anaerobic

0 1 3 0 0 0 0 0 0 631 969

Mastigamoeba 
Non-
normalized

0 1 0 5 0 0 0 0 0 460 715

Mastigamoeba 
Normalized

0 0 1 0 0 0 0 0 0 248 363

Source: Susko and Roger [6]
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behaves badly for m > 2n. Such a phenomenon can be
seen in Figure 1 for the two Naegleria libraries. In order to
overcome these problems, frequentist methods typically
give up the flexibility of the nonparametric approach and
resort to parametric models, whose fit can be a delicate
issue. For instance, Susko and Roger [6] resort to an
approximated version of the Good-Toulmin estimator
which assumes a parametric model for the expression
levels rl.

In order to give a complete picture, it is important to
accompany our point estimates with the 95% highest pos-
terior density intervals, which represent the Bayesian
counterpart to frequentist confidence intervals (see [13]).
In Tables 2 and 3 the results arising by the application of
the Bayesian nonparametric method are displayed.

As for the Mastigamoeba libraries, an interesting
phenomenon takes place: the survey of the normalized
library has achieved almost the same coverage (0.45) as
the non-normalized library (0.47), but when considering
an additional sample it exhibits a significantly faster decay
in the discovery rate. Figure 2 compares the discovery rate
for the two libraries. It is worth pointing out that our esti-
mates predict that the discovery rates associated to both
libraries coincide for m = 125 yielding a discovery proba-
bility of 0.508. For larger m the non-normalized exhibits
a higher discovery rate. This implies that at some point
also the estimates for the expected number of new genes
in the additional sample will coincide: indeed, this is esti-
mated to happen for m = 270, for which 137 new genes
are predicted to be identified from both libraries. Hence,

for m > 270 the expected number of new genes is system-
atically higher for the non-normalized library. For
instance, if m = 1089, just 477 new genes are expected for
the normalized library and 510 for the non-normalized.
Taking m larger, at some point even the highest posterior
density intervals will not overlap anymore. Such a behav-
ior hints toward the fact that, in deciding whether to
perform a 'normalization' protocol, the sizes of the
samples to be drawn from the libraries is a variable to be
taken into account.

As for the Naegleria libraries the behavior is apparent in
the sense that the anaerobic library systematically pro-
duces more new genes and the discovery probability is
sensibly higher at the considered levels of m. Note that the
aerobic library presents a slightly slower decay rate but an
extremely large m is required for matching the expected
number of genes of the anaerobic one. Figure 3 displays
the estimated decay rate of the discovery probability for
both libraries with the corresponding 95% highest poste-
rior density intervals.

A Bayesian nonparametric methodology
The primary aim of the Bayesian approach to inference is
prediction and Bayesian methods are tailored for convey-
ing the available information into prediction. In particu-
lar, for EST sequencing, the main problem of frequentist
methods is represented by the difficulty of incorporating
not yet observed unique genes into the model. This can
then produce unpleasant behaviors of estimators such as
the one exhibited by the Good-Toulmin estimator dis-
cussed before. In contrast, the Bayesian nonparametric
approach naturally incorporates the fact that further
sequencing will feature new unique genes and leads to
consistent predictions.

In our framework we are going to consider a sample of n
EST data yielding Kn distinct gene species

with corresponding frequencies N = (N1,..., ). Clearly

Kn ∈ {1,...,n} and . Our basic model is the

so-called Pitman's sampling formula [14] which consists
of a probability distribution for Kn and the frequencies N

of the form

where σ ∈ (0, 1), θ > 0, n = (n1,...,nk) and (a)n = a(a + 1) …
(a + n - 1) is the ascending factorial with (a)0 ≡ 1. Formula
(3) is a generalization of the famous Ewens' sampling
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Expected number of new genes: comparison with Good-Toulmin estimatorFigure 1
Expected number of new genes: comparison with 
Good-Toulmin estimator. Expected number of new 
genes in an additional sample for the Naegleria gruberi aerobic 
and anaerobic libraries arising from the application of the 
Good-Toulmin estimator and of the Bayesian nonparametric 
estimator.
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formula [15] which can be recovered by letting σ tend to
zero and it represents a important formula in modern
probability theory. See [11]. Recently, it has found many
interesting applications for bacterial taxonomy [16], clus-
tering of microarray gene expression data [17], mixture
models [18], linguistics [19], among others.

In a Bayesian nonparametric setting, one alternatively
obtains model (3) by selecting the two parameter
Poisson-Dirichlet process as a prior for the genes propor-
tions within the library. This clearly makes the sequence
of tags exchangeable, thus implying that the order of
appearance of the tags does not influence probability

Table 2: Estimates for the Mastigamoeba libraries

%n m
Expected number of new genes in 

a additional sample of size m
Probability of discovering a new 
gene at the (n + m + 1)-th read

Mastigamoeba non-normalized

50 358 180 ∈ (158 , 204) 0.481 ∈ (0.466 , 0.498)
100 715 346 ∈ (312 , 382) 0.452 ∈ (0.434 , 0.470)
150 1072 503 ∈ (458 , 550) 0.430 ∈ (0.411 , 0.449)
200 1430 654 ∈ (599 , 711) 0.412 ∈ (0.393 , 0.433)
250 1788 799 ∈ (734 , 866) 0.398 ∈ (0.379 , 0.419)
300 2145 939 ∈ (865 , 1015) 0.386 ∈ (0.367 , 0.407)

Mastigamoeba normalized

50 182 94 ∈ (79 , 111) 0.493 ∈ (0.475 , 0.512)
100 363 180 ∈ (156 , 206) 0.456 ∈ (0.434 , 0.479)
150 544 260 ∈ (229 , 293) 0.428 ∈ (0.406 , 0.452)
200 726 336 ∈ (299 , 375) 0.406 ∈ (0.384 , 0.430)
250 908 408 ∈ (365 , 453) 0.389 ∈ (0.366 , 0.412)
300 1089 477 ∈ (428 , 528) 0.374 ∈ (0.351 , 0.398)

Non-normalized and normalized Mastigamoeba libraries: the first column provides the size of the additional sample in % of the size of the initial 
sample, the second the actual size of the additional survey, the third presents the expected number of new genes and the fourth the discovery 
probability. The estimates in the third and fourth column are accompanied by the 95% highest posterior density intervals.

Table 3: Estimates for the Naeglaria libraries

%n m
Expected number of new genes in 

an additional sample of size m
Probability of discovering a new 
gene at the (n + m + 1)-th read

Naegleria aerobic

50 480 162 ∈ (138 , 188) 0.318 ∈ (0.307 , 0.329)
100 959 307 ∈ (271 , 345) 0.290 ∈ (0.277 , 0.303)
150 1438 441 ∈ (394 , 488) 0.270 ∈ (0.257 , 0.282)
200 1918 566 ∈ (510 , 624) 0.254 ∈ (0.241 , 0.267)
250 2398 685 ∈ (619 , 751) 0.242 ∈ (0.229 , 0.255)
300 2877 798 ∈ (725 , 873) 0.231 ∈ (0.219 , 0.244)

Naegleria anaerobic

50 484 231 ∈ (206 , 258) 0.450 ∈ (0.440 , 0.461)
100 969 440 ∈ (402 , 478) 0.412 ∈ (0.400 , 0.424)
150 1454 632 ∈ (583 , 683) 0.384 ∈ (0.371 , 0.397)
200 1938 812 ∈ (753 , 873) 0.362 ∈ (0.349 , 0.375)
250 2422 983 ∈ (915 , 1053) 0.344 ∈ (0.332 , 0.357)
300 2907 1146 ∈ (1069 , 1225) 0.330 ∈ (0.317 , 0.342)

Naeglaria aerobic and anaerobic libraries: the first column provides the size of the additional sample in % of the size of the initial sample, the second 
the actual size of the additional survey, the third presents the expected number of new genes and the fourth the discovery probability. The 
estimates in the third and fourth column are accompanied by the 95% highest posterior density intervals.
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assessments. Such an assumption, which constitutes the
Bayesian analog of the frequentist assumption of
independent and identically distributed data, is clearly
reasonable in the context of EST sequences. Note that we
implicitly assume that the sequence of tags can be
extended to infinity. However, the size of the library
represents an upper bound for the number of unique
genes that will be observed and it is always finite: hence,
all the estimates we are going to obtain will be finite.

As mentioned before, the Bayesian nonpara metric
approach has the advantage of yielding, in a straight-

forward way, predictive distributions for future observa-
tions given the data. Considering Pitman's sampling for-
mula, the probability of detecting a new gene from a future
observation, given a sample of n tags containing k distinct
genes, is

(θ + kσ)/(θ + n) (4)

whereas the probability of re-observing the j-th unique
gene coincides with

(nj - σ)/(θ + n) j = 1,...,k. (5)

See [11]. Hence, the coverage coincides with

1 - (θ + kσ)/(θ + n). (6)

As already pointed out, in the analysis of ESTs one is also
interested in evaluating: (i) the expected number of new
genes that will be recorded in a further sample of size m
and (ii) the discovery probability, which is the probability
of observing a new gene in the (n + m + 1)-th draw, given
the initial sample of size n. The basis for deriving
estimators for these quantities is represented by the
distribution of the number of new genes to be observed in
an additional sample given the initial sample. Such a
posterior probability, which can be seen as the predictive
distribution for the outcome of additional m reads, is
given by

See [10] for details on its derivation. From (7) Bayes esti-
mators (under quadratic loss function) for both the
expected number of new genes and the discovery proba-
bility have been obtained, within general Gibbs random
partition models, in [10]. The expected number of new
genes observed in a future sample of size m coincides with

and the discovery probability turns out to be equal to

Moreover, the highest posterior density intervals can be
derived in quite a straightforward way from (7). The only
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Discovery rate. Bayesian nonparametric estimates of 
the discovery rate associated to the non-normalized and 
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point left to discuss concerns the specification of the
parameters (σ, θ). In order to avoid subjective inputs in
the model, (σ, θ) is fixed according to an empirical Bayes
rule which consists in choosing σ and θ that maximize (3)
corresponding to the observed sample (k, n1,...,nk), i.e.

Figure 4 provides the contour plots corresponding to the
two Naegleria gruberi datasets: the parameters maximizing

(3) turned out to be ( ) = (0.67, 46.3) for the aerobic

case and ( ) = (0.66, 155.5) for the anaerobic case. On

the other hand, for the two Mastigamoeba balamuthi data-

sets (normalized and non-normalized) (10) yields ( )

= (0.7, 57) and ( ) = (0.77, 46), respectively. These

parameters have been used for computing the estimators
(8) and (9) for the 4 datasets, whose results are reported
in the results and discussion section.

It is worth pointing out how the structure of the data

influences the choice of the parameters (σ, θ). Indeed, the

value of θ is linked to the number of distinct genes

observed in the n-sample: the larger k/n the larger . On

the other hand, the value of σ is determined by the config-
uration of the frequencies n1,...,nk. Moreover, one may

note that, for a given value of θ, the expected number of

new genes in (8) is an increasing function of σ : as σ
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( )
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increases one expects that a larger number of new genes is
going to be observed in a further m-sample. This is also

confirmed by the behavior of  as σ varies. Figure 3

suggests an almost linear increase of , as a function

of m, and accordance with linearity is higher the closer σ is

to 1. In contrast, when σ is low and close to 0 the function

is concave and  increases at a lower rate as σ
increases.

In order to further evaluate the goodness of the estimation
method, we implemented a cross-validation procedure.
Given a dataset of size n, this consisted in randomly draw-
ing without replacement a sub-sample of size n/2. On the
basis of this sub-sample, we have fixed, according to (10),

the values of (σ, θ). Then, we have computed the expected
number of new genes in the remaining part of the original
sample using (8) and checked whether the estimated
number of new genes is close to the actually observed
number of new genes. The outcome of such an analysis is
satisfactory in the sense that, in the great majority of the
performed experiments, the 95% highest posterior density
intervals capture the actual number of new genes. Con-
sider first the normalized Mastigamoeba library and a sub-

sample of size n = 2 ≈  182. For instance, when such a sub-
sample consists of k = 144 distinct genes with expression
levels r1 = 116, r2 = 24, r3 = 1, r4 = 2, r7 = 1, then the actual

number of new genes in the remainder of the original
sample is j* = 104. Basing on these data, the Bayesian

nonparametric estimator  yields an estimate of

101 with 95% highest posterior density interval (87, 117).
As for the non-normalized Mastigamoeba library, sub-

samples of size n/2 ≈  358 were taken. For instance, a sub-
sample consisting of k = 261 distinct genes with
expression levels r1 = 213, r2 = 31, r3 = 4, r4 = 7, r5 = 1, r7 =

2, r8 = 3, implies that the remainder contains j* = 199 new

genes, the number to be predicted. In such a case, the

Bayesian nonparametric estimator  predicts 210

new genes with 95% highest posterior density interval
(187, 237).

Conclusion
In this paper we have presented a Bayesian nonparametric
approach, which relies on Pitman's sampling formula, for
prediction problems arising in sequencing of EST librar-

ies. This provides a fully probabilistic model which con-
veys, in a statistically rigorous way, the available
information into prediction. No parametric assumption is
made and the prior is fixed using an empirical Bayes
approach. The resulting estimators are applied to four EST
libraries and lead to interesting and coherent predictions
of the outcome of additional sequencing. The arising
information is of great value for researchers providing
guidelines in: establishing the quality of a certain library;
deciding whether to perform a normalization protocol;
choosing whether to proceed with sequencing from a
certain library; determining the size of an additional EST
survey etc.

It is important to remark that our Bayesian nonparametric
approach does not feature problems usually exhibited by
frequentist methods. In particular, no ad-hoc adjustments
or introduction of parametric components is necessary for
predicting future reads if their number is larger than the
initial survey. Finally, the estimators presented here can
be easily adapted to take into account joint data from
multiple libraries leading to Bayesian analogs of the
estimators set forth in [6].

Methods
Here we briefly describe how the estimators in (8)
and (9) are derived by simplifying the expressions pro-
vided in [10]. In particular, one finds out that

, where the 's are

displayed in (7) and can be deduced from (8) in [10]. The

further simplification yielding the expression of  in

(8) is obtained by observing that (θ + 1)n-1/(θ + 1)n + m-1 =

1/(θ + n)m and

As far as the determination of (9), note that

where  (1) is the probability of observing a new

gene at the (n + m + 1)-th draw given the in the previous
sample, of size n + m, there have been detected k + j
distinct genes. Hence, by virtue of the prediction structure
associated with the two parameter Poisson-Dirichlet
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process as outlined in Section 3, one has  (1) =

(θ + (k + j)σ)/(θ + n + m). From this one deduces

and one obtains the expression in (9) since

.

Competing interests
The author(s) declares that that there are no competing
interests.

Authors' contributions
The three authors participated in equal way in the devel-
opment of the proposed methodology and the writing of
the paper. All authors read and approved the final
manuscript.

Acknowledgements
The authors are grateful to E. Susko who kindly provided the EST data 
analyzed in the paper. Moreover, useful comments and remarks from two 
referees are gratefully acknowledged. A. Lijoi and I. Prünster are partially 
supported by the Italian Ministry of University and Research, grants 2006/
134525 and 2006/133449, respectively. R.H. Mena acknowledges support 
from CONACYT-México, grant J50160-F.

References
1. Adams M, Kelley J, Gocayne J, Mark D, Polymeropoulos M, Xiao H,

Merril C, Wu A, Olde B, Moreno R, Kerlavage A, McCombe W, Ven-
ter J: Complementary DNA Sequencing: Expressed
Sequence Tags and Human Genome Project.  Science 1991,
252:1651-1656.

2. Emrich S, Barbazuk W, Li L, Schnable P: Gene discovery and anno-
tation using LCM-454 transcriptome sequencing.  Genome Res
2007, 17:69-73.

3. Good IJ: The population frequencies of species and the esti-
mation of population parameters.  Biometrika 1953, 40:237-264.

4. Good IJ, Toulmin GH: The number of new species, and the
increase in population coverage, when a sample is increased.
Biometrika 1956, 43:45-63.

5. Mao CX: Prediction of the conditional probability of discover-
ing a new class.  J Amer Statist Assoc 2004, 99:1108-1118.

6. Susko E, Roger AJ: Estimating and comparing the rates of gene
discovery and expressed sequence tag (EST) frequencies in
EST surveys.  Bioinformatics 2004, 20:2279-2287.

7. Wang JPZ, Lindsay BG, Cui L, Wall PK, Marion J, Zhang J, dePamphilis
CW: Gene capture prediction and overlap estimation in EST
sequencing from one or multiple libraries.  BMC Bioinformatics
2005, 6:300.

8. Mao CX: Estimating species accumulation curves and diver-
sity indices.  Statistica Sinica 2007 in press.

9. Hill BM: Posterior moments of the number of species in a
finite population and the posterior probability of finding a
new species.  J Amer Statist Assoc 1979, 74:668-673.

10. Lijoi A, Mena R, Prünster I: Bayesian nonparametric estimation
of the probability of discovering new species.  Biometrika 2007
in press.

11. Pitman J: Combinatorial Stochastic Processes. Lecture Notes in Mathemat-
ics 1875 Berlin: Springer; 2006. 

12. Wang JPZ, Lindsay BG, Cui L, Wall PK, Miller WC, dePamphilis CW:
EST clustering error evaluation and correction.  Bioinformatics
2004, 20:2973-2984.

13. Bernardo JM, Smith AFM: Bayesian theory Chichester: Wiley; 1994. 
14. Pitman J: Exchangeable and partially exchangeable random

partitions.  Probab Theory Related Fields 1995, 102:145-158.
15. Ewens WJ: The sampling theory of selectively neutral alleles.

Theor Popul Biol 1972, 3:87-112.
16. Gyllenberg M, Koski T: Probabilistic models for bacterial taxon-

omy.  Int Statist Review 2001, 69:249-276.
17. Zhaohui S: Clustering microarray gene expression data using

weighted Chinese restaurant process.  Bioinformatics 2006,
22:1988-1997.

18. Ishwaran H, James LF: Gibbs sampling methods for stick-break-
ing priors.  J Amer Statist Assoc 2001, 96:161-173.

19. Teh YW: A hierarchical Bayesian language model based on
Pitman-Yor processes.  Proceedings of the Annual Meeting of the
Association for Computational Linguistics 2006, 44:.

P k j m n
1
( , )+ +

ˆ ( )
( )

( )

( , ) ( , )

( , )

D
k j

n m
P j

k

n m
P j

m
k n

j

m

m
k n

m
k n

j

= + +
+ +

= +
+ +

=
∑ θ σ

θ

θ σ
θ

0

== =
∑ ∑+

+ +0 0

m

m
k n

j

m

n m
jP j

σ
θ

( , )( )

P jm
k n

j
m ( , )( ) ==∑ 1

0

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	BMC Bioinformatics
	A Bayesian nonparametric method for prediction in EST analysis
	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	EST Datasets
	Coverage, estimation of the number of new genes anddiscovery rate
	A Bayesian nonparametric methodology

	Conclusion
	Methods
	Competing interests
	Authors' contributions
	Acknowledgements
	References



