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Abstract

Background: Modelling of time series data should not be an approximation of input data profiles,
but rather be able to detect and evaluate dynamical changes in the time series data. Objective
criteria that can be used to evaluate dynamical changes in data are therefore important to filter
experimental noise and to enable extraction of unexpected, biologically important information.

Results: Here we demonstrate the effectiveness of a Markov model, named the Linear Dynamical
System, to simulate the dynamics of a transcript or metabolite time series, and propose a
probabilistic index that enables detection of time-sensitive changes. This method was applied to
time series datasets from Bacillus subtilis and Arabidopsis thaliana grown under stress conditions; in
the former, only gene expression was studied, whereas in the latter, both gene expression and
metabolite accumulation. Our method not only identified well-known changes in gene expression
and metabolite accumulation, but also detected novel changes that are likely to be responsible for
each stress response condition.

Conclusion: This general approach can be applied to any time-series data profile from which one
wishes to identify elements responsible for state transitions, such as rapid environmental
adaptation by an organism.

Background

Biochemical systems in living cells are robust and flexible.
Investigating the responses of cells (and organisms) to
environmental changes typically requires a system-level
analysis of the interactions between the various molecular
elements (genes, enzymes, and metabolites) that com-
prise the system. A key step to analyze system responses to
environmental changes is identifying large state changes
or "transitions". A statistical method that could detect

such transitions would be a powerful analytical tool for
finding important factors in large-scale profiles, such as
variations in gene expression.

Previous analyses of gene expression profiles have often
made use of graphical models, such as Bayesian Networks
[1,2], Graphical Gaussian Modelling [3], Boolean Net-
works [4,5], and Auto-Regressive models [6]. However,
not many approaches have explicitly modelled observa-
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tional noise. In Auto-Regressive analyses, for example,
observational vectors y, are recursively defined by the fol-
lowing Equation [6]:

V=AY + & (1)

where y,is an observational vector of genes or metabolites
at time t, A is an observational transition matrix, and ¢, is
Gaussian noise. Because this model does not distinguish
observational and inherent (e.g. biological) noises, iden-
tification of transition states becomes difficult in the pres-
ence of substantial noise.

Here we propose an extension of the Auto-Regressive
model [6], which has been modified by the addition of
reduced set of internal states, as explained in the Results
and Discussion section. We chose a mathematical model,
the Linear Dynamical System (LDS), as the basis of our
method because it does not impose any specific require-
ments on the data used. LDS is expected to eliminate the
confounding influence of observational noise in time
series data. The model was applied to detect cellular state
transitions in transcriptome and metabolome time series
datasets from Bacillus subtilis and Arabidopsis thaliana
maintained under stress conditions.

Results and discussion

Overview of our method

Our method has two steps. First, transition time points for
each time series are detected using LDS, which mathemat-
ically distinguishes transitional fluctuations from experi-
mental noise. The transition point is detected by the
logarithm of the likelihood values. Here "likelihood
value" means the generative probability of current data
based on the condition of the past datasets. If this value is
low, then the current data cannot be adequately explained
by past datasets. In other words, a transition has occurred.
In the second step, relevant factors such as genes and/or
metabolites related to the transitions are extracted by
Batch-Learning Self Organizing Mapping (BL-SOM) using
changes in expression levels [7]. In summary, the LDS uses
compressed information called "internal states", defined
as the degenerate parameters of gene expression/metabo-
lite accumulation profiles, to detect transitions, and then
BL-SOM generates a 'Feature map', which is a two-dimen-
sional lattice reflecting the similarity among clusters,
based on the gene expression/metabolite accumulation
profiles in order to visually characterize each state.

Linear Dynamical System (LDS) for time series analyses
LDS uses internal state variables in the generative model
for cellular internal state changes. These internal states
correspond to the compressed description of the observed
biological system prior to adding noise factors.
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The total experimental dataset of the time series and the
corresponding internal state are denoted by Y,.; = {y;,
Yo Vrb and Xy.p= {X;, X,,..., Xp}, respectively. Each ele-
ment in these vectors is defined as:

Yi= (Yar Yoo U, yip)' € RP (2)
X = (Xﬂ' X U, XzN)' € RN (3)

where t = 1, 2,..., T is the measurement order of the time
series, D is the dimension of vector y, representing expres-
sion levels of D genes or metabolites, and N is the dimen-
sion of vector x, representing internal states. To
distinguish observational noise from true information on
cellular transitions, we focus on two probability densities:
the density between internal state variables p(x,|x, ), and
the density for evaluation of observational noise p(y,|x,).
The proposed model is further defined as follows:

Observational equation: y, = Vx, + 7, (4)
Transition equation: x,= WX, + ¢ (5)

where Vis a D x N observational matrix, Wisan N x N
internal state transition matrix, D-dimensional vector 7, is
observational noise, N-dimensional vector ¢, is transition
noise. The vectors x,, ¢, 7, are generated according to the
following equations:

x; ~ Ny(X4[ 44, 0721y) (6)
&~ Ny(&[0yn o2ly) (7)
e~ D(nt|0D' 6772[77) (8)

The next step is to define the relevant probability densi-
ties. N,(x|m, X) is a probability density function when a p-
dimensional probabilistic vector x obeys a Gaussian dis-
tribution whose mean vector is m, and covariance matrix
¥ (Equation 9).

N,(x|m,3) = (2n) P2 |5/ exp[—%(x —m)'E(x—m)]

)

We assume that the observational and internal transition

noises are both Gaussian, and therefore the relationship is

a first-order Markov process (Equation 10).
p(x. Y, | Xiar Y1) = p(YI|Xt)p(Xl|xt—l) (10)

The model parameter of (4)-(8) is defined as the param-
eter set 6
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0={u, 0, W, 0,V, 0.} (11)
Note that the model corresponds to a Kalman Filter when
@is known (see also Methods section) [8].

The initial state x, is defined as:

p(x,]6) = Ny(xq| 111, 07y) (12)
From Equations (5) and (7), the following function is
obtained:

p(xt|xt-1’ 0) = NN(xt|Wxt-1' ol\) (13)
From Equations (4) and (8), the following function is
obtained:

p(Yz|th 0) = ND(Y{|VXV GWZID) (14)

Using these results, the following joint probability is
obtained:

T T
pmpxkﬂe)=p(xl|9>{np(xt|xt_1,e)HHp(yt|xt,e>}
t=1

=2
(15)
The parameter optimization follows a standard EM algo-
rithm (see Methods section).

Criterion for detecting internal state transitions

Using the resulting estimated parameter, the log-likeli-

hood with respect to the present time point t when all

time points are given is defined by Equation (16):
log L, =log p(y,| Y11, 6) (16)

This is calculated using the E-step formula (see Equation

23 in Methods) after parameter estimation using the
Kalman filter.

When the log-likelihood value log L,becomes much lower
than log L, ;, then y, cannot be explained by Y., ;, i.e., the
cellular internal state has changed at time ¢. In this study,
the point at which the log-likelihood value becomes rela-
tively low between whole time points is defined as the
state transition point. If the log-likelihood value remains
low over a certain period, then the cells are changing their
states continuously during that period.

Analysis of the Bacillus subtilis data

We first analyzed the relationship of cell population to
state transition time on transcriptome data of Bacillus sub-
tilis (Figure 1). Here, the exponential growth phase and
stationary phase are commonly used microbiology terms

http://www.biomedcentral.com/1471-2105/8/343

referring to the state of the cellular population, as meas-
ured by the optical density (see also Methods section).
The transition from exponential growth to the stationary
phase was observed in 8 culture media: Lysogeny Broth
(LB), Minimum Glucose Medium (MGM), Glucose Star-
vation (GS), Phosphate Starvation (PS), Competence
Medium (CM), Difco Sporulation Medium (DSM), Com-
petence Sporulation Medium (CSM) and DSM plus Glu-
cose Glutamine (DGG). We confirmed that the log-
likelihood index produced by LDS was smaller at the tran-
sition time between two phases. Next, we fitted the index
calculated by the model to the phase transition data. For
cell populations growing under two culture conditions,
namely LB (control) and MGM (limited glucose), we
found that BL-SOM yielded different classification results
for gene expression (Figure 2a, b). This result indicates
that expression of the genes responsible for the transition
varied between the different environmental conditions,
although their transitions appeared similar. For cells
grown in either CSM or DSM, two transition points for
sporulation were detected. The first was the well-known
transition from exponential growth to the stationary
phase. However, the second was a novel transition
detected by this approach. At the first transition in CSM at
around time point 3, log-likelihood values show a sus-
tained drop. The analysis suggests that cells take a long
time to adapt to the CSM culture environment. The sec-
ond transition point in the sporulation media was further
investigated by analysis of Feature maps generated by BL-
SOM [7]. The candidate genes for the second transition
were those activated just before the transition point and
repressed soon after the transition point (Table 1). These
genes are listed in Table 1 and include those related to
lysis of the mother cell, such as cwlH. Thus, the second
transition corresponded to mother cell lysis [9], a type of
apoptosis.

Using the analytical approach described here, we not only
succeeded in detecting the well-known transition from
exponential growth to the stationary phase, but also iden-
tified another, novel transition point. This result suggests
the possibility that, even in periods that are assumed to be
eventless, cells may be invoking their adaptive systems.

Analysis of the Arabidopsis data

As described in the Methods section, we analysed changes
in gene expression and metabolite accumulation in Arabi-
dopsis plants following their transfer to sulfur-deficient
conditions. We detected a transition between 12 and 24
hours in both gene expression and metabolite accumula-
tion profiles in both leaves and roots. In addition, we
detected a second transition at the final time point (168
hr) in the metabolite accumulation profile in roots (see
Figure 3). At the transition point of 12-24 hr, glucosi-
nolate biosynthesis was decreased in leaves and anthocy-
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The results of log-likelihood values and experimental conditions. Relationship between optical density values and
state transition time. Red plots show the probabilistic index for the evaluation of the state change. Blue plots show the Optical
Density (OD) values that represent the cellular populations at each time.

anin biosynthesis was initiated in roots. The predicted
transitions obtained by this analysis are consistent with
those identified previously [10], indicating that our
method can reliably identify candidate genes and metab-
olites involved in transition points. The transition time
point detected for root metabolites at the end of the exper-
iment (168 hr) showed that even after this period of time
roots of A. thaliana continued to change in response to
sulfur deprivation, at least in terms of metabolite accumu-
lation.

On the basis of the estimated transition results, coupled
with prior knowledge and the Feature map subtraction
obtained by BL-SOM, we identified metabolites whose
accumulation profiles showed changes that coordinated
with the predicted transition point. These metabolites

were found to be involved in biochemical pathways that
are critical for the response to sulfur deprivation stress, for
example, glucosinolate biosynthesis in leaf and anthocy-
anin biosynthesis in root [10].

Our results also suggested the presence of lipid metabolic
responses in Arabidopsis to sulfur stress. The accumulation
patterns of detected ion peaks whose mass-to-charge ratio
(m/z) values corresponded to molecular species with vari-
ous acyl groups, such as phosphatidylglycerol, phosphati-
dylethanolamine, phosphatidylcholine, phosphatidic
acid, and sulfoquinovosyl diacylglycerol, are shown in
Figure 4. Because the accumulation profiles of these com-
pounds showed similar patterns, we predict that lipid bio-
synthesis was also co-ordinately repressed at the transition
at 24 hr.

Page 4 of 10

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:343 http://www.biomedcentral.com/1471-2105/8/343

FEATURE map by SOM

~a
Cellular density
(0D, !

0.1

i Log-likelihood calculated by LDS

-1000

0.01

0.001 - - -2000

(b)
Time1 2 3

;w R ""g'-r..;-s L
b # \-ea i

FEATURE map by SOM
Cellular density | Yo Aafeg i . Log-likelihood calculated by LDS
ODg) N Nevs?
al ‘ 2 ~1000
1
0.01 *
LB

0.001 ‘ ) -2000

o 200 400 600 800 1000

(min)

Figure 2

Examples of the results of Bacillus data analyses. The horizontal axis shows the culture time in minutes. The vertical axis
represents the cellular density values (blue plots) and the probabilistic index for transition (red plots). a) The results of analysis
of the LB data (control culture condition). According to the probabilistic index, the first transition was predicted between time
points 3 and 4, the period that corresponded to transition from exponential growth phase to the stationary phase as indicated
by cellular density values. The probabilistic index identifies another state change between time points 6 and 7 during the "sta-
tionary" phase. b) The results of analysis of the MGM data (stress culture condition). According to the probabilistic index, a
state change was predicted between time points 5 and 6, a period that corresponded to the transition from the exponential
growth phase to the stationary phase. Compared to the results from cells grown in LB, the transition timing was different. This
difference was caused by the lack of glucose in MGM.
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Table I: The list of transition driving genes identified in cells grown in CSM and DSM

Functional categories

Genes

Adaptation to typical conditions
Cell wall

Germination

Membrane bioenergetics
Sporulation

Transport/binding proteins and lipoproteins
Detoxification

Regulation

Antibiotic production

Carbohydrates and related molecules
Metabolism of amino acids and related molecules
Metabolism of lipids

Phage-related function

Proteins with unknown function

ybeB

ytcC, ykuG, ykoT, ywhE, yunA, cwiH

yaaH, yfkQ, yndD, gerBB, gerKB, yndE, gerAC, yfkR

yhfw

spoVFA, spoVAD, spoVAC, spoVAE, spoVAB, spoVK, spolVCA, cotC, cotA, yaaH,
sspE, sspB

ymfD, araP, yveA, ywcA, ywrK

ykoY

sigG, splA

yitA, yitC

¥qiQ, adhB, yoal, yesX, yitF, yqiQ

aprX, spoVFA

yngF

yndL, yqbO, ygbQ

yodP, yheD, yhcQ, yvdQ, ytzC, yybC, ydfO, yhcV, yesV, yndM, ydfR, yngD, ykjA,
yetA, yusN, yozN, yppD, ytIB, yqaN, ythQ, yycQ, yurS, yrkS, yxaG, yes], ysnE

A profile of sulfate accumulation was generated using cap-

illary electrophoresis (Figure 4f). In comparison with the

—— Gene expression in Leaf

B Gene expression in
Root
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in Leaf
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Figure 3

The result of an LDS-based calculation showing a transition in gene expression and metabolite accumulation.

The ordinate scale indicates a log-likelihood value calculated by LDS. The transition in gene expression and metabolite accumu-
lation in both leaf and root occurred most often in Period |, showed by the left bold rectangle. During Period 2, shown by the
right bold rectangle, a second transition in metabolite accumulation occurred solely in the root.
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Figure 4

Lipid accumulation profiles. The accumulation profiles of metabolites whose m/z values corresponded to lipids expressing
"total acyl carbon: total double bonds in two acyl groups", i.e., phosphatidylglycerol (a), phosphatidylethanolamine (b), phos-
phatidylcholine (c), phosphatidic acid (d), and sulfoquinovosyl diacylglycerol (e). the vertical axis shows normalized log-ratio
values of the sulfur starvation condition to the control condition. (f) Sulfate profile analyzed by capillary electrophoresis. The
vertical axis shows the log-ratio values of the sulfur starvation condition to the control condition.

control condition, the accumulation of sulfate was
strongly repressed immediately after the shift to sulfur
deficiency. Under sulfur deprivation, it was believed that
sulfate levels (Figure 4f) would only decrease. During the
transition period from 12 to 24 hr after the shift to sulfur
deficiency, however, sulfate levels temporarily ceased
declining and stayed relatively constant as compared to
the control.

From these results, we hypothesize that sulfate is in an
active form and is distributed throughout the plant at the
transition time. During this period, in order to maintain
the intracellular environment, membrane lipids are tem-
porarily degraded and re-synthesized after the transition.
This suggestion is consistent with the reported decrease in
lipids under conditions of sulfur starvation [11].

Conclusion

In summary, by using a linear dynamical system, we have
identified transition times in the adaptation processes of
Bacillus subtilis and Arabidopsis thaliana to environmental
stresses. By focusing on transition information based on a
well-defined probabilistic index, we obtained novel
observations on apoptosis in Bacillus subtilis and the regu-
lation of lipid metabolism connected with sulfur-stress
responses in Arabidopsis thaliana. As this approach uses
probabilistic values to detect the transitions, the results
are objectively supported without the risk of misinterpre-
tation due to experimental noise. The results of this
approach will enable us to more effectively design experi-
ments specifically tailored for functional identification of
genes and metabolites. By obtaining time series data with
higher temporal resolution around the transition time
points, we can obtain more precise information on the
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details of the responses. The strategy described here was
successful in identifying a small number of candidate
genes and metabolites, from the vast number of genes and
metabolites in comprehensive "omics" databases.

Methods

Time series data of Bacillus subtilis

The Bacillus subtilis time series data used in the present
study were obtained from microarray analysis of cells
sampled from 8 different experimental conditions. The
data were produced using a two-colour fluorescence
c¢DNA microarray that included 3100 Bacillus subtilis
genes. The LB medium was developed to maximize cellu-
lar growth, and cells grown in this medium represented
the control, unstressed population. In the initial phase of
culture, the cell number increases by binary division - this
is called the exponential growth phase in contrast to the
stationary phase where the cell number has reached equi-
librium. Data were collected from cells grown at 37°C in
LB medium; the total length of culture was 12 hr and sam-
pling was performed at 8 time points. Other culture con-
ditions were also used with the aim of inducing stress
responses in the cells. Cells were grown in Minimum Glu-
cose Medium (MGM) at 37°C for 13 hr and sampled at 8
time points. Glucose starvation (GS) was achieved by
eliminating the sugar from MGM; the cells were cultured
in this medium for 10 hr and were sampled at 5 time
points. Phosphate starvation (PS) was achieved by elimi-
nating phosphoric acid from the MGM,; the cells were cul-
tured in this medium for 11 hr, and were sampled at 6
time points. Some cells were grown in Competence
Medium (CM), which increases the ability of the cells to
ingest DNA from the external environment. The cells were
grown in CM for 9 hr and were sampled at 5 time points.
Some cells were grown in Competence-Sporulation
medium (CSM) for 15 hr and were sampled at 13 time
points. A second sporulation medium, Difco sporulation
medium (DSM), was also used. Cells were grown in this
medium for 12 hr and were sampled at 19 time points. We
also used Difco Glucose Glutamine (DGG) medium in
which glucose and glutamine have been added to DSM
medium in order to inhibit sporulation. The cells were
grown for 9 hr in DSM and were sampled at 6 time points.

Time series data of Arabidopsis thaliana

The Arabidopsis thaliana data used in the present study
were obtained from DNA microarray experiments and by
Fourier-transform ion cyclotron resonance mass spec-
trometry (FT-ICR-MS), as previously described [10]. In
brief, Arabidopsis was cultured in sulfur-sufficient control
medium for three weeks, transferred to control or sulfur-
deprived medium, and cultured for up to one more week.
Rosette leaves and roots were harvested at 3, 6, 12, 24, 48
and 168 hr after transfer, and subjected to transcriptome
and metabolome analyses [10].

http://www.biomedcentral.com/1471-2105/8/343

Transcriptome data were obtained using the Agilent Ara-
bidopsis 2 microarray (Agilent Technologies, Palo Alto,
CA), which carries 21,500 Arabidopsis genes [10]. The
data are available on ArrayExpress in EMBL-EBI [12].
Non-targeted metabolome data were obtained by FT-ICR-
MS [10], which produces precise mass-to-charge ratio val-
ues (m/z values) of metabolites [13]. Metabolites were
provisionally identified from their m/z values and the
analytical conditions used for FT-ICR-MS.

Parameter estimation

The test distribution is defined as ¢(X;.;|Y;.;, 6) and is
used to approximate the true posterior distribution. The
Kullback-Leibler divergence takes the minimum value of
0 if the two distributions are equivalent.

In Equation (17), maximization of the free energy with
respect to ¢ and @is equal to the calculation of the maxi-
mum likelihood estimate & with respect to Y, ..

F[Qxfel = 1ng(Yl:T ‘9) - KL[qx(XI:T)Hp(leT ‘ Y1:T '9)]
= [ @X,7a, (o) og p(Xuir Yo [6) - [ dXi70, (X ) 0g iy (Xyir)

(17)
The free energy is maximized using the Expectation-Maxi-
mization algorithm [14] consisting of the following steps:

Step 1. Parameter set @ is initialized.

Step 2. E-step(step 2.1) and M-step (step 2.2) are succes-
sively repeated until the free energy converges.

Step 2.1. E-step:

k is a repeat loop index. By fixing the parameter &*1), F in
Equation (17) is maximized with respect to q.

According to Equation (17), the solution is

T

a0 (Xp.r) = Xy ‘Yl;T:G(kil)) =p(x; ‘YI:T,e[kil)){Hp(XL ‘Xt—l rylsze(kfl))}
=2

(18)

After the fixation of parameter 6, the calculations needed
to calculate the value of Equation (18) are as follows:

When both the data Y;..; and the parameter of the prior
distribution p(x,|Y;..;, ) of x, are given, the posterior dis-
tribution of x,, given the data Y;., is

p(y: | X, 0)p(x; | Y14-1,0)
Jaxp(y, | %0, 0)p(x | Yie1.,0)
(19)

p(x; | Y14,0) =
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Using (19), the prior distribution of x,,,, given the data
Yl:t’ iS

p(xnl | Yiw H) = J.dxtp(xnl | Xy 9)p(xt| Yip 9)
(20)

By successively iterating Equations (19) and (20), p(x, |
Y,.r ) with arbitrary ¢ is obtained. This repeating method
is called the Kalman Filter [8].

If all data are given, the following joint probability is
obtained:

P(Xi1 ‘the)p(xt ‘letle)
IdXtP(Xt+1 ‘the)p(xt ‘Yl:tle)
(21)
If the parameter of P(x,,, | Y,.;» 6) is given, the following
distribution is obtained:

p(X11,%¢ | Y7 ,0) = p(X41 | Yo, 0)

p(x,| Yy ) = Jdx, p(%1, %, | Yig 6) (22)
By successively iterating Equations (21) and (22), p(x,,,
x,|Y .., 0) and p(x,|Y;.;, 6), which are necessary to calculate
the value of Equation (18), are obtained.

This repeating method is called the Kalman smoother
[15].

Using the Kalman smoother, the statistical values neces-
sary for parameter estimation are obtained.

If p(x,|Y;..1, 6) is given, the following likelihood is calcu-
lated:

p(Yﬁ|Y1:t—1' o) =IdX£p(YI’|xt’ g)p(X£|Y1:t—1’ 0) (23)
Using (23), the log-likelihood is calculated as
T
logp(Yy.r 16) = Y logp(y, | Yi,1-1,6) (24)

t=1
Step 2.2. M-step

In this step, the value of 8 that will maximize F under the
condition ¢, = ¢, is calculated using Equation (25):

k k
o) = meaX{delqugc )(Xp.r)log p(Xyr Vi |9)}
(25)
The objective function to be maximized is defined as

](9) = J.dXI:qu(k)(XI:T)log p(XlzT' Yl:T| 9) (26)
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which is obtained by the following equation:

% =0 (27)

and the solution of parameter 6 is calculated that maxi-
mizes F.

Parameter #is then updated, and the process goes back to
E-step.
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