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Abstract
Background: Odorant binding proteins (OBPs) are believed to shuttle odorants from the
environment to the underlying odorant receptors, for which they could potentially serve as
odorant presenters. Although several sequence based search methods have been exploited for
protein family prediction, less effort has been devoted to the prediction of OBPs from sequence
data and this area is more challenging due to poor sequence identity between these proteins.

Results: In this paper, we propose a new algorithm that uses Regularized Least Squares Classifier
(RLSC) in conjunction with multiple physicochemical properties of amino acids to predict odorant-
binding proteins. The algorithm was applied to the dataset derived from Pfam and GenDiS database
and we obtained overall prediction accuracy of 97.7% (94.5% and 98.4% for positive and negative
classes respectively).

Conclusion: Our study suggests that RLSC is potentially useful for predicting the odorant binding
proteins from sequence-derived properties irrespective of sequence similarity. Our method
predicts 92.8% of 56 odorant binding proteins non-homologous to any protein in the swissprot
database and 97.1% of the 414 independent dataset proteins, suggesting the usefulness of RLSC
method for facilitating the prediction of odorant binding proteins from sequence information.

Background
Olfaction is an important process to establish behavioural
response and involves the binding of small, hydrophobic,
volatile molecules to receptors of the nasal neuroepithelia
[1]. The olfaction mechanism has been well studied and is
generally similar in vertebrates, insects, crustaceans, and
nematodes [2-4]. The first step in olfaction is the solubili-

zation of the hydrophobic odorants in the hydrophilic
nasal mucus.

Odorant Binding Proteins (OBPs) play a vital role in the
olfaction. OBPs are small soluble polypeptides, which are
thought to act as a carrier for odorants and carries odorant
from the environment to the nasal epithelium in verte-
brates and sensillar lymph in insects [5,6]. OBPs of verte-
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brate are members of large family lipocalin and shares
eight stranded beta barrel [7]. Insects OBPs include the
general odorant-binding proteins (GOBPs) and the phe-
romone-binding proteins (PBPs), which are completely
different from their vertebrate counterpart both in
sequence and three-dimensional folding [8]. Insect OBPs
contains alpha helical barrel and six highly conserved
cysteines [9]. Another class of putative OBPs, named
chemosensory proteins (CSPs) has been reported in dif-
ferent orders of insects, including Lepidoptera [10-12].
These polypeptides, of about 12 kDa, do not exhibit sig-
nificant homology to PBPs and GOBPs and contain four
conserved cysteine residues all involved in intramolecular
disulphide bridges. In spite of the sequence and structural
difference, their general chemical properties indicate sim-
ilar functions in olfactory transduction.

Previous reports have shown that OBPs are present in
large number within a species [13]. This suggests that
OBPs do play an active role in odorant recognition rather
than merely serving as passive odorant shuttles [14,15].
Several reports have demonstrated selective binding of
odorants to different OBPs derived from a given species
[16-18]. OBPs are also suspected to participate in the
deactivation of odorants and signal termination [19].
Presence of OBPs in non-sensory tissues of insect suggests
their non-sensory roles [20]

Although many efforts have been made to study the role
of OBPs, their physiological function is still unclear and
more sequence data are required for the complete under-
standing of the odorant binding and transport mecha-
nism. With the rapid increase in newly found protein
sequences entering into databanks, an efficient method is
needed to identify OBPs from the sequence databases. At
present, prediction of the odorant binding proteins is pri-
marily based on sequence similarity search methods
[21,22] and these methods will not be employed effi-
ciently due to the fact that OBPs show very low sequence
similarity between species and within the same species
[23,24]. So far, SVM and other statistical learning meth-
ods have not been explored for predicting odorant bind-
ing proteins. Here, we propose a method based on
regularized least squares classifier (RLSC) method to pre-
dict odorant binding proteins from sequence-derived
properties irrespective of sequence similarity.

Results and discussion
The dataset used for the prediction was obtained from
GenDiS [25] and Pfam [26] databases. Positive class con-
sists of 476 odorant binding protein domains [see Addi-
tional file 1]. whereas the negative class has 2157 non-
odorant binding protein domains [see Additional file 2].
A regularized least squares classifier (RLSC) [27,28] was
used to conduct the training and testing on the dataset.

First, the classification was carried out without feature
selection, i.e. all the 1463 features were used. The confu-
sion matrix achieved by RLSC is given in Table 1.

To analyze the impact of the feature selection procedure
on the classification performance, we selected eight fea-
ture subsets by decreasing the number of features. The per-
formance of the method for discriminating between
odorant binding proteins and non-odorant binding pro-
teins is summarized in Table 2. In this Table, TP and TN
stand for true positive (correctly predicted OBPs), and
true negative (correctly predicted non-class-members).
The results show that our method can distinguish odorant
binding proteins from other protein sequences with an
accuracy of >90% and Matthews Correlation Coefficient
(MCC) of 0.922, when evaluated through leave one out
cross validation. Using all the 1463 features, the RLSC
achieved the TP rate of 94.5% and the TN rate of 98.4%.
The overall Leave-one-out accuracy (LOOA), Balanced
LOOA and MCC were 97.7%, 96.5% and 0.922 respec-
tively. As seen in Table 2, feature selection generally does
not deteriorate the classification performance much. The
usage of smaller number of features only leads to a
decrease of the TN rate. The TP rate is less influenced by
the feature selection. In some cases, feature selection even
leads to slight increase of the TP rates.

To test the capability, our algorithm was evaluated by
independent dataset obtained from NCBI database using
keyword search. The keywords used for the search
includes "odorant binding proteins", "pheromone bind-
ing proteins", "chemosensory proteins", "antennal pro-
tein" and "juvenile hormone binding proteins". The
sequences that are present in the positive training dataset
were removed from the list. After careful manual inspec-
tion, 414 odorant binding proteins were selected for inde-
pendent testing [see Additional file 3]. The performance
of our algorithm was compared with PSI-BLAST [29] and
HMM [30]. PSI-BLAST search for each sequence was car-
ried out against the database of positive training dataset.
HMM analysis for each query sequence was performed
against the HMM profile obtained from the positive train-
ing dataset. Our approach correctly predicts 402 proteins
as odorant binding proteins whereas PSI-BLAST and
HMM methods predict 369 and 360 proteins respectively
[see Additional file 4]. The overall prediction accuracy for

Table 1: Confusion matrix for RLSC on the training dataset

Predicted class

Original class Positive Negative

Positive 451 25
Negative 35 2122
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our approach, PSI-BLAST and HMM method is 97.1%,
89.1% and 86.9% respectively (Table 3).

Further analysis of 414 odorant binding proteins shows
that 56 proteins have no single homologous protein in
the SWISSPROT [31] database based on PSI-BLAST search
result. A similarity E-value threshold of 0.01 was used for
homologue search to ensure maximum exclusion of pro-
teins that have a homologue. Our method correctly pre-
dicts 52 proteins as odorant binding proteins. This result
shows the capability of our prediction systems for recog-
nizing novel odorant binding proteins that are non-
homologous to other proteins.

In this work, a total of nine physicochemical properties,
secondary structural content and frequencies of di-pep-
tides and tripeptides were used to represent each protein
sequence. It has been reported that not all feature vectors
contribute equally to the classification of proteins; some
have been found to play a relatively more prominent role
than others in specific aspects of proteins [32]. It is there-
fore of interest to examine which feature properties play
more prominent roles in the classification of odorant-
binding proteins. Our analysis suggests that molecular
weight, hydrophobicity, hydration potential, average
accessible surface area and refractivity play more promi-
nent role. Hydrophobicity is an important factor for the
formation of binding pocket and also for the interaction
between OBP and odorant molecule. It is also observed
that the tripeptides play significant role in our classifica-
tion scheme than dipeptides.

Conclusion
Overall prediction accuracy of 97.7% (94.5% and 98.4%
for positive and negative classes respectively) shows that
RLSC is a potentially useful tool for the prediction of
odorant-binding proteins. It is also a computationally
efficient method for the prediction of odorant binding
proteins despite the low sequence identity. Further, the
capability of our method is tested by an independent
dataset consisting of 414 members and this method is
able to predict 97.1% of 414 odorant binding proteins.
This approach can be used to identify novel odorant bind-
ing proteins from genome sequence databases using
sequence-derived properties.

Methods
Classification models
All results presented in this paper are acquired through a
leave-one-out cross-validation (LOOCV) procedure. A
regularized least squares classifier (RLSC) is used as the
classification model. From the machine learning view-
point, RLSC belongs to the large family of kernel methods
and is closely related to the well-known support vector
machines (SVM) [33,34]. The difference between RLSC
and SVM is that they formulate the classification in differ-
ent ways. However, both of them can achieve comparable
classification performance [35]. Recall that our dataset is
now represented as S = {(x1, y2),..., (xn, yn)}, where xi
denotes the instance (i.e. the protein sequences) and yi is
the corresponding class label. An RLSC (denoted as f) typ-
ically classifies a data points x by

where k is the so-called kernel function that models the
relationship between data points xi and x, and the coeffi-
cients αi's are to be computed by training. In practice, the
kernel function is usually defined before training the
RLSC. And the αi's are computed through the training
process, which involves solving a system of linear equa-
tions:
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Table 3: Prediction result of 414 odorant binding proteins by 
RLSC, PSI-BLAST and HMM methods

Method Correctly predicted 
as odorant binding 

proteins

Incorrectly 
predicted as non 
odorant binding 

proteins

Classification 
accuracy

RLSC 402 12 97.1%
PSI-BLAST 369 45 89.1%

HMM 360 54 86.9%

Table 2: Classification results achieved on different feature subsets. The optimal values of σ and λ are also given.

Features σ λ LOOA BLOOA TP rates TN rates MCC

1463 2.614e-5 1e-009 0.977 0.965 0.945 0.984 0.922
450 4.714e-5 1e-009 0.975 0.963 0.945 0.981 0.915
250 6.325e-5 1e-008 0.970 0.961 0.948 0.975 0.901
100 1e-4 1e-008 0.970 0.962 0.950 0.975 0.903
50 1.414e-4 1e-008 0.967 0.958 0.945 0.971 0.891

LOOA – Leave-one-out accuracy (LOOA); BLOOA – Balanced LOOA MCC – Matthews Correlation Coefficient; σ – Kernel-parameter λ – 
Regularization parameter; TN – True negative; TP-True positive
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where α = [α1, α2,..., αn]T, Y = [y1, y2,..., yn]T and λ is a pre-
defined positive constant called the regularization param-
eter. I is an identity matrix of size n. K is the kernel matrix,
whose components can be computed as Kij = k(xi, xj).

In our experiment, a Gaussian kernel k(xi, xj) = exp(-σ2 ||xi
- xj||2) is used for the RLSC since the Gaussian kernel is
suggested as the first choice for most kernel methods. It is
obvious that the values of the kernel-parameter σ and the
regularization parameter λ are crucial to the RLSC's per-
formance. Thus, both parameters are optimized to maxi-
mize the balanced leave-one-out accuracy. Due to the
specific formulation of RLSC and our choice of LOOCV
for fine tuning the parameters of a model, we can over-
come the longer time problem by computing the training
process only once.

Datasets
All odorant binding proteins are obtained from GenDiS
[25] and Pfam [26] databases. Sequences having more
than 40% sequence identity are removed from the dataset.
After careful manual examination, a total of 476 odorant
binding proteins are considered for the construction of
positive dataset which includes 40 vertebrate odorant
binding proteins, 282 insect general odorant binding pro-
teins, 46 pheromone binding proteins and 108 chemo-
sensory proteins [see Additional file 1]. Due to the
limitation in the number of known odorant binding pro-
teins, the positive dataset could not be enhanced any fur-
ther. However, in future, as more and more sequences are
clarified to belong to the family, we can enrich the posi-
tive dataset. The negative samples are taken from seed pro-
teins of Pfam protein families, which are unrelated to
odorant binding proteins. Our final negative dataset con-
sists of 2157 non-odorant binding domains [see Addi-
tional file 2].

Derivation of physicochemical properties from protein 
sequence
Amino acid composition is one of the most basic charac-
teristics of proteins and is extensively used in sequence
based prediction studies [36]. Instead of using the con-
ventional 20-D amino acid composition, another new
concept called "pseudo amino acid composition" has
been reported in order to include the sequence-order
information which leads to a higher success rate in
sequence based prediction studies [37-40]. Owing to the
wide applications of PseAA (pseudo amino acid) compo-
sition, recently, a webserver called PseAA [41] was
designed in a flexible manner to generate various kinds of
PseAA composition for a given protein sequence [37,38]
according to the needs of users. Apart from the amino acid
composition, sequence-derived structural and physico-
chemical features have frequently been used for various
prediction studies.

In this work, amino acid composition and nine physico-
chemical properties were employed to describe each pro-
tein. Given the sequence of a protein, its amino acid
composition and the properties of every constituent
amino acid are computed and then used to generate fea-
ture vector. The computed amino acid properties include
molecular weight, hydrophobicity, hydrophilicity, hydra-
tion potential, refractivity, average and total accessible
surface area, secondary structural content and propensity
of amino acids at secondary structures [42]. Secondary
structure for each sequence is predicted using PSIPRED
[43]. Additionally, frequencies of dipeptides and tripep-
tides are used to represent protein sequences for classifica-
tion [44]. To reduce the dimensionality of feature space,
the amino acids are clustered into 11 groups with similar
physicochemical or structural properties as shown in
Table 4. All possible pairwise and triplet combinations are
computed from the 11 groups and this gives rise to 66
dipeptide and 1331 triplet combinations. The dipeptide
and tripeptide frequencies are computed from each
sequence and are represented by one or more pairwise
and triplet combinations respectively. As a feature space,
1463 feature vectors represent each protein sequence.

Feature selection
In this work, the main purpose of conducting feature
selection is to remove possible redundant features from
the original feature set. By redundancy, we mean that the
feature has negligible influence on the final classification
performance. We design a wrapper approach [45] to con-
duct feature selection for our dataset. In this method, we
utilize the balanced leave-one-out accuracy (BLOOA) of
RLSC as the selection criterion. The sequential backward
elimination (or the recursive feature elimination) scheme
is employed as the search scheme. To be specific, the fea-
ture selection procedure can be described as follows: We
start from the whole feature subset (i.e. with all the 1463
features) and calculate the BLOOA. Then, features are iter-
atively pruned from the feature set. At each iteration, the

Table 4: Amino acid groupings (11 groups) according to their 
physical and chemical properties

Attribute Amino acids

Hydrophobic (hb) F, I, W, L, V, M, Y, C, A
Hydrophilic (hp) R, K, N, D, E, P
Charged (Ch) R, H, K, D, E
Neutral (Neu) T, H, G, S, Q
Aliphatic (Ali) I, L, V
Aromatic (Aro) F, W, Y, H
Polar (Pol) N, Q, R, E, D
Nonpolar (Npol) F, M, I, L, V
Polar-Nonpolar (PN) C, K, H, Y, W
Small (Sm) P, V, A, G, T, S, N, D
Cysteine (cys) C
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feature whose omission leads to the largest BLOOA is
pruned. Assume that we need to prune the number of fea-
tures from 1463 to d, the feature selection (or redundant
feature elimination) procedure is demonstrated in Figure
1, where |F| denotes the cardinality of F.

Leave-one-out cross-validation
Among the independent test dataset, sub-sampling (e.g., 5
or 10-fold sub-sampling) test and jackknife test, which are
often used for examining the accuracy of a statistical pre-
diction method, the jackknife test is deemed the most rig-
orous and objective as analyzed by a comprehensive
review [46] and has been increasingly adopted by leading
investigators to test the power of various prediction meth-
ods [47-51].

In this paper, we have used Leave-one-out (i.e., jackknife)
cross-validation approach to estimating generalization
performance of a classifier. It involves removing one pro-
tein from the training set, training the classifier (in our
case, the RLSC) on the remaining proteins and then pre-
dicting class label of the removed (left out) protein using
the trained classifier. This process was repeated until all
proteins had been left out. Then the leave-one-out accu-
racy is computed by counting the total number of correct
predictions and divided it by n (i.e. the number of sam-
ples in the original dataset).

Balanced LOOA for unbalanced population of classes
Although LOOA has been commonly used in the litera-
ture, it is also known that LOOA may not provide a precise
evaluation on the performance of a classifier if a large

unbalance in the population of different classes exists in
the data of interest. To be specific, a good classifier is usu-
ally expected to provide high accuracy on both the posi-
tive and negative data. But LOOA will bias more to the
True Positive rate if we have much more positive samples
in the dataset and vice versa. Since our dataset contains
much more negative instances than positive instances,
alternative metrics needs to be used in addition to the
LOOA. We resort to the balanced LOOA (BLOOA) [52],
which can be computed as:

where TP and TN denote the true positive and true nega-
tive rate, respectively.
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Description of the feature selection methodFigure 1
Description of the feature selection method. Redundant features are sequentially removed until the number of remaining fea-
tures reaches a pre-defined number.
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Additional file 1
Positive training dataset. This data provides 476 protein sequences that 
are used for training.
Click here for file
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2105-8-351-S1.doc]

Additional file 2
Negative training dataset. This data provides 2157 protein sequences that 
are used for training.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-351-S2.doc]

Additional file 3
Independent testing dataset. This data provides 414 protein sequences 
that are used for testing.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-351-S3.doc]

Additional file 4
Prediction results of 414 odorant binding proteins. This table provides pre-
diction results for 414 odorant binding proteins by our method, BLAST 
and HMM, where "+" represents proteins correctly predicted as odorant 
binding proteins, and "-" represents proteins incorrectly predicted as non 
odorant binding proteins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-351-S4.doc]
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