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Abstract

Background: During the past decades, research and development in drug discovery have
attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs
up to now. ldentifying potential drug targets is the first step in the process of modern drug
discovery for developing novel therapeutic agents. Therefore, the identification and validation of
new and effective drug targets are of great value for drug discovery in both academia and
pharmaceutical industry. If a protein can be predicted in advance for its potential application as a
drug target, the drug discovery process targeting this protein will be greatly speeded up. In the
current study, based on the properties of known drug targets, we have developed a sequence-
based drug target prediction method for fast identification of novel drug targets.

Results: Based on simple physicochemical properties extracted from protein sequences of known
drug targets, several support vector machine models have been constructed in this study. The best
model can distinguish currently known drug targets from non drug targets at an accuracy of 84%.
Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted,
some of which have already attracted much attention as potential drug targets in pharmaceutical
research.

Conclusion: We have developed a drug target prediction method based solely on protein
sequence information without the knowledge of family/domain annotation, or the protein 3D
structure. This method can be applied in novel drug target identification and validation, as well as
genome scale drug target predictions.

Background

Although great efforts have been exerted on drug research
and development during the past decades, only about 500
drug targets have been identified for clinically using drugs
to date[1]. Recently, this number has been revised to be
324[2], which indicates that current pharmaceutical
industry actually relies on only a small pool of drug tar-

gets, compared to the large number of proteins available
in human genome|[3]. On the other hand, a significant
number of drugs failed in the pipeline of modern drug
discovery can be attributed to the wrong drug target defi-
nition at the early preclinical stages[4]. Therefore, to
address new therapies by attacking novel drug targets or to
predict whether a protein can be potentially used as a drug
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target, is extremely valuable in disease treatment, as well
as the reduction of time and experimental costs in drug
development.

Drug target discovery has received much attention in both
academia and pharmaceutical industry. Many efforts have
been made to estimate the total number of drug tar-
gets[1,2,5-8] and several drug target related databases
such as TTD (therapeutic drug target database)[9], Drug-
Bank[10], have been also established. According to the
existing knowledge, classical therapeutic drug targets fell
into approximately 130 protein families[2,6], which gen-
erally include enzymes, G-protein-coupled receptors, ion
channels and transporters, and nuclear hormone recep-
tors, etc[1,6]. Many groups have attempted to develop
experimental and computational tools to find new poten-
tial drug targets[5,6,11-16]. Several strategies have been
used in drug target prediction, which can be generally
divided into two groups. The first group is to analyze the
known therapeutic drug targets from genome level based
on sequence homology or domain containing method
[5,6], which takes protein families into account to find
potential novel drug target family members. In fact, not
all proteins in the same family can be used as drug targets.
The other one is to search for binding pockets on the pro-
tein surface based on protein 3D structures, and to iden-
tify those that may bind to drug-like compounds with
reasonable affinities[11,13]. Technically, this kind of
methods is limited to the availability of 3D structures and
cannot be applied to genome scale. Recently, Han et al.
[16] used machine learning methods to build a model
with 1,484 clinical and research drug targets from TTD
database[9], and predicted druggable proteins among dif-
ferent organisms.

Clearly, the quality of drug target data restricts the predic-
tive power of models. Unfortunately, several versions of
drug target lists have been proposed|1,2,5-8]. Therefore,
we have to establish a critical criterion to select valid drug
targets for the prediction. The possible reasons for many
versions of drug targets are: the definition of drug target is
difficult and also arbitrary[7]; it is difficult to assign each
drug to its target due to poorly understood pharmacology,
limited selectivity against related proteins and some tar-
gets are even multimeric protein complex where the same
subunits can unite in different combinations to form dif-
ferent targets[2,5]. In this study, we follow the definition
of drug target by Imming et al[7], "...a target to be a molec-
ular structure (chemically definable by at least a molecu-
lar mass) that will undergo a specific interaction with
chemicals that we call drugs because they are adminis-
tered to treat or diagnose a disease. The interaction has a
connection with the clinical effect(s)." The version of drug
targets used in this study has been collected by Overing-
ton et al[2], who propose a consensus version of 324 drug
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target from a comprehensive survey on earlier reports.
Considering the differences in mechanisms between
human origin drug targets and pathogen origin targets,
and the differences of amino acids composition among
different organisms, only human origin drug targets are
used in the current study. As the main purpose of the
present study is to predict potential drug targets for drug
design and screen of chemical compounds, consequently,
only 186 targets of FDA-approved oral small-molecular
drugs are taken into account. Using simple physicochem-
ical properties extracted from protein sequences, several
support vector machine (SVM) models have been con-
structed with critical testing. The best SVM model has
been applied to large scale datasets, and some of the pre-
dicted potential drug targets have attracted much atten-
tion in experimental studies.

Results and discussion

Kernel function selection

Three commonly used kernels, linear, polynomial and
radial basis function (RBF) were tested in order to find the
best performance SVM model. 10-fold cross-validation
was done to evaluate the performance of each kernel func-
tions. A 146-dimension vector of physicochemical fea-
tures (in Table 1) was used to represent protein sequence.
The results of the three kernel functions with training set
(1) are listed in Table 2.

The best performance of the three kernel functions is
about 80% in overall accuracy. The sensitivity (percentage
of recognized positive samples among all positive sam-
ples) is around 85%, which is 5-9 percent higher than the
specificity (percentage of recognized negative samples
among all negative samples, from 75% to 80%). The per-
formance of the SVM with linear kernel was a little worse
than that of polynomial kernel. SVM with RBF kernel out-
performed the other two, which gave an overall accuracy
of 83%, sensitivity of 85% and specificity of 80%, respec-
tively.

Systematic searching of the parameter space was carried
out for each of the three kernels in model optimization.

Table I: Protein sequence based features used

Dimension Properties
20 Composition of the 20 amino acid residues
21 Hydrophobicity
21 Polarity
21 Polarizability
21 Charge
21 Solvent accessibility
21 Normalized van der Waals volume
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Table 2: 10-fold cross-validation results? of the SVM with different kernel functions

Kernel function Sensitivity Specificity Accuracy
SVM-Linear 84.03 + 0.74 7490 + 1.47 79.46 + 0.87
SVM-Polynomial 84.56 + 1.06 76.38 +2.14 80.47 + 0.87
SVM-RBF 85.91 £ 2.60 80.54 + 2.64 83.22 + |.76

2 SVMs with different kernel functions were trained with training set (I).

For linear kernel, only one parameter, the error tradeoff C,
was tuned; for polynomial kernel,

k(x,x') = ((x®x)s+ 1)4

the two kernel parameters and error tradeoff C were
tuned, and the parameter d was fixed at a value of 5 as in
the previous studies|17,18]; for RBF kernel,

k(xx) = exp(-v||x-x'[|?)
parameter v and error tradeoff C were optimized.

From the results shown in Table 2, only the SVM model
with RBF kernel function was chosen for the subsequent
computations in this study.

Training set selection

Although good results were achieved for training set (1),
the specificity was relative low. Therefore, one question
might be raised - "are 186 samples enough to cover the
entire non drug-target space?" Considering the diversity of
the putative non drug-target proteins, the non drug-target
space might not have been sampled completely. There-
fore, we have constructed five additional training sets,
training set (2) - (6), in which the ratios of the number of
positive samples to negative ones became 1:2, 1:4, 1:6,
1:8, 1:10 instead of 1:1 in the training set (1). The same
strategy used in training set (1) was applied to these five
training sets.

The 10-fold cross-validation results of all six training sets
are listed Table 3 and the relevant ROC curves are shown
in Figure 1. The six ROC curves are almost overlapping in
Figure 1, and the area under the curve (AUC) varies
between 0.900 and 0.920, which demonstrates that the

Table 3: 10-fold cross validation results with different training sets

performance of the SVM model does not change signifi-
cantly with the increase of negative samples in the training
set.

Despite of the similarities, we can still observe several
changes due to better sampling of the non drug-target
space. The area under the curve (AUC) increases from
about 0.90 to 0.91 and remains around 0.910 along with
the increase of negative samples. At the same time, the
standard deviation of under the curve (AUC) is getting
smaller and seems to converge to about 0.005. Similar
trend can be observed from Table 3, where the specificity
increases from 80% to 84% and the sensitivity drops
down from 85% to about 82%. Starting from training set
(3) (Positive/Negative = 1:4), the performances of SVM
models become stable. The reason why the sensitivity
drops down is because that the training sets become
unbalanced (positive/negative = 1:1 is called balance)
along with the increase of the number of negative sam-
ples, in that way the SVMs tend to push the hyperplane
towards the side with a small number of samples[16]
(refer to histogram in Figure 2). It should be noted when
the training set is unbalanced, if the sensitivity and specif-
icity are not close to each other, then the overall accuracy
will not suitable for evaluating model performance. For
example, if positive/negative = 1:9, even all testing sam-
ples are predicted to be negative, the overall accuracy will
still be 90%, which actually is not the case.

Considering the analysis above, training set (4) (positive/
negative = 1:6) was chosen for the following calculations.
The confidence of a support vector machine prediction is
related to the distance to the hyperplane in SVM model.
Larger distance equates to higher confidence. Figure 2
illustrates how this model performed in 10-fold cross-val-
idation. For drug targets, the method is about 82% accu-

Training set Positive/Negative Sensitivity Specificity Accuracy
I I:1 85.91 +2.60 80.54 + 2.64 83.22 % |.76
2 1:2 82.28 + 1.02 82.82 + 2.67 82.64 + 1.66
3 1:4 81.88 + 1.34 84.17 £ 1.78 83.71 £ 1.48
4 1:6 8l.61 £0.77 84.73 +2.38 84.28 +2.10
5 1:8 82.01 + |.64 84.57 + 1.68 84.29 + |.64
6 1:10 82.69 + 0.74 83.72 £ 1.20 83.62+ .14
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Figure |

ROC curves of training set (1) - (6) by RBF-SVM
using 10-fold cross-validation. P and N indicate positive
and negative, respectively. AUC means the area under the
curve. The larger the AUC is, the better the performance of
the model will be. The real numbers in brackets are standard
deviation (std).

rate; for putative non drug targets, the accuracy is about
85%.

Feature selection

Generally speaking, choosing a more relevant subset of
features leads to a simpler model, which can often lead to
better performance in machine learning[16,19]. This
might come from the noisy features that make fitting the
hyperplane more complex. Here, we used F-score, a sim-
ple and intuitive method to measure the discrimination of
each feature implemented as a tool in Libsvm pack-
age[20]. The larger F-score is, the more discriminative the
feature is.

The F-scores of each feature are shown in Figure 3C and
several features with higher F-scores are also illustrated in
Figure 3D-G. It can be seen that hydrophobicity and
polarity are the most discriminative features. The hydro-
phobic residues Phe, Ile, Trp and Val, together with polar
residues, Glu and Gln tend to have higher F-scores than
other residues in Figure 3A. Similarly, high F-scores of
F21, F42 and F43 can be observed, which are related to
hydrophobic and polar group amino acids. In addition,
the percentages of transition frequencies between hydro-
phobic amino acids and neutral amino acids, polar amino
acids and neutral ones also seem to be discriminative fea-
tures. One of the reasons why such features are more dis-
criminative might be due to the large percentage of
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Figure 2

Distribution of predicted distance to the hyperplane.
The distance to the hyperplane of a support vector machines
model is related to the confidence of the predicted results.
The bigger the distance is, the more confident the predicted
results will be. The histogram is the prediction results for the
drug targets and non drug targets in the |0-fold cross-valida-
tion of training set (4) — (positive/negative = 1:6). Drug target
families contain 3,444 human original proteins from Swiss-
Prot, which are in the same family of known drug targets.
Non drug-target families consist of 9,758 putative non drug
targets. Research drug targets contain 371 human origin
research drug target proteins which do not belong to the
known drug target family.

transmembrane proteins in known drug targets, which
have more hydrophobic trans-membrane regions.

With careful feature selection, we observed that there were
no obvious improvements (less than 1%) of the SVM
model. Although there was a certain correlation between
some features, this level of correlation would not substan-
tially reduce the model performance in this study. Similar
results were obtained in previous study|[16], therefore, all
the 146 features were selected. It should be emphasized
that despite of many advantages of F-score method, it
dose not reveal the mutual information among features.
As contrast, RBF kernel SVM can non-linearly combine
each of the features and achieved good results in the
present study.

Furthermore, one might wonder the performance of the
model if only 20 features of amino acid composition are
taken into account. This was tested on training set (4)
(Table 4). Both sensitivity and specificity are around 80%,
which are only 2% and 4% lower than those of 146-fea-
ture model, respectively.

Page 4 of 11

(page number not for citation purposes)



BMC Bioinformatics 2007, 8:353 http://www.biomedcentral.com/1471-2105/8/353

A D. Distribution of Feqture 7

mDrug target
DNon drug target

F-score of Feature 1 - 20

e
@

0.10

Normalized Frequence

000 o0.02 n‘“:or:.;::mo:“ 010 o012
E. Distribution of Feqture 13
070
HDrug target
E 0.60 ONon drug target
£ 00
E 030
'-E' 0.20
2010
ACEDGFIHKMLNQPSRTWVY 0% o0 0.02 008 0.05 008 010 042 044 016
Composition
F1-20: Amino acid composition F A
i Distribution of Feature 21
B 0.40 WDrug target
N TNon drug target
: F-Score of Feature 21 - 41
3 030
g
010  F21 3
E 0.10
0.08 F24 2
0.00 4
9 000 010 020 030 040 050
0 0.06 - G Composition
[¥] Distribution of Feature 24
] 0.0
? 0.04 . e
002 - £
i
0.00 3
212223 24252627 28 29 30 31 32 33 34 35 36 37 38 39 40 41 2
F21-41: Hydrophobicity I T
C. F-scores of Features
10 r

—a—F1-20: Amino acid composition
09 r o —o—F21-41: Hydrophobicity
—A&—F42-62: Polarity

08 r
——F63-83: Polarizability
07 r —e_F84-104: Charge
o6 | —O—F105-125: Solvent accessibility

——F126-146: Normalized van der Waals volume

05

04
03

02

01

F-score
© 9 © o 0o o o o o o o

00
(0] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Features

Figure 3

The F-scores of features and relevant distribution. A. F-scores of the first 20 dimensional features that are the standard
amino acid composition. The distribution of the 7th and |3th feature with star marked, F7 and FI3 which are the composition
of amino acid of lle and Gln, is illustrated in D and E. B. F-scores of the next 21 dimensional features that are the hydrophobic-
ity of protein sequence. The first three dimensions, F21-23, represent compositions of hydrophobic, neutral and polar amino
acid, respectively; F24-26, represent the percentage of transition frequency between hydrophobic, neutral and polar amino acid
residues; F27-41 are which the first, 25%, 50%, 75% and 100% of the amino acids of a particular group are located. The distri-
bution of feature F21 and F24 with high F-score are shown in F and G. C. The F-scores of complete 146 features.
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Table 4: 10-fold cross-validation results? with 20 features of amino acid composition

Training set Positive/Negative

Sensitivity

Specificity Accuracy

4 1:6

79.20 £ 247

80.78 + 1.84 80.56 + 1.90

2|t is built on training set (4) — positive/negative = |:6

Further evaluation of model with blind test

Blind test was employed to further evaluate the perform-
ance of the model generated above. The testing dataset
consisted of 37 drug target proteins (positive) and 223
putative non drug-target proteins (negative). The model
successfully recognized 31 drug targets among all the 37
drug-target proteins and 188 of the 223 putative non
drug-target proteins on average (in Table 5). The sensitiv-
ity and specificity are about 84% and 85%, respectively,
which are very close to the results obtained from the 10-
fold cross-validation test. The consistency of the perform-
ance in both cross-validation test and blind test, demon-
strates the validity of the present method. Therefore, we
conclude that this model has good predictive power in
critical testing process.

Since the current method provides pretty good perform-
ance in the critical testing of the 10-fold cross-validation
test and blind test, one might wonder how it performs in
larger dataset and whether it can be used in novel drug tar-
get prediction at genome scale. In order to answer these
questions, another four datasets were prepared, dataset I -
IV, which contained proteins of drug-target family mem-
bers, research drug targets, research drug-target family
members, and putative non drug targets, respectively. The
relationship of these datasets is shown in Figure 4.

Prediction results on dataset | — drug target family

This dataset contains 3,444 proteins from 142 drug-target
families from Pfam annotation[21], among which 1,557
proteins were predicted as potential drug targets. The per-
centage of predicted potential drug targets was about 45%
and more than half of the proteins were recognized as non
drug targets. The distribution of the predicted distance to
the hyperplane is illustrated (blank triangle in broken
line) in Figure 2. Interestingly, 60% of the samples distrib-
ute in the range of -1.0 to 1.0, which means a large potion
of the proteins in the drug target family are on the margin

Table 5: Blind testing results?

between drug targets and non-drug targets. In other
words, drug target family dataset seems closer to drug tar-
get dataset than putative non drug-target family dataset
does.

Prediction results on dataset Il — Research drug target
371 human origin research drug targets selected from
TTD[9] and DrugBank[10] were included in this dataset,
while the other research drug targets which belong to drug
target families were excluded. 140 research drug targets
out of 371 were predicted as drug targets and the percent-
age is about 38%. The distribution of the predicted dis-
tance is also shown in Figure 2. The distribution looks like
that of the drug target family to some extent. Similarly,
research target dataset seems more like drug target dataset
than the putative non-drug target dataset does. But, it
looks less like drug target dataset compared to drug target
family data due to a slight shift of the distribution curve to
the negative direction.

Prediction results on dataset Il — Research drug target
family

Similarly, the research drug target family proteins were
also predicted. This dataset consists of 3,065 proteins. 797
proteins out of 3,065 research drug target family members
were predicted as drug targets and the fraction is 26%,
which is slight higher than that of the putative non drug
targets (15%, in the next subsection). The dataset looks
more like non-drug target dataset than the other two do.

Prediction results on dataset IV — Putative non drug target
This dataset contained 9,758 putative non drug-target
proteins. 8,375 proteins out of the putative non drug tar-
gets were successfully recognized as non drug targets with
the accuracy of about 85%. The distribution of the pre-
dicted distance is also shown in Figure 2 (filled square in
dot line). The distribution is very similar to that of the
putative non drug target in the training set. This indicates

Positive Negative Sensitivity Specificity Accuracy
83.79 + 6.24 84.55 + 2.60
37 223 84.60 + 1.84
(31 £2)/37 (188 + 6)/223
2 The model is trained with training set (4) (positive/negative = 1:6) using RBF kernel function.
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Putative non drug target family

Figure 4

The relationship of different datasets. 16,267 human
origin proteins are from Swiss-Prot. 186 drug targets are the
targets of FDA-approved oral small-molecule drugs of
human. The other four datasets are 3,444 drug target family
members, 37| research drug targets with the ones in drug
target family excluded, 3,065 proteins from research drug
target family and 9,758 putative non drug targets, which are
predicted respectively.

that the sampling by the non drug-target proteins in the
training set (training set (4)) completely covered the
entire putative non drug-target dataset to some extent.
This may also answer the question why the performance
remains constant when increasing the negative samples of
the training set.

It should be noted that the "putative" non drug-target
dataset does not mean that proteins in this dataset are
actually non drug targets, and it only shows they are not
drug targets according to the existing knowledge. Thus,
one might not expect a perfect classification of this data-
set. As a matter of fact, to identify novel drug target (or tar-
get family) is the main focus in this field, and it is also one
of the main purposes of this study. Therefore, it is worthy
to check the misclassified part of this dataset, as the com-
monly used homology based or domain based annota-
tion method can not detect this part of potential drug
targets.

The results of the predicted drug targets on dataset I — IV
are illustrated in Figure 5. Drug target family is well
known resource for discovery of novel potential drug tar-
gets[4], which is also supported by the current study. 45%
proteins of this dataset were predicted as potential drug
targets, which is the highest of the four and almost two
times higher than that of research target family. On the
other hand, this shows that not all proteins from drug tar-
get family can be used as drug target, in fact more than
half cannot according to the present study. Although the
research drug target family dataset was predicted to con-
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Prediction results on four larger datasets.

tain only 26% potential drug targets, the research drug tar-
get dataset was predicted to contain about 38% potential
drug targets, indicating that the research drug targets are
the well chosen ones from the research drug target fami-
lies that were put into experiment studies.

As to the putative non drug target dataset, 15% of the pro-
teins were predicted to be drug targets. This part of 'mis-
classified' proteins are of great value as they might become
potential novel drug targets or provide import informa-
tion in drug target identification and validation research.
The top 30 predicted potential drug targets with the dis-
tance to the hyperlane higher than 1.7 are listed in Table
6 (the other predicted potential drug targets are listed in
Additional file 1). Some of them have been reported as
potential drug targets in the literatures. For example,
No.1, 3, 6, 16, 24 are five Frizzled receptors (Frizzled-2, 3,
4,7,9), belonging to G-protein coupled receptor Fz/Smo
family, which are the receptors for Wnt protein[22]. Wnt
signalling has been reported to be related to various dis-
eases, such as kidney damage, leukaemia, metastasis,
schizophrenia, cancer and so on, where Frizzled receptors
are considered as one of the promising therapeutic targets
[23-26]. No.4 is Smoothened homolog (SMO), also
belonging to G-protein coupled receptor Fz/Smo family,
which is involved in the Hedgehog signalling, a pathway
leading to pathological consequence in various human
tumours, such as gastric cancer and pancreatic cancer[27].
It has also been reported that cyclopamine as SMO inhib-
itor is a potential "mechanism-based" therapeutic agent
for the treatment of these tumours[27,28]. No.7, NADPH
oxidase 3 (NOX3), is almost exclusively expressed in the
inner ear[29], which is a potential drug target in ROS
(reactive oxygen species) related hearing loss[30]. In addi-
tion, No.21, P2X purinoceptor 4 (P2X4), has recently
been implicated in pain sensation, which is considered as
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Table 6: Predicted drug targets with the distance to the hyperplane above 1.7 from the putative non drug target dataset

No. Swiss-Prot AC Protein Name Distance
| QINPGI Frizzled-3 2.425
2 Q96PD7 Diacylglycerol O-acyltransferase 2 2.383
3 075084 Frizzled-7 2.301
4 Q99835 Smoothened homolog 2.200
5 Q3MIR4 Cell cycle control protein 50B 2.184
6 Q14332 Frizzled-2 2.126
7 Q9HBYO NADPH oxidase 3 2.040
8 Q5HYAS8 Meckelin 2.037
9 QINYG2 Palmitoyltransferase ZDHHC3 2.020
10 Q96MH6 Transmembrane protein 68 1.999
1 Q9ULOI Dermatan-sulfate epimerase 1.974
12 Q5SY80 Uncharacterized protein Clorfl0l 1.914
13 Q9BQ0 Kelch domain-containing protein 3 1.827
14 P20618 Proteasome subunit beta type | 1.818
15 Qs8izu2 WD repeat protein |7 1.810
16 QI9ULVI Frizzled-4 1.796
17 P54803 Galactocerebrosidase 1.790
18 QINVI6 Cell cycle control protein 50A 1.777
19 P51674 Neuronal membrane glycoprotein Mé-a 1.776

20 P35503 UDP-glucuronosyltransferase -3 1.769

21 Q99571 P2X purinoceptor 4 1.744

22 P53396 ATP-citrate synthase 1.735

23 P08237 6-phosphofructokinase, muscle type 1.724

24 000144 Frizzled-9 1.722

25 095498 Vascular non-inflammatory molecule 2 1.721

26 P09848 Lactase-phlorizin hydrolase 1.718

27 QO05BV3 Echinoderm microtubule-associated protein-like 5 1.709

28 Q96QE2 Proton myo-inositol cotransporter 1.708

29 Q9NPF4 Probable O-sialoglycoprotein endopeptidase 1.707

30 Q9uJ83 2-hydroxyacyl-CoA lyase | 1.704

a new target to treat neuropathic pain in current
research[31].

Although many of predicted potential drug targets by this
method have gained much interests in current research,
whether a predicted drug target will finally become a true
therapeutic drug target still needs more experimental test.
Despite of that, these examples validate the effectiveness
and predictive power of the present method. Meanwhile,
it also indicates that this method can provide useful infor-
mation in novel drug target identification and validation.

Besides the advantages discussed above, this method
employed simple physicochemical properties based on
primary protein sequence to construct the SVM model,
which runs very fast even on a personal computer. How-
ever, the limitations of the current method should also be
discussed. Firstly, only human proteins are covered by this
method since the drug targets from other pathogens such
as fungi, bacteria and viruses are not included, consider-
ing the difference between organisms and different mech-
anisms of function; secondly, only protein drug targets are
taken into account, other types of targets such as DNA,

RNA and protein-protein interfaces are beyond of the
scope of the present study. The current method can be
extended to predict these types of drug targets in the future
when enough data are available.

Conclusion

In the present study, a drug target prediction method
based on support vector machine has been developed.
Independent of homology annotation (or domain con-
taining) and protein 3D structures, the current method
employed a set of features of physicochemical properties
directly calculated from primary protein sequence. The
method can successfully distinguish known drug targets
from putative non drug targets at an accuracy of 84% in
10-fold cross-validation test.

The model was further applied to four larger datasets with
proteins in the drug-target families, research drug targets,
research drug-target family members and putative non
drug targets. Detailed analysis of the predicted drug targets
with examples proves the effectiveness and predictive
power of the model built. This method can be used in
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novel drug target identification and validation at large
scale.

Method

Datasets

186 targets of approved oral small-molecular drugs were
taken as the positive dataset in this study, which were
recently revised by Overington et al[2]. The drug targets
are listed in Additional file 2 as supplementary informa-
tion. As there was no verified non drug target data readily
available, we constructed a putative non drug-target data-
set, following the way in the previous work|16], where the
main idea was to remove possible drug targets and their
protein family according to current knowledge (refer to
Figure 4 for the relationship of different datasets used in
this study).

The non drug target data was built by first retrieving
16,267 human-origin protein sequences from Swiss-Prot
and eliminating the 186 drug target proteins and those in
the relevant families. The 186 oral small-molecular drug
targets covered 142 protein families in Pfam database
[21], which contained 3,444 protein sequences. There-
fore, only 12,823 protein sequences were remained after
this step.

Then, 3,065 proteins of research drug target proteins of
human origin from TTD[9] and DrugBank|[10] and their
relevant family members were also excluded. At the end,
9,758 protein sequences remained in the putative non
drug-target dataset. It should be noted the protein
sequences in the putative non drug-target dataset are not
validated non drug-target proteins, which only means that
till now no drug target (families) and research target (fam-
ilies) are found in this dataset. In fact, it will be of great
value for drug target identification if novel drug targets or
target families could be identified among this dataset.
However, although novel drug targets might exist in this
dataset, the chance is pretty low. Therefore, without sub-
stantially reducing SVM prediction performance, we ran-
domly selected a certain number of protein sequences
from this dataset to construct the negative dataset. The
training and testing sets were constructed by the following
procedure:

¢ Step 0: 186 targets of approved oral small-molecule drug
targets were used as the positive data; the same number of
proteins randomly selected from putative non drug-target
dataset was taken as the negative data. There were a total
of 372 proteins in this dataset.

e Step 1: 80% of samples (149 positive, 149 negative)
from the dataset generated in step 0 were selected as train-
ing set (1). 10-fold cross-validation was applied when
training the model.

http://www.biomedcentral.com/1471-2105/8/353

o Step 2: The other 20% samples were used as blind test.
The procedures above were repeated for five times.

Considering the diversity of the putative non drug-target
dataset, 186 proteins might not cover the entire "non
drug-target space". Therefore, to better sampling the non
drug-target space, we added more putative non drug-tar-
get proteins into the training set to improve sampling. The
procedure was exactly the same as that mentioned above,
except that the size of the negative dataset became larger.

e Step 0: 186 target proteins of approved oral small-mol-
ecule drug targets were still taken as the positive data; 372,
744, 1116, 1488, 1860 non drug-target proteins were ran-
domly extracted from putative non drug-target dataset,
which formed five negative sets with different sizes. Then,
the size ratios of the positive set and the negative sets were
1:2, 1:4, 1:6, 1:8 and1:10, respectively.

¢ Training set: 80% of the positive set (149 drug-target
proteins), combined with 80% of each negative set (298,
595, 893, 1190, 1490 non drug-target proteins) were used
to construct another five different training sets which were
referred as training set (2) - (6), respectively. Similarly,
10-fold cross-validation was applied to each of these data-
sets.

e Testing set: The rest of 20 % of positive data (37 drug tar-
get proteins) and each negative data (74, 149, 223, 298
and 370) were used for blind testing.

Each of the procedures was also repeated for five times.

To apply the model to the prediction of the larger dataset,
four additional datasets were constructed. The relation-
ship of these datasets is illustrated in Figure 4.

¢ Dataset I: Drug-target family. This dataset contained
3,444 human origin proteins from 142 drug target fami-
lies. Here, protein family in Pfam database was defined
based on domain affiliations or sequence cluster-
ing[16,21]. Proteins in drug target family are likely to be
drug targets, but which needs further experimental valida-
tion.

¢ Dataset II: Research drug target. 371 research drug tar-
gets of human origin were selected from TTD[9] and
DrugBank[10], and the other research drug targets which
belong to drug target families were excluded. Note that
here "research drug targets" refers to two groups of pro-
teins, one is the proteins which have been used to develop
drugs in experimental studies but have not been
approved, the other group is the proteins which although
were assigned as successful drug targets annotated by the
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databases, but not confirmed by the recently revised drug
target list of Overington et al.

¢ Dataset III: Research drug target family. Based on data-
set 11, research drug targets and their related family mem-
bers were included in this dataset, which contained 3,065
proteins.

e Dataset IV: Putative non-drug target. This dataset was
the entire "putative non drug-target" dataset mentioned
above, which consisted of 9,758 human origin proteins
with drug targets and their families as well as research
drug targets and their families removed.

Features of the protein sequence

The feature set of a protein sequence was selected accord-
ing to the previous studies[16,32,33]. Using a vector to
represent a protein sequence, the percentage composition
of the 20 amino acid residues formed the first 20 dimen-
sions.

In addition, other six physicochemical properties were
calculated, including hydrophobicity, polarity, polariza-
bility, solvent accessibility and normalized van der Waals
volume (Table 1). For each of these physicochemical
properties, feature vectors were extracted from the primary
sequence based on three descriptors: "Composition",
composition percentage of three constituents (eg. polar,
neutral and hydrophobic residues in hydrophobicity),
which occupied three dimensions; "Transition", the tran-
sition frequencies (polar to neutral, neutral to hydropho-
bic, etc.), which occupied another three dimensions; and
"Distribution”, the distribution pattern of constituents
(where the first residue of a given constituent was located,
and where the 25%, 50%, 75%, and 100% of the constit-
uent were contained), which occupied 15 dimensions
(each constituent has five dimensions). Overall, each of
these physicochemical properties occupied 21 dimen-
sions. The complete feature vector consisted of 146
dimension elements.

Feature selection with F-score

F-score is implemented as a tool in Libsvm package[20],
which is a simple, intuitive method to evaluate the dis-
crimination of two sets. Here, Given training vector x;, k =
1,.., m, if the number of positive and negative instances are
n, and n, respectively, then the F-score of the ith feature is
defined as:

F(i) = & -5+ @ %)

WU R € v s
n, —1 = ki i n -1 = ki i
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where ¥;, M, fl-(_)

; are the average of the ith feature of the

=)

whole, positive, and negative datasets, respectively; x;;

)

is the ith feature of the kth positive instance, and Ek; is
the ith feature of the kth negative instance. The larger the
F-score is, the more likely discriminative this feature is.
Therefore, we used this score as a feature selection crite-
rion. In combination with support vector machine, in
each round, selecting a possible threshold, the features
with F-scores above the threshold were taken for training.
This procedure was repeated until the best results were
found.

Support vector machine

The implementation of support vector machine used here
is Libsvm[20]. Three different kernel functions, linear ker-
nel, polynomial kernel and radial basis function (RBF)
were evaluated in turn. According to the machine learning
theory[34], an optimal hyperplane will be drawn by SVM
model, in order to separate positive samples from nega-
tive ones. The distance to the hyperplane is related to the
confidence of a prediction. Therefore, the distance from
each sample to the hyperplane was employed to predict
the drug target likeness of a protein.

Performance evaluation

The performance of each model was evaluated with an n-
fold cross-validation test. In the cross-validation test, the
entire data set was shuffled and split into n folds. Each
fold was used in turn for testing and the remaining part
(n-1 folds) was used for training. The sensitivity (Qp),
specificity (Qn) and overall accuracy (Qa) were used to
measure the accuracy of positive prediction, negative pre-
diction and the overall accuracy of the model [35], respec-
tively.

Q, = TP/(TP + FN)
Q, = TN/(TN + FP)
Q, = (TP + TN)/(TP + TN + FP + FN)

Here, TP, TN, FP and FN represent true positives, true neg-
atives, false positives and false negatives, respectively. In
general, the overall accuracy Qa is always used to measure
the predictive power of a model.
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