
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
SEARCHPATTOOL: a new method for mining the most specific
frequent patterns for binding sites with application to prokaryotic
DNA sequences
Fathi Elloumi*1 and Martha Nason2

Address: 1Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike,
Blg50/R5505, Bethesda, MD 20892, USA and 2Biostatistics Research Branch, Office of Clinical Research, National Institute of Allergy and
Infectious Diseases, National Institutes of Health, 6700B Rockledge Dr. MSC 7609, Bethesda, MD 20892-7609, USA

Email: Fathi Elloumi* - elloumi.fathi@epa.gov; Martha Nason - mnason@niaid.nih.gov

* Corresponding author

Abstract
Background: Computational methods to predict transcription factor binding sites (TFBS) based
on exhaustive algorithms are guaranteed to find the best patterns but are often limited to short
ones or impose some constraints on the pattern type. Many patterns for binding sites in
prokaryotic species are not well characterized but are known to be large, between 16–30 base
pairs (bp) and contain at least 2 conserved bases. The length of prokaryotic species promoters
(about 400 bp) and our interest in studying a small set of genes that could be a cluster of co-
regulated genes from microarray experiments led to the development of a new exhaustive
algorithm targeting these large patterns.

Results: We present Searchpattool, a new method to search for and select the most specific
(conservative) frequent patterns. This method does not impose restrictions on the density or the
structure of the pattern. The best patterns (motifs) are selected using several statistics, including a
new application of a z-score based on the number of matching sequences. We compared
Searchpattool against other well known algorithms on a Bacillus subtilis group of 14 input sequences
and found that in our experiments Searchpattool always performed the best based on performance
scores.

Conclusion: Searchpattool is a new method for pattern discovery relative to transcription factor
binding sites for species or genes with short promoters. It outputs the most specific significant
patterns and helps the biologist to choose the best candidates.

Background
The availability of complete genomic sequences has
opened the door for computational methods to predict
binding sites and understand gene regulation. Pattern-
finding algorithms can be divided into two groups [1]:
local multiple sequence alignment algorithms and

exhaustive algorithms. Alignment based algorithms (e.g.
Gibbs sampling, expectation maximization) may con-
verge to a local maximum without always finding the best
patterns [2,3]. Exhaustive algorithms are guaranteed to
find the best patterns within certain constraints. Brazma
formalized the problem of pattern discovery as a classifi-

Published: 20 September 2007

BMC Bioinformatics 2007, 8:354 doi:10.1186/1471-2105-8-354

Received: 26 January 2007
Accepted: 20 September 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/354

© 2007 Elloumi and Nason; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17883842
http://www.biomedcentral.com/1471-2105/8/354
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
cation one [4]. Rigoutsos defined the problem as follows
[5]: Given a database D (set of sequences), a set of events
E (four nucleotides for DNA sequences) and an evaluation
function F (that measures the degree of similarity between
two events) the task is to determine interesting patterns of
events which are contained in D. An interesting pattern is,
for example, a frequent and statistically significant pat-
tern. A frequent pattern is one that appears in a minimum
number of records (sequences). This minimum number is
called the threshold, or minimum support. A significant
pattern is one that occurs too frequently to be attributed
to chance alone, as judged by having a high statistical
score. Frequent patterns can be classified in three catego-
ries [6]: all frequent patterns, the closed frequent patterns
where all extensions have smaller support, and finally the
maximal frequent patterns that are not contained in other
patterns. Regular expressions are sometimes used to
define the patterns. The pattern can contain the events of
E (the fixed alphabet) and ambiguous characters (N, R,
W...). The character N (or '.') is a wild-character that can
represent any event. The density of a pattern is its number
of non-wild-characters.

Most exhaustive algorithms operate by enumerating the
solution space. For example, after fixing a minimum sup-
port they search for a simple frequent pattern (singleton),
extend it, and check if the extended pattern is frequent.
The process is then repeated. As the lengths of the patterns
increase the running time grows. Some programs use
pruning techniques or impose constraints on the kind of
patterns so the performance is improved. Well known
exhaustive algorithms include Ymf, Weeder and Mitra [7-
9]. Others, like Pratt, Teiresias and Splash are not dedi-
cated to patterns relative to binding sites [10-12]. Some
programs are based on mining sequential patterns [13],
like the Wang program [14], or Tomms that uses a top-
down pattern enumeration [6].

In this work we are looking for TFBS relative to prokaryo-
tic species. A summary of the motifs in TF databases (such
as RegulonDB and DBTBS) reveal that approximately 67%
of the motifs are at least 15 bp [15,16]. Based on the
observations found in these databases and relevant
papers, it seems that the motifs for prokaryotic species are
likely to be large and contain a number of conserved
bases. Based on a search in DBTBS and RegulonDB, we
find that 77% of the motifs have at least 2 conserved bases
for Bacillus subtilis. For monad patterns without flexible
gaps, the corresponding percentage is 88%. 39% of the
motifs begin and end with a conserved base. For E. coli, we
find that 54% of the motifs have at least 2 conserved bases
and 33% of the motifs begin and end with a conserved
base.

In general the motifs do not follow a specific type. In
DBTBS we find that about 29% of the motifs have few
spacers (between one and seven) in the middle and 21%
of the motifs have flexible gaps. Approximately 19% of
motifs are palindromic.

Local multiple algorithms may be suitable for our applica-
tion; however, they are not guaranteed to find optimal
solutions. Currently available exhaustive algorithms
impose some constraints in order to limit the search time
and to have good performance: these did not fit our
requirements because they are not capable of finding long
motifs, as our context demands. For example, in Ymf a tar-
get pattern or motif is a string of length 6–8 over the
alphabet {A,C,G,T,R,Y,S,W} with 0 to 11 character 'N's
inserted in the center and a limited number of R, Y, S, W
characters (Ex: CGGNNNNNNSCG). Weeder enumerates
all patterns up to a maximum length (max 12) with a fixed
number of substitutions (max 4) of the sites when com-
pared to the motif. Mitra searches for contiguous strings
(monads) with a fixed number of mismatches (substitu-
tions) and a minimum value of occurrences. On synthetic
and biological data Mitra succeeded in retrieving a monad
of size 18 bp; however, when the motif is larger and the
number of mismatches is higher it consumes more
resources and may fail to retrieve the motif. This algo-
rithm can also find dyads or composite patterns where a
group of monad patterns occur near each other with spac-
ers in the middle.

None of the available algorithms suited the demands of
our context exactly. As we could not find an existing
exhaustive search capable of finding long motifs, and
knowing that we are interested in searching patterns for
binding sites relative to a small set of genes (around 100
genes) believed to be co-regulated or share a common
pathway or a biologic function, with short promoter
regions (between 400–1000 bp), we decided to develop a
new exhaustive algorithm that looks for short and large
motifs with at least 2 conserved bases. Our algorithm does
not require that the user specify the exact length and struc-
ture of the motifs, except that they must begin and end
with conserved bases. The new algorithm needs to be run
just one time and will search for the most conservative
(specific) motifs (with conserved bases) that are common
to a minimum number of the input sequences.

The length of those patterns found by this new algorithm
may vary from 2 to 30 bp or more. The format of the pat-
tern is E (E ∪ '.')* E where E represent an event from the
exact alphabet, the character '.' is the wild-character N, ∪
represents the union operator and * the repetition from 0
to n times. We assume that a pattern must begin and end
with a conserved nucleotide. About 40% of the patterns
for Bacillus subtilis fit strictly within this heuristic. While
Page 2 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
not every possible pattern fits this heuristic, our algorithm
is intended to look for the most specific or conservative
large frequent patterns that does. Searchpattool will
retrieve known and unknown motifs that fit this format.
If a desired motif contains at least 2 conserved bases that
are not located at the first and last positions, Searchpat-
tool is able to discover the core region that contained the
conserved bases. In the case where the motif does not con-
tains conserved bases at all, our algorithm will retrieve the
most specific patterns that are shared by a smaller number
of sequences. By specifying a minimum support value less
than 100%, Searchpattool will output the most specific
pattern with different support values.

The algorithm consists of 4 main steps: first, it finds all fre-
quent patterns of different sizes that contain exactly 2 con-
served nucleotides; second, it makes them more specific
by replacing the wild-characters with conserved nucle-
otides; third, it scores all frequent patterns based on sum-
mary statistics, and fourth it outputs the best user-
specified number of patterns ordered by their statistical
score. We follow the same statistical method (z-score)
used by Van Helden to score the total number of occur-
rences for a motif and we introduce a new application of
the z-score by applying it to each motif's support [17]. The
support statistic is very interesting because it is based on
the matching number of sequences.

The search for frequent patterns is done in the positive
and negative strands of the input sequences that can be of
different sizes. The algorithm provides, for each pattern,
useful information including length, support, density,
total number of occurrences, positions, z-score for the
support and z-score for the total number of occurrences,
sites, profiles (matrix of frequency), mean of information
content and consensus. The algorithm compares the best
patterns and provides information about their similarity
and reverse complements. In this work we consider that a
pattern and its reverse complement are different candi-
dates and are scored independently.

The format of the pattern is similar to that used by Teire-
sias [11]; however, Searchpattool and Teiresias are differ-
ent. Teiresias outputs all maximal (or closed) <L,W>
frequent patterns where each sub-pattern with length W
contains at least L residues or conserved bases. The user
has to specify L, W and the value of minimum support.

In addition, we developed an associated tool to compute
the p-value associated with the z-score of the support for
the best motifs by comparing to a similar search on ran-
domly generated data. We can compute a p-value for each
ranked score by comparing it to a null distribution of sim-
ilarly ranked scores from simulations. This additional step
provides an additional safe-guard against the risk of erro-

neously identifying patterns as common due only to the
large number of patterns being considered, and is an
improvement over other existing algorithms. Based on the
p-value of the z-score and the previous information about
the pattern including its support value and its similarity
with other patterns, the user can make inferences about
the strength of evidence that their best patterns are truly
more common than chance would suggest, and can
choose the best candidate or candidates for further bio-
logic experiments.

We assessed Searchpattool by comparing its accuracy to
three widely used local multiple algorithms (Meme, Motif
Sampler, Consensus) [3,18,19]; and one exhaustive algo-
rithm(Mitra) [9]. Meme uses an expectation-maximiza-
tion algorithm, Motif sampler is a variant of a Gibbs
sampler algorithm and Consensus is a greedy algorithm.
Exhaustive algorithms allow searching for monad or com-
posite motifs. Our algorithm should be compared to
those that look for monad motifs. Most of these algo-
rithms limit the size of monad motifs to 12 bp. Mitra can
retrieve large monad patterns. Due to these limitations we
chose to compare our algorithm to only Mitra.

We also studied Searchpattool's runtime and its number
of patterns by varying different parameters including the
minimum support, the maximum length of the pattern
and the number of sequences.

Results
Algorithm
In order to run Searchpattool, the user has to specify the
input sequences, the minimum support, the maximum
length of patterns, the background probabilities for the
sequence's species and finally (optionally) the number of
patterns to output. Searchpattool has four steps:

Step 1: Search all E ('.')* E frequent patterns
The algorithm searches all frequent patterns with only 2
nucleotides: one at the beginning and the second at the
end with all possible numbers of wild-characters in the
middle. The number of wild-characters is limited only by
the user-specified maximum length (maxlen). There are
16*(maxlen-1) candidate patterns with 4 families of pat-
terns: those that begin with A, C, G and T. Figure 1 shows
an example of 4 input sequences, where we ran Searchpat-
tool with a minimum support value of 2 and a maximum
length value of 8. Searchpattool began by adding the
reverse complement of the input sequences (see Figure 1),
then searched all frequent patterns with only 2 conserved
nucleotides. It enumerated all 4 families of patterns: those
that begin with A, C, G and T. We show in Table 1 the
results for a family of patterns that start with A.
Page 3 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
Step 2: Deduce from all E ('.')* E frequent patterns the most specific
ones
For each family we combine all patterns to have the most
specific ones. We combine, if possible, each pattern P with
all shorter patterns Q. P can be combined (or matched) to
Q if the contents Ci(Q) for all positions i for shorter pat-
tern Q can be matched to those Ci (P) in pattern P. Ci (Q)
matches Ci (P) if they are the same or one of them is the
wild-character '.'. For instance pattern "A.T.A" can be com-
bined with pattern "AC" but not with pattern "A.C".
When Ci (Q) matches a Ci (P) we can put at position i a
more specific content by replacing the wild-character with
a nucleotide. From "A.T.A" and "AC" we can have pattern
"ACT.A". The idea is that if pattern P is combined with
pattern Q then we can make a new pattern R that is more
specific than P but not necessarily as frequent. The list of
matches (positions) of R is the intersection of the matches
of P and Q. We have to check if this list satisfies the mini-
mum support. After that we distinguish 4 cases: First, if P
and Q have the same list of positions then P is replaced by
R and Q is deleted. Second, if the list of positions of R is
the same as P then we replace P with R but we keep pattern
Q. Third, if the list of positions of R is the same as Q then
we add R as a new pattern, keep P and delete Q. Otherwise
the new pattern R is added and P and Q are kept. New pat-
terns are checked against existing ones to avoid redun-

dancy. In our example (see Table 1), the pattern A.A can
be combined with AA, AG and AT but the list of positions
is null for AAA and contains only one position for AGA.
This results only in a new pattern ATA that is more specific
than A.A. Pattern A.C when combined with AG is updated
to AGC since it keeps its positions. The most specific pat-
terns for family A are shown in Table 2.

For each family we assure that each pattern is made the
most specific for its total number of occurrences but it can
lead to a new more specific pattern with fewer occurrences
or matching sequences. In our example, the pattern
"A...C" becomes "AG..C" (with the same number of occur-
rences which is 3) and leads to a new pattern "AG.GC"
(with only 2 occurrences).

Step 3: Scoring all frequent patterns
Given a set V of m sequences, a subset C (C ⊆ V) of size n,
and a pattern P that occurs in 's' sequences from C and
matches 'o' positions in C (including double strands), we
can compute the probability of pattern P matching s or
more sequences of C and the probability of P matching o
or more positions in C. For each pattern we compute a z-
score of the number of matching sequences -or support-
(zs-sup) and a z-score of the total number of matching
positions (zs-tot).

One issue with the latter score is the overlapping words.
Pevzner defines an auto-correlation coefficient [20]. The
presence of the degenerate symbol '.' increases the
number of overlapping patterns. To avoid this problem
we follow the formula of Van Helden and we count the
number of occurrences of a motif while disregarding the
overlapping positions [17]. For the former score we intro-
duce a new formula (see Methods section).

Table 2: All most specific frequent patterns for family A

Pattern Matches(No seq,1st position) support Total

AA [1,7] [7,5] 2 2
AG [1,1] [2,3] [2,5] [4,4] [6,4] [7,1] 4 6
AT [3,6] [4,2] [5,5] [6,2] 2 4
A.A [2,3] [3,6] [4,2] [6,2] 3 4
ATA [3,6] [4,2] [6,2] 2 3
AGC [1,1] [2,5] [7,1] 2 3
A..G [2,3] [4,2] [4,4] [6,2] [7,1] 4 5
AG.G [2,3] [4,4] [7,1] 3 3
ATAG [4,2] [6,2] 2 2
A.AG [2,3] [4,2] [6,2] 3 3
AG..C [1,1] [2,3] [4,4] 2 3
AG.GC [2,3] [4,4] 2 2
A....A [3,3] [7,1] 2 2

Bold patterns are the results of step 2.

Table 1: All frequent patterns for family A

Pattern Matches(No seq, 1st position) support total

AA [1,7] [7,5] 2 2
AG [1,1] [2,3] [2,5] [4,4] [6,4] [7,1] 4 6
AT [3,6] [4,2] [5,5] [6,2] 2 4
A.A [2,3] [3,6] [4,2] [6,2] 3 4
A.C [1,1] [2,5] [7,1] 2 3
A..G [2,3] [4,2] [4,4] [6,2] [7,1] 4 5
A...C [1,1] [2,3] [4,4] 2 3
A....A [3,3] [7,1] 2 2

For each pattern, the occurrences of the patterns in the input
sequences (Matches) -within the bracket you find the number of
sequence (No seq) and the first position of the pattern (1st position)-
, the number of matching sequences (support) and the total number
of occurrences (total) are shown. All these patterns have a support
greater or equal to 2.

Example of an input sequencesFigure 1
Example of an input sequences.

Input sequences: The input with reverse complements:
A G C T C T A A 1 A G C T C T A A
G C A C T A T A 2 T T A G A G C T
G C C T A T G 3 G C A C T A T A
A G C G A A 4 T A T A G T G C
 5 G C C T A T G
 6 C A T A G G C
 7 A G C G A A
 8 T T C G C T
Page 4 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
Step 4: Output the patterns with best z-scores
The patterns can be ordered according to their z-score of
the support (zs-sup) or the z-score of the total number of
occurrences (zs-tot). In this paper, since our experiments
are done in prokaryotic species and many transcriptions
factor binding sites (TFBS) are rare we use the zs-sup score
as our ordering criterion. The patterns are ordered accord-
ing to the Z-score of the support (zs-sup) and the best
user-specified numbers of patterns (default value 40 pat-
terns) are selected. For each selected pattern we extract its
sites, compute its matrix of frequencies, derive its consen-
sus following the rules adapted from Cavener and calcu-
late its information content score [21]. Since we have
patterns of different lengths we take the mean (average) of
the information content (MIC). Finally the selected pat-
terns are compared to detect the reverse complements and
measure the degree of their similarity. For each pattern P
we check if it covers or extends (overlap 100%) another
pattern Q and measure their degree of similarity by com-
puting the average site similarity score. It is the same score
function defined by Burset and Guigo and used to assess
the performance quality of a motif finding algorithm (see
average site performance in Methods section) [22,23]. A
similarity score of 1 means that P covers totally Q. So P is
an extension of Q. A zero score means that P does not
cover Q at all. A score between 0 and 1 means that some
sites of P cover some of Q. This scoring function is not
symmetric.

A formal description of the algorithm is described in the
Methods section.

Predicting the best pattern
We compute the probabilities that the higher z-scores (zs-
sup) can be reached by chance by the selection process.
This is important because the motif selection process of
our algorithm means that we cannot expect the distribu-
tion of the (for example) max(zs-sup) to have a standard
normal distribution under the null hypothesis that there
is no association between the sequences, so we cannot rely
on the magnitude of the zs-sup from the chosen motifs to
judge statistical significance (see methods section).

We suggest the p-value score be used as a first criterion to
select the candidates for the best patterns. If two patterns
have the same p-value one can choose the pattern with the
highest support. Finally the user should check if the pat-
terns are reverse complement and examine the similarity
values between the patterns.

Implementation
We developed Searchpattool and other programs with
Borland C++ under Windows XP. We run it on a PC Pen-
tium 4 (3,2 GHz). The main programs are:

SEARCHPATTOOL: outputs the most specific E (E U '.')*
E formatted patterns ordered by their z-score of the sup-
port. We chose to limit the search to patterns of a maxi-
mum length of 40 bp. An input sequence should be in
Fasta format (now up to 500 bp). The results are written
as text files but can read by MS Excel or many other pro-
grams. The main files are:

- bestzssup.txt: contains the list of patterns with their
length, density, support, z-scores and list of occurrences.

- Sites-positions.txt: contains the sites and the exact posi-
tions of the patterns

- Sites-for-logos.txt: contains just the sites in order to dis-
play logos

- Patt-profiles.txt: contains the frequency matrices of the
patterns

- Patt-cons-mic.txt: contains the list of patterns plus their
consensus and their mean information content

- Patt-rev-com.txt: indicates for each pattern its reverse
complement on the list of patterns

- Patt-similarity.txt: measures the degree of similarity
between the listed patterns

SEARCH_BEST_RANDOM_SCORES: a program that
computes the best z-scores of the support (zs-sup) based
on 1000 random samples. In order to compute the p-val-
ues of the z-score of the support we wrote an R script that
generates random samples according to the background
probabilities of the species and the specific lengths of the
input sequences. The user can run this script and then call
this program with the same parameters used in the Search-
pattool call including the number of outputs.

COMPUTE_PVALUE: a program that computes the p-
value of the best patterns (as judged by zs-sup) relative to
the current patterns on our list by using the scores from
the random data.

SELECT_BEST_ZS_SUP: a program that outputs the n best
patterns ordered by their z-score of the support. A run of
Searchpattool should precede it. This program is useful if
the user wants to specify a number of outputs different
from that used in the call of Searchpattool. It avoids
searching again for all patterns with the same parameters.

SELECT_BEST_ZS_TOT: a program that outputs the best
patterns ordered by their z-score of the total number of
occurrences. A run of Searchpattool should precede it
Page 5 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
Figure 2 gives an overview of the order of use of the main
programs.

Testing
Data experiments
DBTBS is a database of transcriptional regulation in Bacil-
lus subtilis that provides information about well-known
TFBS in this species [16]. In DBTBS, for each transcription
factor we know the genes (or operons) that it binds on.
After we selected 14 TF, we extracted upstream regions
located at -400,-1 from the first codon and sometimes we
extracted regions located at -400,+50 since some repres-
sors are located downstream. We avoided overlap with
upstream genes. We used Regulatory Sequence Analysis
Tools (RSAT) to extract and purge the upstream of
selected genes [24]. We checked the patterns sites cited in
DBTBS and only used those that we found in the
upstream. We present our input sequences in Table 3.

More details about the input sequences and the known
checked sites are given in the additional files [see Addi-
tional file 1]. We designed two tests to compare the accu-
racy of Searchpattool to that of well known algorithms on
these 14 input sequences.

Test1: search for fixed length patterns
In the first test we compare Searchpattool to Meme, Motif-
sampler, Consensus and Mitra. We provide all algorithms
with the exact known length of the target patterns. They
share other common parameters including the input
sequences, the search in the double strands and a report
size of the best 40 patterns. All the algorithms were run
using a background model of order 0 for Bacillus subtilis
except Mitra that computes its own background model.
Meme and Consensus are run twice varying each time the
number of sites per sequence. Motif sampler is set to run

20 times and report each time the best 10 motifs. Mitra is
set to run 5 times (varying the number of mismatches
from 0 to 4) and reports each time the best 40 motifs.
Searchpattool is run only one time. Since we are interested
in searching for patterns for TFBS that are common to a set
of genes believed to be a cluster of co-regulated genes
from microarray experiments, specifying a minimum sup-
port value equal to 100% may not be appropriate for this
example. We chose to specify a minimum support value
less than 100% for two reasons. First, the input sequences
may not represent the complete promoters or may not
contain the motif due to imprecision in experiments or in
the clustering process. Second, we are interested in look-
ing for the most conservative motifs which are not neces-
sarily shared by all the sequences. In our experiments we
set the minimum support value to 60%, because it seemed
to be a reasonable minimum level within a cluster for our
context.

Since Searchpattool outputs patterns of different lengths
we selected only 40 from those of the specified length. We
then computed the p-value of their support z-scores and
ordered them by p-value (increasing first criterion) and
support (decreasing second criterion). Table 4 below sum-
marizes the algorithm's parameters.

Different statistics have been suggested to assess the per-
formance quality of a motif finding algorithm [23]. Since
all the patterns have the same length, we chose to follow
Pevzner and used their nucleotide level performance score
-ps- (see Methods section) [25]. The score will be 1 if the
program finds the known sites whereas it will be 0 if it
fails to retrieve any known sites. For each algorithm we
record only the best performance score.

Searchpattool results
When the known motif is of the structure assumed by
Searchpattool, Searchpattool succeeded in retrieving all its
known sites. This is the case for 5 TF which are SigL,
Coma, HrcA, Zur and Mntr. The patterns for Gltr and Glnr
also follow Searchpattool's model, however, Searchpat-
tool reports only a few known sites for them. The correct
(or known) patterns for Gltr and Glnr are retrieved but are
not selected because their z-scores are not among the best
forty. For Gltr, the selected pattern has a performance
score of 0.5, has a zs-sup value of 421.59 and is ranked 4.
The correct pattern has a performance score of 1, has a zs-
sup value of 14.51 and is ranked 819. The selected pattern
is more specific than the correct one (see Gltr patterns in
Figure 3).

The remaining seven TF known pattern don't follow
Searchpattool's model, and as expected the algorithm can-
not report all their known sites. However, Searchpattool
succeeded in retrieving the most specific patterns that are

Overview of the main programsFigure 2
Overview of the main programs.

Input

Searchpattool

Results

Random samples

Compute_pvalue

Final results

Search_best_random_scores

Random scores
Page 6 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
similar to the correct ones for five; the exceptions are TF
Cody and Degu, where it reported no results among the
best 40 scored patterns. Figure 3 shows the main results
for Searchpattool.

The z-score of the support (zs-sup) is a useful criterion to
maximize in our experiments. However, we note that for
patterns with many sites per sequence the z-score of the
total number of occurrences (zs-tot) is higher than the z-
score of the support (zs-sup) and that might affect the
rank of the pattern. For example, when ordering the pat-
terns by using the z-score of the total number of occur-
rences the rank of Gltr pattern becomes 225 (previously
ranked 819 for the z-score of the support). Detailed results
for Searchpattool test1 can be found in the additional files
[see Additional file 2].

Comparison with other algorithms
We ran the same fourteen input sequences on Meme,
Motifsampler, Consensus and Mitra. Like Sinha and
Tompa [26], for each pattern we declare a program the
"winner" if it has the highest performance score. In order

to take into account the rank of the pattern we compute
the ratio of rank to performance score. We report the
results for one run of each program, except for Motif Sam-
pler (20 runs) and Mitra (5 runs). Figure 4 shows the
results for the best performance scores for each program.
When comparing the performance score, Searchpattool
wins nine times, Meme (zoops) wins five times, Consen-
sus wins four times, Mitra wins four times and Motif sam-
pler does not win at all. Searchpattool outperforms all the
other programs on three TF (hrca, glnr and rocr). In addi-
tion it identified the exact sites for five TF (with score of 1)
more than Meme (three TF), Mitra (three TF) and Consen-
sus (two TF). All algorithms fail to report results for Cody
and Degu. When comparing the ratio rank/performance-
score (rk/ps), Meme (zoops) is the winner, with six best
ratios and the best ranking. Searchpattool follows next
with five best ratios. For our datasets the performance of
Meme zoops is better than that of Meme anr. We note that
Mitra failed to retrieve Hrca the pattern because it is lim-
ited to a maximum length of 20 bp.

Table 4: Test1 setting parameters

Meme Consensus Motif sampler Mitra Searchpattool

Run times 2 2 20 5 1
Number of site per sequence zoops

anr
0-n
1-n

Max n sites no no

Minimum number of occurrences no no no 2–3 no
Minimum support no no no no 60%
Number of mismatches no no no 0–4 no
Pattern length input L* L L L Max L
Number of outputs 40 40 10 (x 20)

Limited to 40
Best 40 patterns Limited to 40 best zs-sup Ordered

by p-value + and support -
Pattern length output L L L L 2 to L Limited to L

* L = exact known pattern length

Table 3: Presentation of experiment datasets

TF Pattern
Length

No genes
(sequences)

No known
Sites

No checked sites Min-Len
Sequence

Max-Len
Sequence

Avr-Len
Sequence

SigL 17 6 6 6 124 240 197.6
comA 15 4 5 4 144 400 276.5
Hrca 27 2 2 2 119 238 178.5
zur 14 3 3 3 106 359 234.3

mntr 19 2 4 2 280 330 305
gltr 15 2 4 4 197 384 290.5
glnr 17 3 6 3 110 400 229.66

Spo0A 7 10 23 21 84 451 284.3
RocR 15 2 7 4 277 291 284
Fnr 16 5 6 6 186 246 211.6

CodY 11 4 4 4 179 451 356
Fur 20 20 23 21 82 451 231.65

DegU 20 14 15 11 133 451 335.85
TnrA 17 21 25 20 161 451 287.47
Page 7 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354

Page 8 of 18
(page number not for citation purposes)

Test1 Searchpattool resultsFigure 3
Test1 Searchpattool results. For each TF pattern, we provide its logo from DBTBS, its logo from Searchpattool, some sta-
tistics including the values of the support (SUP), z-score of the support (zs-sup), p-value, performance score (ps) and rank.

Pattern Logo from DBTBS Logo from SEARCHPATTOOL Searchpattool Statistics
Min sup=60%

SigL SUP=100%
Zs-sup=283.98
p-value<0.001
ps=1, Rank=1

ComA SUP=100%
Zs-sup=81.61
p-value=0.005
ps=1, Rank=1

Hrca SUP=100%
Zs-sup=74608.3
p-value=0.001
ps=1, Rank=2

Zur SUP=100%
Zs-sup=137.83
p-value=0.606
ps=1, Rank=23

Mntr SUP=100%
Zs-sup=1245.83
p-value=0.019
ps=1, Rank=1

Gltr SUP=100%
Zs-sup=421.59
p-value=0.384
ps=0.5, Rank=4

Glnr SUP=66 %
Zs-sup=168.83
p-value=0.955
ps=0.67, Rank=19

Spo0A SUP= 70%
Zs-sup=6.05
p-value=0.996
ps=0.41, Rank=8

Rocr SUP= 100%
Zs-sup=306.76
p-value=0.009
ps=0.75, Rank=1

Fnr SUP=60 %
Zs-sup=114.93
p-value=0.004
ps=0.57, Rank=8

Cody

Fur SUP=60%
Zs-sup=124.72
p-value<0.001
ps=0.4, Rank=3

Degu

Tnra SUP=61,9 %
Zs-sup=14.02
p-value=0.073
ps=0.52, Rank=4

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
Test2: search for maximum length patterns
A good tool should predict the correct patterns without
requiring the user to specify their exact lengths. We tested
the accuracy of Searchpattool against Meme when the cor-
rect length is not specified. We provided for each algo-
rithm a maximum length for each searched pattern that is
equal to the correct length plus 20%. Consensus, Motif
Sampler and Mitra were not run because they don't allow
for such a parameter. Meme was run twice (zoops and
anr) and was set to output its best 40 patterns ordered by
e-value. Searchpattool was set to select the 1000 best pat-
terns based on z-score for support. These patterns were
ordered by p-value (increasing first criterion) and support
value (decreasing second criterion), and the best 40
ranked patterns were chosen. Table 5 summarizes the
algorithms' parameters. In this test, since the correct
length is not specified, the performance quality of the
algorithms can be assessed at the site level. A predicted site
overlaps a known site if they overlap by at least a defined
percentage of the known site length. This percentage will
take respectively the value of 100%, 75%, 50% and 25%.
We used the average site performance which is the average
between two scores: the sensitivity score and the predic-
tive value scores (see Methods section) to assess the algo-
rithms' performance in this test [22,23].

Searchpattool results
We checked if Searchpattool retrieved the known sites
(with minimum overlap of 100%). We found that it suc-

ceeded in retrieving all known sites for four TF which are
SigL, coma, HrcA and Mntr. It only retrieved some known
sites for the rest of the patterns. The correct sites for Zur
and Rocr TF are found but their p-value rank is greater
than 40. The correct length is reported for five TF which
are SigL, Glnr, Spo0A, Fur and Tnra. In fact if the known
sites of a pattern have some common extensions to the
right or left, Searchpattool will report first the larger pat-
terns that are also the most specific with better z-scores.
For instance, the predicted pattern for ComA TF has a
length of 18 bp and is ranked 8, however, the pattern
ranked 21 has the correct length which is 15. For ComA
TF, Pattern 8 is an extension of pattern 21 with the same
number of occurrences, has the best p-value and so has
been selected. We remark also that Searchpattool reports
pattern candidates for all TF including Cody and Degu.

Table 5: Test2 setting parameters

Meme Searchpattool

Run times 2 1
Number of site per
sequence

zoops
anr

No

Minimum support no 60%
Pattern length input Maximum T* Maximum T
Number of outputs 40 1000 best zs-sup Ordered

by p-value + and support -
Limited to 40

*T = L + 20%L

Performance comparison of different programs for the search of 14 Bacillus subtilis patternsFigure 4
Performance comparison of different programs for the search of 14 Bacillus subtilis patterns. For each TF pattern,
we indicate its performance scores (ps), rank (rk) and ratio rk/ps for respectively Meme (zoops and anr), Motif sampler (for 20
run), Consensus (o-1 and 1-n), Mitra (for 5 run) and Searchpattool. Yellow and green background colours indicate respectively
the best performance score and the best ratio. *Na = not available

 MEME ZOOPS MEME-ANR MOTIF
SAMPLER

CONS-0-1 CONS-1-N MITRA SEARCHPATTOOL

pattern ps rk rk/ps ps rk rk/ps ps rk rk/ps ps rk rk/ps ps rk rk/ps ps rk rk/ps ps rk rk/ps

SigL 1 1 1 1 1 1 0.9 1 1.2 1 5 5 1 7 7 1 15 15 1 1 1

comA 1 1 1 0 NA NA* 0.4 4 9 1 13 13 1 15 15 0.8 5 6.67 1 1 1

Hrca 0 NA NA 0 NA NA 0.3 2 6 0.7 8 12 0.7 8 12 NA NA NA 1 2 2

zur 1 1 1 0 NA NA 0.4 1 2.3 0.4 16 37.3 0.6 21 35 1 2 2 1 23 23

mntr 0 NA NA 0 NA NA 0.5 2 4 0.4 5 12.5 0.4 6 15 1 31 31 1 1 1

gltr 0 NA NA 0 NA NA 0.3 1 4 0.5 11 22 0.5 11 22 0.4 5 12.5 0.5 4 8

glnr 0 NA NA 0 NA NA 0.3 2 6 0 NA NA 0 NA NA 0 NA NA 0.7 19 29

Spo0A 0.4 1 2.9 0.4 2 5.33 0.4 2 5.8 0.5 40 77.5 0.5 32 61.1 0.3 2 7 0.4 8 20

RocR 0.5 2 4 0.6 1 1.67 0.3 1 3.5 0.5 3 6 0.5 3 6 0.6 1 1.67 0.8 1 1.3

Fnr 0.6 1 1.8 0.56 1 1.8 0.5 1 2.2 0.55 6 11 0.5 3 6 0.6 38 66.5 0.6 8 14

CodY 0 NA NA 0 NA NA 0 NA NA 0 NA NA 0 NA NA 0 NA NA 0 NA NA

Fur 0.6 1 1.6 0.7 1 1.35 0.5 1 2.2 0.5 1 2.11 0.5 3 6.5 0.6 15 26.3 0.4 3 7.5

DegU 0 NA NA 0 NA NA 0 NA NA 0 NA NA 0 NA NA 0 NA NA 0 NA NA

TnrA 0.9 1 1.2 0 NA NA 0.5 4 8.5 0.6 35 59 0.4 20 50.5 0.7 6 9.23 0.5 4 7.7

WINS 5 6 2 2 0 2 4 0 4 0 4 0 9 5
Page 9 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
Figure 5 shows the main results for Searchpattool.
Detailed results for Searchpattool test2 can be found in
the additional files [see Additional file 3].

Comparison with other algorithms
We run the same 14 input sequences on Meme (zoops and
anr). We compared the performance of Searchpattool and
Meme based on the average site performance score and by
varying the percentage of overlap. Like the first test, for
each pattern we declare a program the "winner" if it has
the highest performance scores. In order to take into
account the rank of the pattern we compute the ratio of
rank to average-site-score.

Figure 6 shows the results for the best performance scores
relative to each program for a minimum percentage of
overlap equal to 100%. When comparing the perform-
ance site score (S100%), Searchpattool wins all the time
and Meme (zoops) ties it four times. Searchpattool out-
performs Meme (zoops) on ten TF. When comparing the
ratio of rank to average-site-score (R/S), Searchpattool is
also the leader (wins eight times) followed by Meme
zoops (wins six times). We note that whenever Meme suc-
ceeds in retrieving a pattern and has a score different than
zero then the ratio is always better than Searchpattool. In
Meme the correct length is reported only for three TF SigL,
Coma and Zur. Figure 6 shows also the results for a mini-
mum percentage of overlap equal to 75%. When compar-
ing the performance site score (S75%), Searchpattool is
always the best. It has better scores for Spo0a, Fur and
Tnra patterns. Their lengths are smaller than the known
ones. Meme (Zoops) has more pattern candidates for
other TF and has better ratio scores than Searchpattool
(Meme wins seven times and Searchpattool wins six
times).

Similar results are reported when the minimum rate of
overlap is 50% or 25% (see Figure 7). The performance
site scores are still the best for Searchpattool. Some pat-
terns scores are improved, such as Degu (S50%), Gltr
(S25%) and Tnra (S25%). Meme (zoops) has more candi-
dates. Its performance site scores are not better than those
of Searchpattool however, it has the best ratio scores.

Searchpattool runtime and number of patterns study
We measured Searchpattool's runtime and its total
number of patterns by varying the support and the maxi-
mum length of patterns. The runtime corresponds to the
time for generating and scoring all frequent patterns. It
does not include the running time for step 4. Since our
input sequences are assumed to be derived from a small
cluster of related genes, we generated a random set of 50
input sequences -each of length 400 bp- using the back-
ground probabilities of Bacillus subtilis. We chose four val-
ues for the support: 100%, 80%, 60% and 40%. We

selected four values for the maximum length: 7, 16, 24
and 35. We note here that the runtime includes the calcu-
lation of the two z-scores, zs-sup and zs-tot. The perform-
ance of Searchpattool depends on several factors,
including the number of input sequences, their lengths,
and the user-specified values for the minimum support
and the maximum length of target patterns. Figure 8
shows that as the value of the support decreases and the
value of the length increases then the run time increases.
The effect is similar for the total number of patterns. We
ran Searchpattool on windows XP that allows only a max-
imum of 2 GB of memory per process. When the length
was fixed to 35 and the minimum support was set to 60%
or 40%, Searchpattool suffered from lack of memory and
we were unable to report values for the run time and the
number of patterns. We note that the performance of
Searchpattool depends essentially on the user-specified
maximum length of the patterns. As this quantity grows
the time needed grows correspondingly.

In order to study the scalability of Searchpattool with dif-
ferent numbers of sequences we generated 3 sets of 10, 20
and 100 sequences, respectively. Each sequence has 400
bp. We then ran Searchpattool with a maximum length of
24 and a minimum support value of 80%. We chose these
values because they are suitable for a study of a set of
linked genes in Bacillus subtilis. Our experiments (see Fig-
ure 8) showed that as the number of sequences increased
the runtime increased. Interestingly, however, the number
of patterns decreased. In fact, Searchpattool spent more
time searching common patterns of large number of
sequences, which reduced the chance of finding a large
number of common patterns. Detailed results can be
found in the additional files [see Additional file 4].

Discussion
The problem of discovering patterns for binding sites is
complex and it is difficult to know a priori the kind of pat-
tern to search for (organization, size or location). Search-
pattool looks for patterns that contain at least 2 conserved
bases with a conserved base at the beginning and the end.
Its pattern model is derived from observations of several
known patterns of transcription factors relative to
prokaryotic species. Searchpattool is based on an exhaus-
tive algorithm that searches for all frequent patterns of dif-
ferent sizes (from 2 to the specified-maximum length)
with useful information like the support, density, length,
zs-sup, zs-tot and list of positions. The user can view them
and select the best ones according to personal criteria. We
chose to select the best patterns initially according to the
rank of the Z-score of the support (zs-sup). This score is
very interesting for prokaryotic species where many motifs
are rare, and it avoids the problem of overlapping motifs.
For these best patterns we provide the user with additional
information including their sites, matrices of frequencies,
Page 10 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354

Page 11 of 18
(page number not for citation purposes)

Test2 Searchpattool resultsFigure 5
Test2 Searchpattool results. For each TF pattern, we provide its logo from DBTBS, its logo from Searchpattool, some sta-
tistics including the values of the support (SUP), length (len), z-score of the support (zs-sup), p-value, average site score for a
minimum overlap of 100% (S100%) and rank.

Pattern/
Len

Logo from DBTBS Logo from SEARCHPATTOOL Searchpattool
Statistics
Min sup=60%

SigL
17

SUP=100%, Len=17
Zs-sup=283.98
p-value<0.001
S100%=1, Rank=1

ComA
15

SUP=100%, Len=18
Zs-sup=147.28
p-value=0.037
S100%=1, Rank=8

Hrca
27

SUP=100%, Len=29
Zs-sup=131132.9
p-value=0.001
S100%=1, Rank=1

Zur
14

SUP=66%, Len=18
Zs-sup=290.48
p-value=0.229
S100%=0.833, Rank=27

Mntr
19

SUP=100%, Len=23
Zs-sup=7245.33
p-value=0.086
S100%=1, Rank=7

Gltr
15

SUP=100%, Len=16
Zs-sup=757.76
p-value=0.71
S100%=0.75, Rank=6

Glnr
17

SUP=66%, Len=17
Zs-sup=168.83
p-value=1
S100%=0.833, Rank=32

Spo0A
7

SUP=70%, Len=7
Zs-sup=6.05
p-value=1
S100%=0.675, Rank=9

Rocr
15

SUP=100%, Len=18
Zs-sup=553.45
p-value=0.098
S100%=0.875, Rank=29

Fnr
16

SUP=60%, Len=20
Zs-sup=202.76
p-value=0.004
S100%=0.75, Rank=9

Cody
11

SUP=75%, Len=15
Zs-sup=16.31
p-value=0.969
S100%=0.5833, Rank=15

Fur
20

SUP=70%, Len=20
Zs-sup=81.07
p-value<0.001
S100%=0.605, Rank=5

Degu
20

SUP=64.28%, Len=23
Zs-sup=9.14
p-value=1
S100%=0.202, Rank=5

Tnra
17

SUP=61.9%, Len=17
Zs-sup=14.02
p-value=0.064
S100%=0.7, Rank=35

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
consensus, mean of information content and information
about their reverse complements and mutual similarities.

Our scoring function allows extraction of the most spe-
cific patterns that are large and dense (the conservative
patterns). These patterns will have the best zs-sup scores.
By looking at the similarity matrix we can search for less
specific similar ones. Finally we compute the p-value of
zs-sup of selected patterns to check if these patterns are
statistically significant. We propose to select the ones
which have the best p-value and the highest support
value. In cases where many patterns have the same rank
(same p-value and same support) the user can refine the

selection by looking at information about reverse comple-
ment, similarity and information content.

Comparing the accuracy of Searchpattool to that of well
known local multiple alignment algorithms Meme, Motif
sampler and Consensus, our experiments on 14 input
sequences have shown that Searchpattool performs very
well based on performance scores. In fact, Searchpattool
does better than the other algorithms based on the per-
formance score every time when the length is not
restricted. However due to its algorithm type, the rank of
the patterns are not always the best, especially when com-
pared with Meme which is a local multiple alignment

Performance comparison of different programs for 100% and 75% minimum overlapFigure 6
Performance comparison of different programs for 100% and 75% minimum overlap. Above, for each TF pattern,
we indicate its correct sizes; and the rank, length (Len), average site scores for a minimum overlap of 100% (S100%), and ratio
rank/S100% (R/S) for respectively Meme (anr and zoops) and Searchpattool. Below, for each TF pattern, we indicate its correct
sizes; and the rank, length (Len), average site scores for a minimum overlap of 75% (S75%), and ratio rank/S75% (R/S) for
respectively Meme (anr and zoops) and Searchpattool. Yellow and green background colours indicate respectively the best
performance score and the best ratio. *Na = not available

 MEME ANR MEME ZOOPS SEARCHPATTOOL

Pattern SIZE Rank Len S100% R/S Rank Len S100% R/S Rank Len S100% R/S

SIGL 17 1 17 1.0000 1.00 1 17 1.0000 1.00 1 17 1.0000 1.00

COMA 15 NA NA 0.0000 NA* 1 15 1.0000 1.00 8 18 1.0000 8.00

HRCA 27 NA NA 0.0000 NA NA NA 0.0000 NA 1 29 1.0000 1.00

ZUR 14 NA NA 0.0000 NA 12 14 0.8333 14.40 27 18 0.8333 32.40

MNTR 19 NA NA 0.0000 NA NA NA 0.0000 NA 7 23 1.0000 7.00

GLTR 15 NA NA 0.0000 NA 3 16 0.7500 4.00 6 16 0.7500 8.00

GLNR 17 NA NA 0.0000 NA NA NA 0.0000 NA 32 17 0.8333 38.40

SPO0A 7 2 9 0.6071 3.29 1 9 0.5250 1.90 9 7 0.6750 13.33

ROCR 15 NA NA 0.0000 NA 4 16 0.7500 5.33 29 18 0.8750 33.14

FNR 16 1 17 0.7292 1.37 NA NA 0.0000 NA 9 20 0.7500 12.00

FUR 20 NA NA 0.0000 NA NA NA 0.0000 NA 5 20 0.6050 8.26

CODY 11 NA NA 0.0000 NA NA NA 0.0000 NA 15 15 0.5833 25.71

DEGU 20 NA NA 0.0000 NA NA NA 0.0000 NA 5 23 0.2020 24.75

TNRA 17 NA NA 0.0000 NA NA NA 0.0000 NA 35 17 0.7000 50.00

wins 1 2 4 6 14 8

 MEME ANR MEME ZOOPS SEARCHPATTOOL

Pattern SIZE Rank Len S75% R/S Rank Len S75% R/S Rank Len S75% R/S

SIGL 17 1 17 1.0000 1.00 1 17 1.0000 1.00 1 17 1.0000 1.00

COMA 15 NA NA 0.0000 NA 1 15 1.0000 1.00 8 18 1.0000 8.00

HRCA 27 NA NA 0.0000 NA NA NA 0.0000 NA 1 29 1.0000 1.00

ZUR 14 NA NA 0.0000 NA 12 14 0.8333 14.40 27 18 0.8333 32.40

MNTR 19 6 12 0.5000 12.00 5 23 1.0000 5.00 1 23 1.0000 1.00

GLTR 15 2 13 0.2500 8.00 3 16 0.7500 4.00 6 16 0.7500 8.00

GLNR 17 NA NA 0.0000 NA NA NA 0.0000 NA 32 17 0.8333 38.40

SPO0A 7 2 9 0.6071 3.29 1 9 0.5250 1.90 8 6 0.7615 10.51

ROCR 15 NA NA 0.0000 NA 4 16 0.7500 5.33 29 18 0.8750 33.14

FNR 16 1 17 0.7292 1.37 1 15 0.3667 2.73 26 19 0.8333 31.20

FUR 20 1 21 0.1003 9.97 1 21 0.1548 6.46 6 14 0.8333 7.20

CODY 11 2 12 0.3750 5.33 22 11 0.3750 58.67 9 14 0.5833 15.43

DEGU 20 1 16 0.0586 17.06 NA NA 0.0000 NA 2 24 0.2197 9.10

TNRA 17 NA NA 0.0000 NA NA NA 0.0000 NA 31 16 0.7893 39.28

wins 1 3 5 7 14 6
Page 12 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
algorithm. In order to take into account the rank, we cal-
culated the ratio of rank to performance-score which
measures the precision of each algorithm. Our study
shows that Meme performs the best based on these ratios
when the pattern length is fixed. If the length is not
restricted, Searchpattool has the best rate when the over-
lap percentage is set to 100%. Searchpattool performs very
well for sets of very small numbers of sequences (2 or 3),
but Meme fails to retrieve the patterns for those cases.
Comparing Searchpattool to the exhaustive algorithm
Mitra, our experiments have shown that Searchpattool is
more accurate and has better ranking. Searchpattool also
can search larger patterns.

Our study shows that Searchpattool performs very well
and outputs the most specific patterns that correspond to
the known motifs or closer similar ones. However, there
were some TF (like Spo0A, Fur or Tnra) where Meme,
Consensus or Mitra did better. When the known motif
conformed to its model, Searchpattool performed better,
as expected. However, there are cases where the known
motif cannot be reasonably captured by Searchpattool's
motif model. Hence, we suggest using some other motif
finding algorithms in conjunction to Searchpattool, for
better accuracy.

Performance comparison of different programs for 50% and 25% minimum overlapFigure 7
Performance comparison of different programs for 50% and 25% minimum overlap. Above, for each TF pattern,
we indicate its correct sizes; and the rank, length (Len), average site scores for a minimum overlap of 50% (S75%), and ratio
rank/S50% (R/S) for respectively Meme (anr and zoops) and Searchpattool. Below, for each TF pattern, we indicate its correct
sizes; and the rank, length (Len), average site scores for a minimum overlap of 25% (S25%), and ratio rank/S25% (R/S) for
respectively Meme (anr and zoops) and Searchpattool. Yellow and green background colours indicate respectively the best
performance score and the best ratio. *Na = not available

 MEME ANR MEME ZOOPS SEARCHPATTOOL

Pattern SIZE Rank Len S50% R/S Rank Len S50% R/S Rank Len S50% R/S

SIGL 17 1 17 1.0000 1.00 1 17 1.0000 1.00 1 17 1.0000 1.00

COMA 15 NA NA 0.0000 NA 1 15 1.0000 1.00 8 18 1.0000 8.00

HRCA 27 4 5 0.5000 8.00 7 5 0.5000 14.00 1 29 1.0000 1.00

ZUR 14 NA NA 0.0000 NA 12 14 0.8333 14.40 27 18 0.8333 32.40

MNTR 19 5 5 0.5000 10.00 5 23 1.0000 5.00 1 23 1.0000 1.00

GLTR 15 2 13 0.2500 8.00 3 16 0.7500 4.00 6 16 0.7500 8.00

GLNR 17 13 5 0.4167 31.20 13 5 0.4167 31.20 32 17 0.8333 38.40

SPO0A 7 2 9 0.6071 3.29 1 9 0.5250 1.90 8 6 0.7615 10.51

ROCR 15 20 5 0.3750 53.33 4 16 0.7500 5.33 29 18 0.8750 33.14

FNR 16 1 17 0.7292 1.37 1 15 0.3667 2.73 26 19 0.8333 31.20

FUR 20 1 21 0.2005 4.99 1 21 0.1548 6.46 6 14 0.8333 7.20

CODY 11 2 12 0.3750 5.33 22 11 0.3750 58.67 9 14 0.5833 15.43

DEGU 20 1 16 0.0586 17.06 5 12 0.0871 57.39 5 23 0.3030 16.50

TNRA 17 NA NA 0.0000 NA NA NA 0.0000 NA 31 16 0.7893 39.28

wins 1 5 5 7 14 5

 MEME ANR MEME ZOOPS SEARCHPATTOOL

Pattern SIZE Rank Len S25% R/S Rank Len S25% R/S Rank Len S25% R/S

SIGL 17 1 17 1.0000 1.00 1 17 1.0000 1.00 1 17 1.0000 1.00

COMA 15 1 7 0.3026 3.30 1 15 1.0000 1.00 8 18 1.0000 8.00

HRCA 27 1 9 0.6250 1.60 1 10 0.5000 2.00 1 29 1.0000 1.00

ZUR 14 NA NA 0.0000 NA 12 14 0.8333 14.40 27 18 0.8333 32.40

MNTR 19 5 5 0.5000 10.00 5 23 1.0000 5.00 1 23 1.0000 1.00

GLTR 15 2 13 0.2500 8.00 3 16 0.7500 4.00 20 19 1.0000 20.00

GLNR 17 5 5 0.4167 12.00 8 5 0.6667 12.00 32 17 0.8333 38.40

SPO0A 7 2 9 0.6071 3.29 1 9 0.5250 1.90 8 6 0.7615 10.51

ROCR 15 1 6 0.7000 1.43 4 16 0.7500 5.33 29 18 0.8750 33.14

FNR 16 1 17 0.7292 1.37 1 15 0.3667 2.73 26 19 0.8333 31.20

FUR 20 1 21 0.2005 4.99 1 21 0.1548 6.46 6 14 0.8333 7.20

CODY 11 2 12 0.3750 5.33 22 11 0.3750 58.67 9 14 0.5833 15.43

DEGU 20 1 16 0.0586 17.06 27 12 0.1705 158.40 5 23 0.3030 16.50

TNRA 17 27 6 0.2750 98.18 NA NA 0.0000 NA 31 16 0.8250 37.58

wins 1 6 4 6 14 5
Page 13 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
Many factors affect the runtime and the output of Search-
pattool, including the number of input sequences, the val-
ues for the minimum support and the maximum length of
the target patterns. As the number of sequences increases
the run time increases as well. In addition, Searchpattool
outputs more patterns and consumes more time when the
length is greater than 24 and the support is less than 80%.
We note that for our testing we generated random samples
with lengths fixed at 400 bp (the maximum upstream
length for prokaryotic species) but we know from well-
known regulons that the upstream region can be as small
as a dozen base pairs, so in practice we may often have
smaller runtimes. On the other hand, if we use input
sequences from regulon sets instead of random sets then
the genes are more correlated and we may get a larger
number of (frequent) patterns. For instance Searchpattool
finds 46978 patterns for SigL TF (with min-sup = 6 and
max-len = 17), whereas the corresponding maximum

number of patterns found from the 1000 random samples
is 40020.

For the future we are working on improving the precision
of Searchpattool. We are thinking about extending it to
allow some ambiguous characters in order to have more
general patterns. We also plan to test Searchpattool on
other species, and to implement higher orders of Hidden
Markov Models.

In order to reduce the runtime we will work on a parallel
version of Searchpattool. In fact we can easily process each
family of pattern separately and this will improve the per-
formance. We will continue improving Searchpattool's
interface and integration of the other programs. We will
develop a web application with the same interface for all
tools.

Searchpattool runtime and number of patterns studyFigure 8
Searchpattool runtime and number of patterns study. At left, we run Searchpattool many times on a random input of
50 sequences by varying the value for the minimum support (from 100% to 40%) and the value for the maximum length of the
pattern (from 7 to 35); and we record its running time and the total number of patterns. At right, we run Searchpattool on
four random input sequences with respectively 10, 20, 50 and 100 sequences (400 bp for each sequence). For each input
sequence we choose a minimum support value of 80% and a maximum length pattern value of 24, execute Searchpattool and
record its running time and the total number of patterns.

Random-50s

1

10

100

1000

10000

100000

1000000

100% 80% 60% 40%

Minimum support

R
u

n
 T

im
e

 (
lo

g
 s

c
a

le
)

Len=7

Len=16

Len=24

Len=35

Random-50s

1

100

10000

1000000

100000000

100% 80% 60% 40%

Minimum support

N
u

m
b

e
r

o
f

p
a
tt

e
rn

s
 (

lo
g

s
c
a
le

)

Len=7

Len=16

Len=24

Len=35

Scalability of time vs nb seq

0

2000

4000

6000

8000

10000

10 20 50 100

number of sequences

R
u

n
 T

im
e

 (
s

e
c

)

L=24S=80%

Scalability of patterns vs nb seq

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000

10 20 50 100

number of sequences

N
u

m
b

e
rs

 o
f

p
a
tt

e
rn

s
L=24S=80%
Page 14 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
Conclusion
We have presented a new method, Searchpattool, for TFBS
pattern discovery based on an exhaustive algorithm.
Searchpattool looks for the most specific or conservative
patterns shared by a set of sequences. Our testing on Bacil-
lus subtilis datasets shows that it performs very well and is
efficient for small numbers of sequences. It is easy to use
and provides rich and complete information about the
best patterns. Either alone or as a complement to other
algorithms, Searchpattool can be a powerful tool for dis-
covering novel and important TFBS patterns common to a
cluster of genes.

Methods
Algorithm Searchpattool (input_sequence,
min_support, max_length, background-proba, #out-
put)

Begin

- Read the n input sequence and make their reverse com-
plement.

- Create the 4 arrays Tabi that contains the positions of
corresponding nucleotide in the 2n sequences.

- For i = 1 to 4 //each i references a nucleotide Ni

❍ For j = 1 to 4 //step 1

■ Join (Tabi, Tabj, LFPij, Ni, Nj, min_support,
max_length)

■ //create a LFPij that start with Ni and finish
with Nj.

End for

❍ Merge and sort by length all LFPij to LFPi.

❍ More-specific(LFPi, min_support) //step 2

❍ Statistics(LFPi, Resultsi) //step 3

End for

- Sort-Extract-info(All_results, #output) //step 4

End

Searchpattool begins by reading the n input sequence and
making their reverse complement. Then it allocates 4
arrays (of 2n elements) relative to the 4 nucleotides. Each
array (Tabi) contains the positions of corresponding
nucleotide in the 2n sequences (in the double strands).

The module 'Join' creates the lists of patterns of the form
E (.)* E. For each nucleotide i it creates the list of all fre-
quent patterns (LFPi) that start with i and finish with all
the 4 others with just wild-characters in the middle The
number of wild-character varies from 0 to max-length-2.
The module 'More-specific' makes a list of patterns of the
form E (.)* E more specific by replacing wild-character
with nucleotides. The format of the pattern will be E (E ∪
.)* E. The module 'Statistics' computes the Z-scores of all
patterns by family and store the results in text files. Finally
the module 'Sort-Extract-info' sorts the patterns according
to the z-score of the support and selected the desired
number of patterns with all useful information.

Computation of the z-scores
For each pattern P we define these variables:

p = probability of P at any given position

n = number of sequences in the sequence set.

Lj = length of the jth sequence

k = length of P

s = support of P over the n sequences

o = number of observed matching positions of P without
overlapping positions

T = the number of possible matching positions of P

T = (2 * Σj = 1, n (Lj + 1 - k)) - o * (k-1)

The count of T does not allow overlapping positions in the
double strands. For each occurrence of P we exclude the
next k-1 positions from the count.

The expected occurrences of P (eo) is:

eo = p * T

The variance (vo)is:

vo = T * p * (1-p).

The z-score for total number of occurrences of pattern P is:

Zs-tot = (o-eo)/sqrt(vo).

The probability that there will be at least one occurrence
of pattern P within the sequence 'j' (qj) is [24]:

qj = 1 - (1-p) Tj where Tj = 2 * (Lj-k+1).
Page 15 of 18
(page number not for citation purposes)

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
The expected number of matching sequences (es) is:

es = Σj = 1,n (qj).

We can estimate the variance of the support (vs) under an
independence assumption as

vs = Σj = 1,n ((1- qj) qj)

The z-score of the support of pattern P is:

zs-sup = (s-es)/sqrt(vs).

For this statistic, we do not assume it will have a Gaussian
distribution, nor do we need the independence assump-
tion to hold, since the significance of the score is com-
puted via simulations from random data. For our
experiments we assumed that the four nucleotides are
independent so the background probability p of pattern P
at a position is the product of the background probabili-
ties of well conserved nucleotides contained in P.

Scoring by information content
We can score selected patterns according to their informa-
tion content. Given a pattern of length k and its list of
instances, the information content (IC) of this pattern is
defined to be

IC = Σj = 1,kΣc pc,j log2 pc,j/bc

Where pc,j is the frequency with which character c (A,G,C
or T) occurs in position j among the pattern occurrences
and bc is the background frequency of c.

Since we have patterns of different lengths we take the
mean (average) of the information content (MIC) as a sec-
ond score for significance

MIC = [Σj = 1,kΣc pc,j log2 pc,j/bc]/k

The MIC score is useful for refining the selection of the
best patterns.

Computing the p-values of the best z-scores
For each experiment, we select the 'h' highest scored
motifs zs-supi (with 1<=i<=h) and for each zs-supi we
compute a probability p-valuei that the ith maximum score
chosen by our selection process would be at least zs-supi if
the input sequences were random. To calculate this prob-
ability in an unbiased way we use the following approach:
first, we generate random samples of the same length and
in the same quantity as the input sequences using the
background probabilities of the four nucleotides. For each
random sample we run Searchpattool with the same
parameters as the original experiment and select the best

'h' zs-sup* scores; denote these zs-sup1*, zs-sup2*, ... zs-
suph*, ordered from largest to smallest. We repeat this
process for 1000 different sets of randomly generated
sequences. The end result is that we have a distribution of
1000 of each of the maximum zs-sup1*, the second-to-
highest zs-sup2*, and so forth to the hth-highest. Each of
our observed zs-supi is then compared to the distribution
of the equivalent order statistics from the randomly gen-
erated samples. We compute the p-value corresponding to
the zs-supi as the proportion of zs-supi*>= zs-supi. This
allows us to account for the selection process in comput-
ing the probability that a particular motif would have sup-
port as high as was observed by chance. Note that based
on these 1000 randomly generated sequence sets the low-
est possible p-value for any motif is <0.001, correspond-
ing to the case when none of the zs-supi* are greater or
equal to the observed zs-supi.

Nucleotide level performance score
For each pattern we define TP,FN,FP as respectively the
number of nucleotides positions in both known sites and
predicted sites, the number of nucleotide positions in
known sites but not in predicted sites and the number of
nucleotide positions not in known sites but in predicted
sites. The nucleotide level performance score (ps) is
defined as TP/(TP+FN+FP).

Average site level performance score
For each pattern we define STP, SFN, SFP as respectively
the number of known sites overlapped by predicted sites,
the number of known sites not overlapped by predicted
sites, and the number of predicted sites not overlapped by
known sites. The site sensitivity score is defined as STP/
(STP+SFN). The site positive predictive value score is
defined as STP/(STP+SFP). The average site score is the
average of the sensitivity score and positive predictive
scores. We compute this score for a minimum overlap per-
centage taking respectively the values 100 (S100%), 75
(S75%), 50 (S50%) and 25 (S25%).

Availability and requirements
Searchpattool software is available as an additional file
with the article [see Additional file 5]. It is hosted at bio-
informatics.org and is also accessible via ftp: http://
ftp.bioinformatics.org/pub/searchpattool

Operating system: Windows

Programming language: C++

Other requirements: none

License: GNU GPL

Any restrictions to use by non-academics: none
Page 16 of 18
(page number not for citation purposes)

http://ftp.bioinformatics.org/pub/searchpattool
http://ftp.bioinformatics.org/pub/searchpattool

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
Abbreviations
TF, transcription factor; TFBS, transcription factor binding
sites

Competing interests
The author(s) declares that there are no competing inter-
ests.

Authors' contributions
FE designed the algorithm, developed the software tool,
conducted the whole study and drafted the manuscript.
MN participated in the statistical study, proposed the for-
mula of the z-score of the support and the method to
compute the p-value of the z-scores, wrote the R script for
generating random samples and revised the manuscript.
All authors read and approved the final manuscript.

Additional material

Acknowledgements
We are very grateful to Dr Robert Hohman (RTB,NIAID,NIH) for all the
support during this project. We would like to thank Dr Teresa Przytycka
(NCBI,NLM,NIH) for early discussion of this project and for encouraging
us, Dr Mary Ann Robinson (RTB,NIAID,NIH) for reviewing the manuscript
and Dr Eleazar Eskin for providing Mitra software. This research was sup-
ported in part by an appointment to the Senior Fellow Program, National
Institute of Allergy and Infectious Diseases. This program is administrated
by the Oak Ridge Institute for Science and Education through an intera-
gency agreement between the U.S. Department of Energy and the National
Institutes of Health.

References
1. Brejova B, DiMarco C, Vinar T, Hidalgo SR, Holguin G, Patten C:

Finding Patterns in Biological Sequences. In Technical report
2000, CS-2000-22 University of Waterloo. Canada.

2. Roth FP, Hughes JD, Estep PW, Church GM: Finding DNA Regu-
latory Motifs within Unaligned Non-Coding Sequences Clus-
tered by Whole-Genome mRNA Quantitation. Nature
Biotechnology 1998, 16(10):939-45.

3. Bailey TL, Elkan C: Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. In Proceed-
ings of the Second International Conference on Intelligent Systems for
Molecular Biologye AAAI Press, Menlo Park, California; 1994:28-36.

4. Brazma A, Jonassen I, Eidhammer I, Gilbert D: Approaches to
Automatic Discovery of Patterns in Biosequences. Journal of
Computational Biology 1998, 5:277-303.

5. Rigoutsos I, Floratos A, Parida L, Gao Y, Platt D: The emergence
of pattern discovery techniques in computational biology.
Metabolic Engineering 2000, 2(3):159-177.

6. Ester M, Zhang X: A Top-Down Method for Mining Most-Spe-
cific Frequent Patterns in Biological Sequences. Proceedings of
the Fourth SIAM International Conference on Data Mining, Lake Buena
Vista, Florida, USA . April 22–24, 2004

7. Sinha S, Tompa M: A Statistical Method for Finding Transcrip-
tion Factor Binding Sites. In Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology, San Diego, CA
AAAI Press, Menlo Park, CA; 2000:344-354.

8. Pavesi G, Mauri G, Pesole G: An algorithm for finding signals of
unknown length in DNA sequences. Bioinformatics 2001,
17(suppl 1):S207-S214.

9. Eskin E, Pevzner PA: Finding Composite Regulatory Patterns in
DNA Sequences. Bioinformatics :S354-63. 2002 July 18. ISMB-2002,
Edmonton, Canada: August 3–7, 2002

10. Jonassen I: Efficient discovery of conserved patterns using a
pattern graph. Comput Appl Biosci 1997, 13:509-522.

11. Rigoutsos I, Floratos A: Combinatorial Pattern Discovery in
Biological Sequences: the TEIRESIAS Algorithm. Bioinformat-
ics 1998, 14:55-67.

12. Califano A: SPLASH: structural pattern localization analysis
by sequential histograms. Bioinformatics 2000, 16(4):341-57.

13. Agrawal R, Srikant R: Mining Sequential Patterns. Proceedings of
the 11th International Conference on Data Engineering (ICDE'95), Taipei,
Taiwan 1995:3-14.

14. Wang K, Xu Y, Xu Yu J: Scalable Sequential Pattern Mining for
Biological Sequences. Proceedings of the thirteenth ACM interna-
tional conference on Information and knowledge management, CIKM
2004. Washington, DC :178-187.

15. Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-
Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V,
Bonavides-Martinez C, Segura-Salazar J, Martinez-Antonio A, Col-
lado-Vides J: RegulonDB (version 5.0): Escherichia coli K-12
transcriptional regulatory network, operon organization,
and growth conditions. Nucleic Acids Res :D394-7. 2006 Jan 1

16. Makita Y, Nakao M, Ogasawara N, Nakai K: DBTBS: database of
transcriptional regulation in Bacillus subtilis and its contribu-
tion to comparative genomics. Nucleic Acids Res 2004,
32:D75-77.

17. Van Helden J, Rios AF, Collado-Vides J: Discovering regulatory
elements in non-coding sequences by analysis of spaced
dyads. Nucleic Acids Research 2000, 28(8):1808-1818.

18. Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouze P,
Moreau Y: A higher-order background model improves the

Additional file 1
The data sets. This file contains the input sequences and known sites for
each TF used in our experiments.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-354-S1.txt]

Additional file 2
Searchpattool's results for test1. This file contains the best patterns as pre-
dicted by Searchpattool for each of the fourteen TF examined in test1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-354-S2.xls]

Additional file 3
Searchpattool's results for test2. This file contains the best patterns as pre-
dicted by Searchpattool for each of the fourteen TF examined in test2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-354-S3.xls]

Additional file 4
Runtime and number of patterns statistics. This file contains detailed
results for the study of runtime and number of patterns found by Search-
pattool on random data sets.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-354-S4.xls]

Additional file 5
Searchpattool's software. This archive file contains the application, the
source code; a runable example and an explanation of the use of the pro-
grams (file readme-searchpattool-doc.pdf)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-354-S5.zip]
Page 17 of 18
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-354-S1.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-8-354-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-8-354-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-8-354-S4.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-8-354-S5.zip
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9788350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11056059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11056059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10869032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10869032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10734201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10734201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10734201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751219

BMC Bioinformatics 2007, 8:354 http://www.biomedcentral.com/1471-2105/8/354
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

detection of promoter regulatory elements by Gibbs sam-
pling. Bioinformatics 2001, 17:1113-1122.

19. Hertz GZ, Stormo GD: Identification of consensus patterns in
unaligned DNA and protein sequences: a large-deviation sta-
tistical basis for penalizing gaps. Proceedings of the Third Interna-
tional Conference on Bioinformatics and Genome Research. Singapore
1995:201-216.

20. Pevzner PA, Borodovsky Myu, Mironov AA: Linguistics of Nucle-
otide Sequences I: The significance of Deviations from mean
statistical characteristics and prediction of the frequencies of
occurrence of words. J Biomol Struct Dyn 1989, 6:1013-1026.

21. Cavener DR: Comparison of the consensus sequence flanking
translational start sites in Drosophila and vertebrates.
Nucleic Acids Res 1987, 15:1353-1361.

22. Burset M, Guigo R: Evaluation of gene structure prediction
programs. Genomics 1996, 34:353-367.

23. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov
AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS,
Pavesi G, Pesole G, Regnier M, Simonis N, Sinha S, Thijs G, Van
Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z:
Assessing computational tools for the discovery of transcrip-
tion factor binding sites. Nature Biotechnology 2005,
23(1):137-144.

24. The RSAT web site [http://rsat.scmbb.ulb.ac.be/rsat/]
25. Pevzner PA, Sze SH: Combinatorial approaches to finding sub-

tle signals in DNA sequences. In Proceedings of the Eighth Interna-
tional Conference on intelligent systems for Molecular Biology Edited by:
Altman R et al. AAAI Press, Menlo Park, CA; 2000:269-278.

26. Sinha S, Tompa M: Performance Comparison of Algorithms for
Finding Transcription Factor Binding Sites. Proceedings of the
Third IEEE Symposium on Bioinformatics and Bioengineering, Washington,
D.C 2003:214-220.
Page 18 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2531596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2531596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2531596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3822832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3822832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8786136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8786136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://rsat.scmbb.ulb.ac.be/rsat/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Algorithm
	Step 1: Search all E ('.')* E frequent patterns
	Step 2: Deduce from all E ('.')* E frequent patterns the most specific ones
	Step 3: Scoring all frequent patterns
	Step 4: Output the patterns with best z-scores

	Predicting the best pattern

	Implementation
	Testing
	Data experiments
	Test1: search for fixed length patterns
	Searchpattool results
	Comparison with other algorithms

	Test2: search for maximum length patterns
	Searchpattool results
	Comparison with other algorithms

	Searchpattool runtime and number of patterns study

	Discussion
	Conclusion
	Methods
	Computation of the z-scores
	Scoring by information content
	Computing the p-values of the best z-scores
	Nucleotide level performance score
	Average site level performance score

	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

