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Abstract
Background: Arabidopsis thaliana is the model species of current plant genomic research with a
genome size of 125 Mb and approximately 28,000 genes. The function of half of these genes is
currently unknown. The purpose of this study is to infer gene function in Arabidopsis using
machine-learning algorithms applied to large-scale gene expression data sets, with the goal of
identifying genes that are potentially involved in plant response to abiotic stress.

Results: Using in house and publicly available data, we assembled a large set of gene expression
measurements for A. thaliana. Using those genes of known function, we first evaluated and
compared the ability of basic machine-learning algorithms to predict which genes respond to stress.
Predictive accuracy was measured using ROC50 and precision curves derived through cross
validation. To improve accuracy, we developed a method for combining these classifiers using a
weighted-voting scheme. The combined classifier was then trained on genes of known function and
applied to genes of unknown function, identifying genes that potentially respond to stress. Visual
evidence corroborating the predictions was obtained using electronic Northern analysis. Three of
the predicted genes were chosen for biological validation. Gene knockout experiments confirmed
that all three are involved in a variety of stress responses. The biological analysis of one of these
genes (At1g16850) is presented here, where it is shown to be necessary for the normal response
to temperature and NaCl.

Conclusion: Supervised learning methods applied to large-scale gene expression measurements
can be used to predict gene function. However, the ability of basic learning methods to predict
stress response varies widely and depends heavily on how much dimensionality reduction is used.
Our method of combining classifiers can improve the accuracy of such predictions – in this case,
predictions of genes involved in stress response in plants – and it effectively chooses the
appropriate amount of dimensionality reduction automatically. The method provides a useful
means of identifying genes in A. thaliana that potentially respond to stress, and we expect it would
be useful in other organisms and for other gene functions.
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Background
Assigning functions to unannotated genes, identified by
genome sequencing and other methods, is the goal of
functional genomics. Many approaches have been pro-
posed for large-scale prediction of gene function [1-6].
These approaches are largely based on physical associa-
tion, genetic interaction, sequence relationships and pat-
terns of gene expression. Predicting gene functions based
on large-scale gene expression measurements is an attrac-
tive strategy since many pathways display coordinated
transcriptional regulation [2,7]. Although previous stud-
ies show that supervised learning methods can be used to
predict gene function based on gene expression in micro-
organisms such as the yeast Saccharomyces cerevisiae and in
mammals such as mice [1,8-16], it remains unknown to
what extent this is true in plants.

With the A. thaliana genome completely sequenced [17],
functional annotation of the genes remains a key chal-
lenge for biologists. Currently, approximately 50% of the
28,000 genes have not been assigned any function [18].
Thus, the extent to which supervised learning methods
can be used to infer gene function in A. thaliana is a timely
and important question. Little work has been done in this
area, two exceptions being [19,20].

In [19], a method is developed to infer gene function from
microarray data and predicted protein-protein interac-
tions. The method is similar to Nearest Neighbor algo-
rithms [21] in that the predicted function(s) of a gene are
based on the function(s) of nearby genes. Here, the "near-
ness" of one gene to another is based on a normalized
Pearson correlation of their expression profiles and on
putative interactions of their protein products. In addi-
tion, the method is extended to the discovery of biological
pathways, and is applied to predicting the signaling path-
way of phosphatidic acid as a second messenger in A. thal-
iana.

In [20], a decision tree algorithm is applied to the prob-
lem of predicting the function of protein sequences in A.
thaliana. Six sources of data were used: sequence, expres-
sion, SCOP, secondary structure, InterPro and sequence
similarity. One conclusion of the study is that the decision
tree algorithm was unable to extract much information
from the expression data. The authors suggest that this is
because the expression data came from unrelated and
highly-specific experiments with just a few readings per
gene each. They also suggest that because many more
expression data sets are now available for A. thaliana,
results may improve when using this type of data in the
future.

The present study aims to identify unannotated genes in
A. thaliana that are potentially involved in plant response

to stress. In the context of plants, a stress (biotic or abi-
otic) causes a decrease in plant growth or yield. We inves-
tigated the prediction of gene function in A. thaliana based
solely on gene expression data using a variety of basic
supervised learning methods, namely Logistic Regression
(LR), Linear Discriminant Analysis (LDA), Quadratic Dis-
criminant Analysis (QDA), Naive Bayes (NB) and K-Near-
est Neighbors (KNN). We also investigated the effect on
the learning methods of preprocessing the expression data
using Principal Component Analysis (PCA). Finally, we
improved the performance of the basic learning methods
by combining them using a weighted voting (WV)
scheme. This work has enabled our collaborators, biolo-
gists in the Department of Cell and Systems Biology at the
University of Toronto, to carry out directed biological
experiments for determining gene function. In addition to
these biological results, the paper illustrates how various
machine-learning methods have had to be adapted to fit
this bioinformatics application.

Results and discussion
Microarray data and the Gene Ontology
In this study, we used two microarray data sets: one from
the Botany Array Resource at the University of Toronto
[22], and the other from the AtGenExpress Consortium
[23], archived at NASCArrays [24,25]. These data sets
include over 1000 expression-level experiments for Arabi-
dopsis, and using all of them would give a data set with
dimensionality over 1000. Since the performance of sta-
tistical and machine-learning methods tends to decrease
with dimensionality, we chose only those experiments
that are specifically stress-related. Even so, the covariance
matrix of the resulting data set is singular, which is a prob-
lem for many of the machine-learning methods. The sin-
gularity is probably due to dependencies between the
expression levels under control conditions, since remov-
ing the controls from the data sets solved the problem. To
compensate, we tried applying the learning algorithms to
expression-level ratios (i.e., ratios of experimental to con-
trol conditions). However, we found that the results were
better when ratios were not used (data not shown). This is
probably because the classifiers look for genes that
respond similarly to the known stress-associated genes, so
it is not so important to include the controls. In addition,
since many of the features are time-courses, there is still a
"time zero" control included for the values, providing a
baseline measurement. The results reported in this article
are therefore based on absolute expression levels without
controls.

From the Toronto data set, we selected 54 features corre-
sponding to experiments conducted primarily to study
plant environmental and stress physiology, plant physiol-
ogy, plant-microbe and plant-insect interactions. From
the AtGenExpress data set, we selected 236 features,
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including various abiotic stresses (e.g., osmotic stress, heat
stress, cold stress, salt stress, drought stress, UV-B stress,
wounding stress, water-deprivation stress and oxidative
stress). We combined the selected features into a single
data set. The resulting data set consists of gene expression
levels for 22,746 genes under 54 + 236 = 290 different
experimental conditions.

We used terms from the Gene Ontology for Biological
Processes (GOBP) to represent gene function. For exam-
ple, the GOBP term GO:0006950 [response to stress] refers
to genes that respond to stress. In general, the Gene Ontol-
ogy (GO) provides a dynamic controlled vocabulary for
describing genes and gene products in any organism [26].
"Biological Process" is one of three broad GO categories
(the other two being "Molecular Function" and "Cellular
Component"). GOBP terms are organized into a directed
acyclic graph (DAG) to reflect the hierarchical relation-
ships between the terms. Parent GOBP terms are subdi-
vided into increasingly specific child GOBP terms.

Since our study focussed on stress, we were concerned
with gene functions at or below the term GO:0006950
[response to stress] in the GOBP hierarchy. This GOBP term
has 19 child terms, such as GO:0009409 [response to cold],
GO:0009408 [response to heat], and GO:0009414 [response
to water deprivation]. Since gene function becomes more
and more specific as we move down the GOBP hierarchy,
fewer and fewer genes have any given annotation. The
result is that for specific types of stress, our data set con-
tains many negatives and few positives. In the best case,
for the term GO:0009613 [response to pest, pathogen or par-
asite], over 97% of the training data consists of negatives.
The typical case is even worse. In fact, looking at all 19
types of stress, 5 types have no positives at all, and of the
remaining 14 types, the median number of negatives is
99.2% of the training data. This highly unbalanced data
made accurate prediction of gene function difficult. For
this reason, we narrowed our study to the top stress term,
GO:0006950 [response to stress]. To get positive training
samples for this term, we propagated all genes in its off-
spring upward to it in the hierarchy. After up-propagation,
the top stress term has 1,031 genes, or almost 9% of the
total genes in the training data. The training data therefore
contains 9% positives and 91% negatives.

Using GOBP terms to annotate all genes in A. thaliana is
an ongoing project started in 2002 by TAIR [27,28]. The
gene annotations (updated weekly) can be downloaded
from TAIR [27]. The predictions reported in this paper are
based on the version for March 10, 2007. Using these
annotations, we categorized the genes into annotated
genes and unannotated genes. The annotated genes are
those which have at least one GOBP annotation; the
unannotated genes are those which have no GOBP anno-

tations. In addition, a gene was treated as unannotated if
its only annotation is the top GOBP category,
GO:0008150 [biological process], since the function of such
a gene is unknown. The result was 11,553 annotated
genes and 11,193 unannotated genes in our data set.

The annotated genes formed the training data, in which a
gene was called positive if it is annotated as a stress gene,
and negative otherwise. The unannotated genes formed
the prediction data. It should be noted that this approach
probably introduces some false negatives into the training
data, because genes not known to have a particular func-
tion are considered to be negative, even though future
experiments could reveal them to have that function. That
is to say, "unknown" is treated as "negative". However, the
number of such false negatives should be small, since only
a small number of genes participate in any given biologi-
cal process. That is, most negatives are true negatives.

Predicting gene function using basic learning methods
Using a variety of basic learning methods, we trained a
number of classifiers to distinguish between genes that do
and do not respond to stress, based on their patterns of
gene expression in the training data. We then applied each
classifier to the prediction data to estimate the function of
the unannotated genes. In addition, we used cross valida-
tion to evaluate the performance of each classifier and to
estimate the precision of each prediction.

We used five supervised learning methods: Logistic
Regression (LR), Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), Naive Bayes
(NB) and K-Nearest Neighbors (KNN) [21] (see Meth-
ods). These methods were chosen because they are repre-
sentative of the most basic supervised learning methods,
the goal being to explore simple methods first. These
methods are widely understood, take little computation
time, and the results provide a benchmark against which
more sophisticated methods can be compared. Moreover,
as we show below, the results provided by these methods
are good enough to enable biologists to conduct targeted
laboratory experiments.

Each of the five methods is discriminative. That is, the
classifiers learned by the methods assign a real number
(called a discriminant value) to each gene, reflecting the
classifier's certainty that the gene responds to stress. For-

mally, a discriminative classifier is a function, , from

genes to discriminant values. In our case, each gene is rep-
resented as a 290-dimensional vector, x, whose compo-
nents are the expression levels of the gene under the 290
experimental conditions. Thus, if x is a vector representing

a gene, then dv = (x) is the discriminant value assigned

f̂

f̂
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to the gene by the classifier. Finally, a decision threshold,

τ, is chosen, and the gene is predicted to respond to stress

if and only if dv > τ.

Unsupervised, semi-supervised and transductive learning
In addition to these supervised learning methods, we pre-
processed the gene expression data using Principal Com-
ponents Analysis (PCA), a form of unsupervised learning,
to reduce the dimensionality of the data (see Methods).
For this purpose, we combined the expression-level meas-
urements for all genes (both annotated and unannotated)
into one large data set, and applied PCA to the entire set.
We are therefore doing a form of semi-supervised learning
[29,30], in which unsupervised learning uses the entire
data set (ignoring annotations), and then supervised
learning uses the annotated data. This increases the effec-
tiveness of learning by increasing the amount of training
data used in the unsupervised phase [29,30]. In our case,
the unannotated data is also the prediction data, which
means that information about the prediction data is used
during (unsupervised) training. This is possible because
we know all the prediction data in advance. That is, we
know the expression levels for all the genes in Arabidopsis
whether they are annotated or not. We are therefore doing
a form of transductive learning [29,31], in which the
entire prediction set is known during training and is
exploited to predict its annotations. This has the added
computational advantage of simplifying the way PCA is
done during cross validation (see Methods).

Estimating classifier performance
To evaluate the performance of discriminative classifiers,
it is common to use receiver operating characteristic
(ROC) curves [32]. A ROC curve plots the true positive
rate (TP) of a classifier against the false positive rate (FP)
for various decision thresholds. It therefore shows the
quality of a classifier not at one threshold, but at many,
and provides more information than a simple miss-classi-
fication rate (as in [33] for example). In practice, however,
biologists are not usually interested in having more than
a few dozen false positives, especially in unbalanced data
such as ours, in which the number of false positives can
rapidly overwhelm the number of true positives. We
therefore use so-called ROC50 curves [34], a variant of
ROC curves in which the horizonal axis only goes up to 50
false positives. The area under a ROC50 curve is the ROC50
score [34], and is a measure of the overall usefulness of a
classifier.

To estimate ROC50 curves for our classifiers, we used 20-
fold cross-validation (see Methods). Because cross-valida-
tion relies on a random split of the training data into folds
(20 folds in our case), there is a certain randomness to the
estimated ROC50 curve. To provide more accurate results,
we performed cross-validation ten times, each time with a

different (randomly selected) 20-fold split of the data (see
Methods). Each 20-fold split results in a slightly different
ROC50 curve. In some cases, we plot all ten of these curves,
to give an idea of the uncertainty in classifier performance
(Figure 1). In cases where this would result in overly clut-
tered graphs, we simply present the average of the ten
ROC50 curves (Figures 2 to 7, each of which show several
average ROC50 curves).

We generated ROC50 curves for each supervised learning
method combined with various amounts of dimensional-
ity reduction. Using PCA, we reduced the original 290
dimensions to 5, 10, 15, 20, 40 and 100 dimensions,
respectively. In this way, the original data set was trans-
formed into six separate data sets of various dimensions.
Each basic learning method (except KNN) was applied to
the original data set and to each of the six reduced data
sets. Thus, for each basic learning method (except KNN),
we trained and tested seven different classifiers. In the case
of KNN, we used only the original, unreduced data, but
with five different values of K. Altogether, we trained and
tested a total of 4 × 7 + 5 = 33 different classifiers. Figures
2 to 6 show the estimated performance of these basic clas-
sifiers. Each figure shows a number of ROC50 curves, each
derived using cross-validation averaged over a number of
random splits of the data, as described above. Unlike tra-
ditional ROC curves, the axes of these curves give the
number of true and false positives, instead of the propor-
tion. The red dash-dot line near the bottom of each figure
shows the expected performance of a random classifier
(i.e., a classifier that ignores the expression data and
guesses whether or not a gene responds to stress by essen-

ROC50 curvesFigure 1
ROC50 curves. Estimated ROC50 curves of the combined 
classifier (WV), showing ten different estimates (dashed 
curves) and their average (solid curve).
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tially flipping a coin). The ROC50 scores for the curves are
shown in the legend of each figure.

As the figures show, in some cases the classifiers perform
not much better than random, but in most cases they per-
form significantly better. The figures also show that the
performance of each classification method depends heav-

ily of the amount of dimensionality reduction used.
Notice in particular that in some cases, the classifier
trained on the reduced data has a much higher ROC50
score than the classifier trained on the original, unreduced
data. This is especially true for NB and QDA. For instance,
the classifiers trained on the original data have low ROC50

Naive Bayes (NB)Figure 5
Naive Bayes (NB). Seven ROC50 curves for Naive Bayes 
with varying amounts of dimensionality reduction using PCA. 
In the legend, p is the PCA-reduced dimension, and s is the 
ROC50 score.
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Linear Discriminant Analysis (LDA)Figure 3
Linear Discriminant Analysis (LDA). Seven ROC50 
curves for Linear Discriminant Analysis with varying amounts 
of dimensionality reduction using PCA. In the legend, p is the 
PCA-reduced dimension, and s is the ROC50 score.
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Logistic Regression (LR)Figure 2
Logistic Regression (LR). Seven ROC50 curves for Logistic 
Regression with varying amounts of dimensionality reduction 
using PCA. In the legend, p is the PCA-reduced dimension, 
and s is the ROC50 score.
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Quadratic Discriminant Analysis (QDA)Figure 4
Quadratic Discriminant Analysis (QDA). Seven ROC50 
curves for Quadratic Discriminant Analysis with varying 
amounts of dimensionality reduction using PCA. In the leg-
end, p is the PCA-reduced dimension, and s is the ROC50 
score.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

FP

T
P

 

 

no pca, s = 115.2
p =  5,   s = 457.8
p = 10,  s = 1473.5
p = 15,  s = 1651.0
p = 20,  s = 1422.8
p = 40,  s = 949.4
p = 100,s = 1362.0
Page 5 of 17
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:358 http://www.biomedcentral.com/1471-2105/8/358
scores of 182.3 for NB and 115.2 for QDA. This is compa-
rable to the random classifier, whose ROC50 score is
122.5. However, reducing the dimensionality of the data
to 15 increases their ROC50 scores to 1373.1 and 1651.0,
respectively. This shows the importance of dimensionality
reduction. In contrast, KNN performs well for all the val-
ues of K that we used.

Figure 7 compares the basic classification methods by
plotting the best performance of each. That is, for each of
the basic classification methods, the ROC50 curve with the
highest ROC50 score is reproduced in Figure 7. In addi-
tion, the figure shows the performance of a classification
method that uses a weighted voting scheme (WV) to com-
bine the 33 basic classifiers into a single, composite clas-
sifier. Notice that this composite classifier performs best
of all. The next section describes how this composite clas-
sifier is constructed.

Improving prediction accuracy by combining classifiers

Combining different classifiers in prediction can be
thought of as combining different opinions in decision
making. The advantage is that a group opinion is better
than a single opinion if the single opinions are correctly
weighted and combined. In machine-learning systems,
classifiers are often combined by weighted voting, in
which the discriminant value of the combined classifier is
a linear combination of the discriminant values of the
individual classifiers. Formally, given a set of basic classi-

fiers, , and a set of weights, w1, ≡, wM, the com-

bined classifier, , is defined by the equation

. In our case, M = 33, as described

above.

By judiciously choosing the weights, w1, ≡, wM, the per-
formance of the combined classifier can be maximized.
Various methods are available for doing this, such as
model averaging and stacking [21]. Using these methods
on our data sets, we found that the ROC curve of the com-
bined classifier was usually better than the ROC curves of
the basic classifiers, as expected. Unfortunately, we also
found that the ROC50 curve of the combined classifier was
usually worse (data not shown). We hypothesized that
this is because our data sets are highly unbalanced. Intui-
tively, model averaging and stacking try to choose weights
so as to correctly classify as much data as possible. In our
case, this means trying to correctly classify the vast
number of negative samples in our data sets, even if this
means misclassifying the small number of positives. In
other words, these methods try to minimize the total
number of false positives, even though we only care about
the first fifty.

To choose appropriate weights for our combined classi-
fier, we used the heuristic that classifiers that perform well
should be given more weight than classifiers that perform
poorly. In our case, since we want to maximize the ROC50

score of the combined classifier, we want to give high
weight to classifiers with high ROC50 scores. There are

ˆ , , ˆf fM1

f̂

ˆ( ) ˆ ( )f w fm mm
x x= ∑

Comparison of methodsFigure 7
Comparison of methods. The ROC50 curve (purple) for 
the combined classifier using weighted voting (WV), and the 
best ROC50 curves from each of Figures 2 to 6. In the legend, 
p is the PCA-reduced dimension of the data, and s is the 
ROC50 score.
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K-Nearest Neighbours (KNN)Figure 6
K-Nearest Neighbours (KNN). Five ROC50 curves for K-
Nearest Neighbours for various values of K. The legend gives 
the ROC50 score, s, for each value of K.
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many ways to do this, but we found that it was sufficient
to estimate and normalize the ROC50 score of each basic

classifier, and use this as its weight. That is, we used

, where  is an estimate of the ROC50

score of classifier fm. Note that with these weights, if each

(x) is a number between 0 and 1 (as with our classifi-

ers), then so is (x). Also, this method automatically

gives low weight to classifiers that use an inappropriate
amount of dimensionality reduction, since such classifiers
have low ROC50 scores. In this way, the combined classi-

fier incorporates not only the best combination of super-
vised learning methods, but also the best amounts of
dimensionality reduction for each method.

To train and evaluate the combined classifier, we used two
sets of validation data. After the basic classifiers were
trained, one validation set was used to estimate their
ROC50 scores. The combined classifier was then con-

structed using these scores, and the second validation set
was used to estimate its ROC50 curve. Thus, the validation

data for the basic classifiers is part of the training data for
the combined classifier. To do this in a cross-validation
setting, we used what amounts to nested cross-validation
(see Methods). As shown in Figure 7, the resulting com-
bined classifier has a higher ROC50 score than any of the

basic classifiers from which it is made.

Figure 1 gives another view of the performance of the
combined classifier. Here, the thin dashed lines are a
superposition of ten different curves, where each one is a
different estimate of the combined classifier's true ROC50
curve. As described earlier, each estimate of a classifier's
ROC50 curve includes some randomness, due to the ran-
dom choice of folds during cross-validation. The ten
dashed curves in Figure 1 are derived from ten different
cross-validations, each one using a different set of folds.
The thick solid line in the figure is the average of the other
ten curves. Because averaging reduces variance, the aver-
age curve is a more accurate estimate of the true ROC50
curve (i.e., has lower variance) than any of the other ten
curves. The diagonal dash-dot line near the bottom of the
plot shows the expected performance of a random classi-
fier.

ROC and ROC50 curves plot the number of true positives
against the number of false positives. However, in appli-
cations such as ours, the precision is also of interest. Preci-
sion is the proportion of true positives (TP) among the
predicted positives (PP). (It is also the complementary
false discovery rate, 1-FDR [35].) Precision is important

since each prediction is a potential experiment, and as a
matter of economics, a biologist needs an estimate of how
many of the experiments will succeed. This is especially
important in situations, such as ours, where the number
of real negatives is much greater than the number of real
positives, and so there is a real possibility of having a huge
number of failed experiments.

Figure 8 plots estimated precision against the number of
predictions for the first hundred predictions. Notice that
as the number of predictions increases (i.e., as the classi-
fier's decision threshold is lowered), the precision
decreases, meaning that fewer of the predictions are
expected to be true. As in Figure 1, the thin dashed lines
are a superposition of ten different curves, each one an
estimate of the true precision curve, and the thick solid
line is their average. Also, the horizontal dash-dot line
near the bottom of the plot is the expected precision of a
random classifier, and its height is equal to the ratio of the
number of positives (i.e., stress genes) to the total number
of samples (i.e., genes) in the training data. Since all the
estimated precision curves are well above the horizontal
dash-dot line, the performance of the combined classifier
for the first hundred predictions is significantly better
than random. Also, since Figures 1 and 8 show small var-
iance, and since the variance of the average curves will be
even less, the combined classifier should have stable pre-
diction performance.

Stress-response predictions
We trained the combined classifier on our Arabidopsis
data set, using all 22,746 genes for Principal Components

w s sm m mm
= ∑ˆ / ˆ ŝm

f̂m

f̂

Precision curvesFigure 8
Precision curves. Estimated precision curves of the com-
bined classifier (WV), showing ten different estimates 
(dashed curves) and their average (solid curve).
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Analysis, and the 11,553 annotated genes for supervised
learning, as described above. We then applied the classi-
fier to the 11,193 unannotated genes, to get a set of
11,193 predictions (see Methods). Table 1 shows the top
fifty predictions. Each row in the table is a prediction: the
first (leftmost) entry is the rank of the prediction (1 being
the top prediction); the second entry identifies a gene; the
third entry is a discriminant value (measuring the likeli-
hood that the gene responds to stress); and the fourth
entry is the estimated precision of the prediction and all
predictions above it (i.e., the fraction of these predictions
expected to be true). As an example, consider the 23rd row
of the table, the row for gene At1g09950. Since the esti-
mated precision in this row is given as 0.7044, we expect
that about 70% of the top 23 genes respond to stress, i.e.,
16 genes.

Figures 9 and 10 provide visual evidence supporting these
predictions. Each figure shows a heat map. These maps,
known as "electronic Northerns" (or e-Northerns), were
generated using the Expression Browser tool of the Botany
Array Resource (BAR) and the AtGenExpress Stress Series
(shoot) data set[23]. The program contains expression
data for more than 22,000 genes across more than 1000
samples collected from NASCArrays, AtGenExpress Con-
sortium, and the Department of Botany at the University
of Toronto [22-24,36]. Each row in an e-Northern is a
gene, and each column is an experiment. The colour at a
point represents the relative expression level of the gene
during the experiment. More specifically, the colour repre-
sents the log2 of the ratio of the average of replicate treat-
ments relative to the average of corresponding controls.
Yellow means that under the experimental conditions, the
gene had the same expression level as the control. (The
wide, yellow vertical stripes are the controls.) Red means
that the gene had a higher expression level than the con-
trol (up-regulation), and blue means it had a lower
expression level (down-regulation). A gene that shows sig-
nificant up-regulation (or down-regulation) under stress
conditions is likely to be involved in response to stress.
Thus, unlike cross validation, electronic Northerns pro-
vide a means of evaluating the quality of predictions
based on the prediction data, not just the training data.
The e-Northerns of Figures 9 and 10, for instance, are
based entirely on prediction data. In these e-Northerns,
the experiments exposed the plant to various stress condi-
tions, such as heat, cold, drought, UV-B radiation, etc. Fig-
ure 9 is the e-Northern for the top-50 predictions of our
combined classifier, i.e., for the 50 genes predicted to
most likely to respond to stress. For comparison, Figure 10
is the e-Northern for 50 genes chosen at random from the
prediction set. Note that there is much more colour in Fig-
ure 9 than in Figure 10, especially red. This suggests that
our combined classifier has indeed extracted meaningful
gene expression patterns for genes that respond to stress.

Gene knockout experiments
From the predictions of the combined classifier, three
genes were chosen for biological analysis using gene
knockout experiments. Here, we present the results for

Table 1: The top 50 predictions of the combined classifier 
ordered by discriminant value

No. Gene name Dv Pr

1 At1g61340 0.7879 0.8491
2 At1g72660 0.7315 0.8423
3 At5g04340 0.7269 0.8405
4 At1g19180 0.7219 0.8448
5 At2g01520 0.7017 0.8311
6 At2g36220 0.6987 0.8293
7 At5g10695 0.6912 0.8138
8 At3g10020 0.6850 0.8030
9 At3g16050 0.6778 0.8000
10 At4g18280 0.6673 0.7945
11 At1g11210 0.6636 0.7955
12 At5g64510 0.6514 0.7900
13 At3g09350 0.6412 0.7807
14 At5g42380 0.6357 0.7718
15 At3g44860 0.6278 0.7623
16 At1g73260 0.6252 0.7583
17 At1g16850 0.6186 0.7452
18 At1g78070 0.6185 0.7439
19 At3g01830 0.6098 0.7398
20 At5g19875 0.6094 0.7402
21 At3g62260 0.6040 0.7213
22 At1g03070 0.5961 0.7106
23 At1g09950 0.5942 0.7044
24 At1g19020 0.5867 0.6928
25 At1g07430 0.5866 0.6919
26 At1g76960 0.5860 0.6901
27 At1g30070 0.5838 0.6819
28 At2g05510 0.5799 0.6726
29 At3g50930 0.5796 0.6726
30 At1g67360 0.5767 0.6691
31 At5g09530 0.5758 0.6703
32 At3g53230 0.5737 0.6663
33 At3g55970 0.5694 0.6586
34 At4g27657 0.5676 0.6549
35 At4g38080 0.5658 0.6458
36 At1g17380 0.5651 0.6448
37 At4g27652 0.5647 0.6445
38 At1g68500 0.5588 0.6204
39 At1g76650 0.5573 0.6146
40 At2g15960 0.5549 0.6074
41 At1g14870 0.5520 0.6017
42 At1g49450 0.5497 0.5991
43 At1g13930 0.5467 0.5942
44 At2g32190 0.5453 0.5914
45 At4g23493 0.5429 0.5879
46 At2g28400 0.5418 0.5842
47 At1g48720 0.5399 0.5780
48 At3g02480 0.5384 0.5721
49 At2g43620 0.5376 0.5677
50 At4g14270 0.5373 0.5676

Pr, estimated precision; Dv, discriminant value.
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one of these genes, At1g16850, which show it to be neces-
sary for the normal response to temperature and NaCl.
Our results also confirm that the other two genes,
At1g11210 and At4g39675, are involved in a variety of
stress responses (data not shown).

The criteria used to choose candidate genes for subse-
quent biological analysis were: 1) the gene must be
expressed in either root or shoot, 2) gene expression
should be strongly increased in response to abiotic stress,
such as cold, drought, osmotic and salt stresses, 3) T-DNA

Electronic Northern analysisFigure 9
Electronic Northern analysis. E-Northern of the top 50 predictions.
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knockout lines – in which a given gene's expression has
been eliminated – should available from the Salk Institute
[37], and 4) the gene should not have an annotated func-
tion nor be present in any patent database. Further bioin-
formatics analysis was performed using Athena for

promoter motif prediction [38], Expression Angler for co-
expressed gene analysis [22] and eFP browser for elec-
tronic representation of gene expression patterns [39].

Electronic Northern analysisFigure 10
Electronic Northern analysis. E-Northern of 50 randomly selected genes.
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Stress response
The increased presence of anthocyanin levels in plants
lacking a functional copy of the At1g16850 gene during
cold stress of 4C indicates that this gene is involved in
cold stress response (Figure 11). The same effect is seen at
30C, indicating that this gene is also associated with
response to heat stress (Figure 11). Interestingly,
At1g16850 is normally expressed during the later stages of
seed maturation, towards seed dessication, and hence
may play a role in seed dormancy. This sort of bifunction-
ality is seen with other stress response genes, which have
documented roles in the cold, heat and salt stress path-

ways, e.g. RD29A (Response to Desiccation) and LEA
(Late Embryogensis Abundant) protein [40,41]. These
proteins have also been found to accumulate during seed
maturation [40,41] and are in fact co-expressed with
At1g16850 under stress conditions and during seed mat-
uration, as determined using the Expression Angler algo-
rithm [22].

In addition to modulating a response to temperature,
plants lacking a functional At1g16850 exhibit a defective
root growth phenotype under increasing salt concentra-
tions (Figure 12). This phenotype, combined with previ-
ous microarray studies [42], which found At1g16850
induction at 250 mM NaCl, gives clear indication that
At1g16850 is also part of the salt stress response pathway.

Conclusion
In this study, we evaluated and compared five basic super-
vised learning methods (LR, LDA, QDA, NB and KNN) for
gene function prediction in A. thaliana based solely on
gene expression data. The major advantage of supervised
methods over unsupervised methods is that by including
prior knowledge of class information, supervised meth-
ods can ignore uninformative features and select inform-
ative features that are useful for separating classes. In this
study, we focussed on finding genes that respond to stress,
as represented by the term GO:0006950 [response to stress]
in the GOBP hierarchy. Using a training set of genes of
known function, we used the basic learning methods to
predict the stress response of genes of unknown function.
We estimated the accuracy of the predictions using ROC50
scores derived through cross validation. We found, for
instance, that KNN performs well for various values of K.

Gene knockout experimentsFigure 12
Gene knockout experiments. Root growth on 50 mM 
NaCl, relative to growth on 0 mM NaCl, on 10 day old wild-
type and mutant plants transferred to 50 mM NaCl medium. 
Error bars indicate the standard error of 5 replicates. n = 25 
measurements per treatment and genotype. * indicates signif-
icantly different at p < 0.001
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Gene knockout experimentsFigure 11
Gene knockout experiments. 10 day old wild-type and 
mutant plants after exposure for 7 days at 14. (a) The mutant 
cotyledons appear darker than wild-type due to increased 
anthocyanin levels. (b) mutant and wild-type seeds 24 h after 
sowing on agar plates. Mutant seeds have the appearance of 
lighter colour compared to wild-type. (c) Quantification of 
anthocyanin levels measuring A535. Bars indicate standard 
error of 5 replicate measurements. * indicates significantly 
different at p < 0.05
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For the other learning methods, the performance depends
greatly on whether the data is preprocessed using PCA,
and on how much its dimensionality is reduced. Using
various values of K and various amounts of dimensional-
ity reduction, we trained and tested a total of 33 basic clas-
sifiers.

We also investigated combining the basic classifiers using
weighted voting. Our method of constructing the com-
bined classifier chooses not only the best combination of
supervised learning methods, but also the best amount of
dimensionality reduction for each method. Our results
show that the combined classifier outperforms all the
basic classifiers in predicting whether a gene responds to
stress. This can be attributed to the relative robustness of
methods for combining classifiers. Intuitively, any single
learning method represents a single view of the data,
while a combination method represents multiple views
strategically combined. The proper choice of combining
method is important to the success of a combined classi-
fier. For example, model averaging and stacking are well-
known methods for combining classifiers [21]; however,
we found that while they did improve on the overall ROC
curves of the basic classifiers, the ROC50 curve was often
worse (data not shown). In contrast, our weighted voting
method using ROC50 scores as weights is simple, provides
improved accuracy in predicting stress response in A. thal-
iana, and we would expect it to provide improved accu-
racy in other organisms and for other gene functions.

Using electronic Northern analysis, we observed signifi-
cant up-regulation and down-regulation of many of our
predictions. The strong up- and down-regulation are also
present among the stress-response genes in the training
data (data not shown). In contrast, randomly selected
genes show much less up- and down-regulation. This vis-
ually confirms that the combined classifier is able to dis-
tinguish between stress and non-stress genes. Moreover,
unlike cross-validation, this confirmation is based on the
prediction data, not the training data.

Using gene knockout experiments – in which a given
gene's expression is eliminated – we tested three of our
predictions. We presented the results for one of these
genes, At1g16850, which show it to be involved in the
stress response pathways to cold (4C), chill (14C) and
NaCl. We have also confirmed the biological stress
responsive roles of the other two genes, At1g11210 and
At4g39675 (data not shown). Further biological studies
will determine the pattern of expression in specific cell
and tissues types of the plant and the exact physiological
role of these genes.

Methods
Preprocessing of raw gene expression data
The gene expression data from the Botany Array Resource
at the University of Toronto contain detection calls: P
(present), M (marginal) and A (absent). The detection call
determines whether a transcript is reliably detected
(present), partially detected (marginal), or not detected
(absent). The following is an example for the gene
At3g24440 under three selected conditions:

AT3G24440 : 243.10 P : 120.90 A : 109.40 M

We simply removed these detection calls (P, A, and M) in
this study. In addition, gene expression levels were log
transformed. The transformed data have approximately
normal distributions while the raw data have approxi-
mately exponential distributions (data not shown). Many
of the learning methods used in this study were designed
with normal data in mind.

Basic supervised learning methods
Each of the learning methods described below trains a dis-
criminative classifier. We used the methods to train binary
classifiers in which the two classes correspond to genes
that respond to stress (Class 1) and genes that do not
(Class 0). Given a vector, x, of gene expression measure-
ments, each classifier returns a discriminant value, dv(x),
reflecting the classifier's confidence that the gene belongs
to Class 1. The gene is assigned to Class 1 if and only if
dv(x) > τ, where τ is a decision threshold. For the classifi-
ers LR, LDA, QDA and NB, the discriminate value is an
estimate of p(k = 1|x), the posterior probability that the
gene is in Class 1. For KNN, the discriminant value is sim-
ply a number between 0 and 1.

LR (Logistic Regression)
Given a set of classes, LR models the log likelihood ratio
for any pair of classes as a linear function of the test vector,
x, and thus defines linear decision boundaries between
the classes. In the case of just two classes, the model has
the simple form
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and p(k = 1|x) + p(k = 0|x) = 1. The parameters β0 and β1
are fitted to the training data using maximum likelihood
[21].

LDA (Linear Discriminant Analysis)
LDA models the classes as multivariate Gaussians, where
each class is assumed to have the same covariance matrix.
The density function for class k is therefore given by

where μk is the mean vector for class k, Σ is the common
covariance matrix, and p is the dimensionality of x. It can
be shown [21] that the discriminant function for class k is
equivalent to the following function:

where πk is the prior probability of class k. The decision
boundaries and therefore linear. The parameters πk, μk and
Σ are estimated by applying maximum likelihood to the
training data [21], giving

where n is the total number of training samples, nk is the
number of training samples in class k, and K is the number
of classes. In this study, K = 2.

QDA (Quadratic Discriminant Analysis)
QDA is a generalization of LDA in which each class has its
own covariance matrix, Sk. In this case, it can be shown
[21] that the discriminant function for class k is equivalent
to the following function:

The decision boundaries are therefore quadratic. Again,
the parameters are estimated by applying maximum like-
lihood to the training data [21].

NB (Naive Bayes)
NB is based on the independent variable assumption: for
each class, the variables in the feature vector x are assumed
to be independent. This assumption allows the class con-
ditional density p(xi|k) to be estimated separately for each
variable, xi. In essence, NB reduces the problem of multi-
dimensional density estimation to that of one-dimen-
sional density estimation. Given a class, k, each variable in
the feature vector x = (x1, x2, ..., xp)T is independent; so

Using Bayes Rule, we obtain

where p(k) is the prior probability of class k, estimated as
the ratio of the number of the training samples in class k
to the total number of training samples. In this paper, we
model each variable as a univariate Gaussian, so p(xi|k) =

N( , ), where the parameters  and  are esti-

mated by applying maximum likelihood to the training
data [21]. Note that NB has far fewer parameters to esti-
mate than either LDA or QDA, and for this reason, it often
performs surprisingly well in practise, despite the unreal-
istic assumption of independent variables [21].

KNN (K-Nearest Neighbors)
KNN is a nonparametric method, since it does not require
the estimation of any parameters. Instead, to classify a test
vector, KNN finds the vector's K nearest neighbors in the
training data. If K1 is the number of these neighbors in
Class 1, then K1/K is returned as the discriminant value.
The test vector is therefore assigned to Class 1 if and only
if K1/K > τ, where τ is the decision threshold.

A variety of different distance measures can be used with
KNN to measure the nearness of one vector to another. In
this paper, we use 1 - ρ, where ρ is the Pearson correlation
coefficient of the two vectors. That is, if the two vectors are
x and y, then

In terms of gene expression measurements, two genes are
highly correlated if their expression levels tend to rise and
fall together (even though their absolute expression levels
may be quite different). For this reason, Pearson correla-
tion is often used to detect coregulation among genes [2].
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Principal components analysis
Hidden dependencies and noise among experiments may
confound the classification problem. In particular, exper-
iments that are biologically different may actually be sim-
ilar in terms of gene expression. Principal components
analysis (PCA) helps to identify independent information
in the data by transforming it to a data set of reduced
dimension. The attributes of the reduced data set, called
principal components, explain most of the variance in the
original data and are mutually uncorrelated and orthogo-
nal [21]. In addition, by reducing the dimension of the
data, PCA reduces the number of parameters that must be
estimated during supervised learning, thus permitting
more efficient use of the data.

One can think of PCA as having a learning phase and a
prediction phase. During learning, PCA is given a data set,
from which it generates (learns) a linear transformation.
This transformation maps high-dimensional vectors to
low-dimensional vectors, and is applied to the given data
set to reduce its dimensionality. During prediction, the
transformation is applied to other data.

We used PCA to reduce the dimensionality of the gene
expression data from its original 290 dimensions to p
dimensions, for p = 5, 10, 15, 20, 40, 100. During learn-
ing, we gave PCA our entire data set of 22,746 genes, i.e.,
the 11,533 annotated genes and the 11,193 unannotated
genes. This is possible because PCA is a form of unsuper-
vised learning, so it uses only the gene expression meas-
urements (which are known), and not the gene
annotations (which are to be learned). This increases the
effectiveness of PCA by doubling the amount of data that
it uses during learning. That is, using a larger data set
decreases the variance of the principal components
learned by PCA, thus increasing their statistical signifi-
cance and reducing the number of anomalous compo-
nents.

It is worth noting that this use of PCA is different from
that of many traditional applications of machine learning.
This is because we apply PCA to the entire data set during
learning, including the prediction data (i.e., the unanno-
tated data). This is not possible in traditional applications
simply because the prediction data is not known during
learning. In such applications, a learning procedure is first
trained and tested on one data set, and then applied to
prediction data as it becomes available. This is not the sit-
uation for genome-wide expression experiments, since all
the genes (and their expression levels) are known in
advance, including the genes in the prediction set. PCA
can therefore use both the prediction data and the training
data during learning. This is a form of transductive infer-
ence [29,31], in which the prediction data is known and
exploited during learning.

PCA and classifier evaluation
After PCA is performed on the entire data set, supervised
learning is performed on the annotated portion of the
dimensionally-reduced data. (As described earlier, this is
a form of semi-supervised learning [29,30]). The result is
a set of classifiers, one for each supervised learning
method. The classifiers are then applied to the unanno-
tated portion of the dimensionally-reduced data to predict
the missing annotations. Cross validation was used to
estimate the accuracy of these predictions.

Before discussing our use of cross validation, we consider
the simpler setting in which the annotated data is divided
into two parts, training data and validation data [21]. This
will clarify our handling of PCA during validation. In this
setting, classifier evaluation proceeds as follows. First,
PCA is applied to the entire data set (training, validation
and prediction data) to produce a dimensionally-reduced
data set. Then, a supervised learner uses the (dimension-
ally-reduced) training data to produce a classifier. Finally,
the accuracy of the classifier is estimated using the
(dimensionally-reduced) validation data. Note that this
process treats the validation and prediction data equally.
That is, they are both used during unsupervised learning,
and neither is used during supervised learning. In this way,
the validation data is representative of the prediction data,
as it should be. Also note that PCA is now effectively a pre-
processing phase prior to supervised learning.

Because PCA is applied to the entire data set, this valida-
tion process estimates the accuracy of the classifier on pre-
diction data that is known and used during learning. In
particular, the estimate does not apply to new prediction
data that might arrive in the future (e.g., if new genes were
discovered). In fact, it would likely be an overestimate of
classifier accuracy on such data. However, this is not an
issue in our application, since most if not all of the genes
in Arabidopsis are already known. Moreover, even if some
new genes were to be discovered in the future, we could
simply add them to our prediction data and retrain the
classifier on the enlarged data set.

The above ideas are easily extended to cross validation.
First, PCA is applied to the entire data set. Then, a super-
vised learner uses the annotated portion of the dimen-
sionally-reduced data to produce a classifier. Finally, this
classifier is evaluated by cross validation in the normal
way, as described below. Note that this approach has the
added computational advantage that PCA is applied only
once, to the entire data set, and not over-and-over again
during the many training phases of cross validation. The
discussions below assume that the entire data set has been
preprocessed using PCA, so that all references to data refer
to the dimensionally-reduced data. Also, all references to
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generalization performance refer to the accuracy of the
classifier on the given set of prediction data.

Cross validation
We used 20-fold cross-validation to assess the generaliza-
tion performance of each classifier as well as to estimate
the precision of its predictions. We randomly divided the
annotated data into 20 non-overlapping, equal-sized
parts, called folds. The classifier was trained on 19 of these
folds, and tested on the remaining fold; i.e., the trained
classifier was used to generate a discriminant value for
each gene in the remaining fold. This was done in all 20
possible ways, using a different testing fold each time. In
this way, a discriminant value, dv, was generated for every
gene in the training set. Each gene in the training set was
then predicted to be positive (i.e., to respond to stress) if
and only if dv > τ, where τ is a decision threshold. From
these predictions, true and false positives were computed,
from which a point on the ROC50 curve was plotted. Using
a large number of different decision thresholds, we plot-
ted a large number of points on the ROC50 curve, effec-
tively generating the entire curve. The area under this
curve is the ROC50 score. To get an idea of how stable the
estimated performance of the classifier is, we repeated the
entire cross-validation and curve-generation procedure 10
times, each time using a different, random, 20-fold split of
the training data.

The above procedure was applied to all the basic classifi-
ers, but assessing the combined classifier involved an
additional subtlety. Recall that the combined classifier is
a linear combination of the basic classifiers, where the
weight given to a basic classifier is proportional to its esti-
mated ROC50 score. The subtlety is in computing that
score. A naive approach would be to simply use the above
procedure to compute a ROC50 score for each basic classi-
fier. However, this would mean that during cross valida-
tion, 19 of the 20 folds are used to train the basic
classifiers, while the 20th fold is used to compute the
ROC50 scores. The result is that all 20 folds are involved in
computing the weights. Thus, all 20 folds are involved in
constructing (i.e., training) the combined classifier, so no
folds are left for testing it. If cross validation were used
anyway to assess the combined classifier, it would amount
to using training data as testing data, and the results
would tend to overestimate the classifier's performance.

As described earlier, we surmount this problem by using
two sets of validation data. Loosely speaking, 18 of the 20
folds are used to train the basic classifiers, a 19th fold is
used to compute their ROC50 scores, and the 20th fold is
used to test the combined classifier. This results in what
might be called nested cross validation. To start, the train-
ing data are divided randomly into 20 folds. Picking one
of these as a testing fold, the other 19 are used to train the

combined classifier. This in turn involves 19-fold cross
validation to train and test the basic classifiers (and com-
pute their ROC50 scores). Thus, each time the combined
classifier is trained once, the basic classifiers are trained 19
times. Since the combined classifier is trained 20 times,
each basic classifier is trained a total of 20 × 19 = 380
times. A similar form of nested cross validation is
involved in Stacking [21].

Predicting gene function and estimating precision
To predict which genes respond to stress, we first train a
combined classifier using the 11,553 annotated genes in
the training data. The classifier is then applied to the
11,193 unannotated genes in the prediction data. After
this step, each annotated gene has a discriminant value,
dv. The unannotated genes are then sorted in descending
order by discriminant value, as illustrated in Table 1. To
make actual predictions, a gene in the sorted list is chosen
as a decision point. This gene and every gene above it in
the sorted list are then predicted to respond to stress. In
other words, suppose dv is the discriminant value of the
chosen gene. An unannotated gene is then predicted to
respond to stress if and only if its discriminant value is at
least dv. The fraction of these predictions that are true is
the precision of the predictions. We estimate this precision
using the training data. Recall that each gene in the train-
ing set has a discriminant value assigned to it during cross
validation. We also know which of these genes respond to
stress. To estimate the precision of our predictions, we
look at those genes in the training set whose discriminant
value is at least dv. The fraction of them that respond to
stress is an estimate of precision.

Using this idea we actually get ten precision estimates, not
one. This is because we do cross validation ten times,
using ten different random splits of the data. The result is
that each gene in the training set receives ten discriminant
values, and for each one we get a different precision esti-
mate. We could simply use the average of these ten preci-
sion estimates; however, to reduce the variance of the
estimate, we use a weighted average. Specifically, let us
number the cross validation runs from i = 1, ≡, 10. Then,
given a discriminant value, dv, let PPi be the number of
genes in the training set whose discriminant values is at
least dv in the ith run of cross validation. (These are the pre-
dicted positives.) Let TPi be the number of these genes that
respond to stress (the true positives). Using only this cross
validation run, the estimated precision would be TPi/PPi.
One problem with this estimate is that if dv is high, then
PPi (and hence TPi) could be 0, so the precision estimate
would be undefined, something we observed frequently
in practice. More generally, if PPi (and hence TPi) is low,
then the precision estimate will have high variance, since
it is supported by very little data. To circumvent these
problems, we estimate the precision using the formula
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where . The right-hand formula is a

weighted average of individual precision estimates, TPi/

PPi. It gives more weight to precision estimates that are

based on more data, i.e., for which PPi is higher. In addi-

tion, by using the left-hand formula, we rarely end up
dividing by zero, since the denominator is a sum of (ran-

dom) non-negative numbers; i.e., ΣiPPi is much less likely

to be zero than is any individual PPi.

Biological experiments
Wild type and homozygous mutant seeds were plated on
0.5X MS media. They were stratified for 3 days and then
germinated at 25C for 7 days. The abiotic temperature
stresses consisted of 7 days exposure to either 30C, 14C or
4C. Anthocyanin levels were quantified as a measure of
plant stress response. Anthocyanin was extracted using
methanol-HCl [43]. In order to measure response to salt
stress, plants were germinated for 3 days on 0.5X MS
media and then transferred to medium containing 50 mM
NaCl or to control plates. New root growth was measured
7 days after the transfer.
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