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Abstract

Background: A finite state machine manipulating information-carrying DNA strands can be used
to perform autonomous molecular-scale computations at the cellular level.

Results: We propose a new finite state machine able to detect and correct aberrant molecular
phenotype given by mutated genetic transcripts. The aberrant mutations trigger a cascade reaction:
specific molecular markers as input are released and induce a spontaneous self-assembly of a wild
type protein or peptide, while the mutational disease phenotype is silenced. We experimentally
demostrated in in vitro translation system that a viable protein can be autonomously assembled.

Conclusion: Our work demostrates the basic principles of computational genes and particularly,
their potential to detect mutations, and as a response thereafter administer an output that
suppresses the aberrant disease phenotype and/or restores the lost physiological function.

Background

Finite state automata operating at molecular scale [1-6]
can conceptually be used for applications in the living
cell. Head et al. [1] proposed an in vivo biomolecular
model in which computations manipulate a plasmid
DNA. The solution of the problem is given by either the
longest or shortest plasmid at the end of the computation.
Henkel et al. [2] implemented a similar in vivo mechanism
in which computations are conducted on a DNA sequence
constituting of an open reading frame controlled through
a strong promoter. Sequential plasmid manipulation
finds a final plasmid construct containing the computa-
tional solution allowing the in vivo transcription and
translation into a protein. The first autonomous finite

state automaton was proposed in [3-5]. It is a 2-state 2-
symbol automaton composed of DNA strands and
enzymes. Benenson et al. [6] used this automaton to carry
out in vitro molecular diagnosis and therapy. For this, an
anti-sense drug (oligonucleotide - a short single stranded
DNA molecule) is released if certain diagnostic conditions
are true, i.e., low expression levels of certain mRNAs and
high expression levels of others. The diagnostic conditions
can be viewed as transitional steps in a finite state autom-
aton. If the automaton reached a final state, indicating
that all conditions are met, then the drug enclosed in the
loop of a hairpin shaped oligonucleotide is released. This
if-then mechanism is a new element of autonomous
molecular computation. Unfortunately, the proposed
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mechanisms would not work in a living cell as unwanted
side effects raised by supporting molecules (particularly
the Fokl enzyme carrying out the transitions) would be a
major problem [7,8]. Moreover, this molecular mecha-
nism is limited in its ability to logically control gene
expression as it allows for administering as output only
small molecules.

Nevertheless, this work is an important conceptual step
forward to link molecular automata to molecular diagno-
sis and therapy. The first autonomous finite state machine
working in the living cell of E. coli was proposed by Nak-
agawa et al. [9]. This approach is based on a length encod-
ing automaton model [10] whose input string is encoded
by an mRNA molecule. The computation of this mRNA

http://www.biomedcentral.com/1471-2105/8/365

molecule is accomplished by the biosynthesis mechanism
of the cell combined with four-base codon techniques
[11,12] yielding a protein of interest.

Results and discussion

Computational genes

Here we present a new molecular automaton, called com-
putational gene, consisting of a structural and functional
moiety which is designed such that it might work in a cel-
lular environment. The structural part is a naturally occur-
ring gene, which is used as a skeleton to encode the input
and the transitions of the automaton (Figure 1A). The
conserved features of a structural gene (e.g, DNA
polymerase binding site, start and stop codons, and splic-
ing sites) serve as constants of the computational gene,

A
promotor exon 1 intron exon 2 poly(A) site
transcriptional  translational branch poly(Y) translational transcriptional
start start point site stop stop
B
start codon 5’ splice site branch site poly(Y) 3 splice site stop codon
\ | S0 |mutationi gy mutaton2 gp ‘\\ \! VA
5 CI_ATG AGGTGAG ‘ ‘ ‘ ‘ 'CTCAT ...... ACAGIG TG 3
~14nt
| | | | |
initial state gp Mutation 1. o mutation2 ., accepting final state
C
if mutation 1 & mutation 2 & mutation 3 & ...... & mutation n then produce anticancer drug or wild-type protein
mutation 1 mutation 2 mutation 3 mutation produce anticancer drug
S3 Sn or wild-type protein
Figure |

Design of computational gene. A) Most eukaryotic genes are organized as alternating sequences of coding (exons) and
non-coding (introns) segments. Conserved regions in the introns, e.g., pyrimidine rich region (poly(Y)), 5'-splice junction (AG/
GTGAG), AG dinucleotide at the 3'-splice junction, and branch point sequence (CTCAT) guarantee proper splicing. These
conserved regions are maintained in the structural moiety of the computational gene. B) Schematic representation of self-
assembled (functional) gene encoding diagnostic rule (2), for n = 2. The initial state comprises promoter, first exon, and 5'-
splicing site, the transition rules are placed in the intron region, and the final state includes branch site, poly(Y)-region, 3'-splice
site, and second exon. C) Finite state automaton implementing diagnostic rule (2). The automaton starts in the initial state S,

and transits into the final state S, if all mutations are present.
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while the coding regions, the number of exons and
introns, the position of start and stop codon, and the
automata theoretical variables (symbols, states, and tran-
sitions) are the design parameters of the computational
gene. The constants and the design parameters are linked
by several logical and biochemical constraints (e.g.,
encoded automata theoretic variables must not be recog-
nized as splicing junctions). The input of the automaton
are molecular markers given by single stranded DNA
(ssDNA) molecules. These markers are signalling aberrant
(e.g., carcinogenic) molecular phenotype [13] and turn on
the self-assembly of the functional gene. If the input is
accepted, the output encodes a double stranded DNA
(dsDNA) molecule, a functional gene which should be
successfully integrated into the cellular transcription and
translation machinery producing a wild type protein or an
anti-drug (e.g., short peptide) (Figure 1B). Otherwise, a
rejected input will assemble into a partially dSDNA mole-
cule which cannot be translated. A computational gene
can be described by a finite automaton M such that the set
of strings accepted by M (language) is given by those
dsDNA molecules that a translation system recognises as
genes. To this end, observe that linear self-assembly is
equivalent to regular languages [14], and regular lan-
guages are exactly those languages that are accepted by
finite automata. Therefore, we can expect to construct a
functional gene based only on the linear self-assembly of
oligonucleotides or duplex DNA with sticky ends, control-
led by a finite state machine. The structural gene resem-
bles the natural structure of the genetic information in the
cell and bears all the regulatory elements allowing the
functional gene to be successfully translated into a pro-
tein. As there is no size restriction on the structural gene,
there would be also no size limitation for the functional
gene.

Diagnosis and therapy

We study the hypothetical application of simple molecu-
lar computations to correct an aberrant mutation in a
gene that can trigger a disease-phenotype. One of the most
prominent examples is the tumor suppressor p53 gene,
which is present in every cell, and acts as a guard to con-
trol the growth. Mutations in this gene can abolish its
function, allowing uncontrolled growth that can lead to
cancer [15,16].

A single disease-related mutation can be diagnosed and
treated by the following diagnostic rule,

if proteinX_mutated_at_codon_Y
then produce_drug fi
This rule could allow a protein with a pathogenic muta-

tion to execute its natural physiological function. For
instance, a mutation at codon 249 in the p53 protein is
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characteristic for hepatocellular cancer [15,16] and the
CDB3 peptide (nine amino acids) binds to the p53 core
domain and stabilises its fold [17]. Although restoring the
tumor suppressor activity of the p53 mutants with small
stabilising molecules is a promising strategy in cancer
therapy, different classes of mutations will require differ-
ent rescue strategies [18]. The rule (1) can be imple-
mented by a two-state one-symbol automaton consisting
of two partially dsDNA molecules and one ssDNA mole-
cule (symbol), which corresponds to the disease-related
mutation and provides a molecular switch for the linear
self-assembly of the functional gene (Figure 2B, [see Addi-
tional file 1]).

To process diagnostic rule (1), the molecular automaton
must be able to detect point mutations. This task is based
on a diagnostic complex, a dsDNA molecule consisting of
a single-stranded mutation signal and a single-stranded
diagnostic signal (Figure 2A, [see Additional file 2]). Both
strands imperfectly pair in the region that resembles an
aberrant mutation to be detected. An mRNA molecule
bearing a mutation (e.g., oncogenic) will trigger the disso-
ciation of the diagnostic complex and will pair to the
mutation signal. The latter process is thermodynamically
driven by the higher stability of the DNA/RNA duplex
over the mismatched DNA/DNA diagnostic complex and
favourable due to its increased complementarity [19,20].

Moreover, the resulting DNA/RNA hybrid complex will
act as a substrate for the cellular RNase H, destroying the
RNA component of the duplex [21]. The released single-
stranded diagnostic signal links the assembly of the func-
tional gene (Figure 2B, [see Additional file 2]), whose
structure is completed by cellular ligase present in both
eukaryotic and prokaryotic cells. The transcription and
translation machinery of the cell is then in charge of ther-
apy and administers either a wild-type protein or an anti-
drug. In both cases, the pathogenic phenotype is sup-
pressed, either by a replacement with the wild-type pro-
tein or by a release of a small molecule that may stabilise
the aberrant mutant protein, and thus providing the phys-
iological functionality of the wild-type. This idea of
favouring the full over the partial complementarity of the
base pairing was implemented in robust DNA-based
machines 'fuelled' by the DNA/DNA-cross-pairing [22-
24]. Although mechanistically simple and quite robust on
molecular level, several issues need to be addressed before
an in vivo implementation of computational genes can be
considered. First, the DNA material must be internalised
into the cell, specifically into the nucleus. The transfer of
DNA or RNA through biological membranes is a key step
in the drug delivery [25]. Nuclear localisation signals can
be irreversibly linked to one end of oligonucleotides,
forming an oligonucleotide-peptide conjugate that allows
effective internalisation of DNA into the nucleus [26,27].
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Figure 2

Design and assembly of the computational gene exemplified with one eukaryotic gene. A) Diagnosis. The 24 nt
long double-stranded diagnostic duplex Am/AB' bears three mismatches positioned at the centre. The single-strand Am repre-
sents the mutation signal and the AB' strand the diagnostic signal. The displacement of AB' from Am is thermodynamically
favourable due to the full complementary of Am' to Am. Regions highlighted in bold show the positions where mismatches were
located before strand displacement. B) Therapy. The eukaryotic hID| gene is the skeleton of the computational gene. The con-
served regions of hID| serve as constants for designing a functional gene being (for simplicity and demonstration purposes) a
part of the hID| gene product itself. For this reason, the intron sequence of hID| was modified to construct the required initial
and final accepting states, keeping the conserved splicing signals intact. The three elements, e.g., initial state (part A), diagnostic
signal (AB"), and final state (part B), revealed a functional 1.6 kb gene encoding a |55 amino acid long (17.3 kDa) protein.

In addition, the DNA complexes should have low immu-
nogenicity to guarantee their integrity in the cell and their
resistance to cellular nucleases. Current strategies to elim-
inate nuclease sensitivity include modifications of the oli-
gonucleotide backbone such as methylphosphonate [28]
and phosphorothioate (S-ODN) oligodeoxynucleotides
[29], but along with their increased stability, modified oli-
gonucleotides often have altered pharmacologic proper-
ties [30,31]. Finally, similar to any other drug, DNA
complexes could cause nonspecific and toxic side effects.

In vivo applications of antisense oligonucleotides showed
that toxicity is largely due to impurities in the oligonucle-
otide preparation and lack of specifity of the particular
sequence used [30-32]. Undoubtedly, progress on anti-
sense biotechnology will also result in a direct benefit to
the model of computational genes.

Implementation
To test the feasibility of the principle of computational
genes, we developed an in vitro system making use of the
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following assumptions: (i) diagnostic and therapy reac-
tions are simulated in one-single step process; (ii) diag-
nostic complexes contain three adjacent mismatches
representing a whole codon replacement (single amino-
acid point mutation); (iii) RNA molecules are replaced by
ssDNA during simulations.

Diagnostic complexes

Clearly, the diagnostic complexes must be thermodynam-
ically stable in the cell in order to avoid misactivations
(false positives) of functional genes. For this, we con-
ducted strand exchange experiments with single-stranded
and double-stranded DNA to determine the strand dis-
placement conditions in in vitro experiments [see Addi-
tional file 3]. The single strand Am' mimics the mutated
'cancerous' mRNA sequence and its addition to the diag-
nostic complex Am/AB' triggers the release of the diagnos-
tic signal AB', and the increase in the Am' concentration
enhanced the strand displacement rate (Table 1). The
pairing of Am' with the mutation signal Am is thermody-
namically favorable due to the new complementary base
pairs added in the Am/Am' duplex and increased stability
of the complex at physiological temperature: melting tem-
perature T,, = 60°C in buffer and 62°C in buffer contain-
ing crowding agent mimicking the cellular environment
[33]; for comparison the T,, of Am/AB' duplex is 51°C in
buffer and 53°C in crowded conditions. The crowding
environment did not influence the melting temperature
of the duplexes. The diagnostic complexes were stable at
physiological temperature and only 13.1% of the diagnos-
tic signals (AB") underwent spontaneous release [see Addi-
tional file 4]. The results suggest that the perfect matching
is a favorable state and based on this we can conclude a
displacement of the diagnostic signal by the mutant
mRNA. The stability of the diagnostic complexes can be
further optimised by designing diagnostic complexes
comprising longer sequences, which will increase melting
temperature and reduce spontaneous disassembly. The
latter will decrease the displacement rate and the dissoci-
ation of a duplex longer than 10-12 bp will take an enor-
mous amount of time in vivo. Therefore, an optimal
design of a diagnostic complex should be based on con-
sideration of those three variables.

Table I: Rate-constants of the strand-exchange reactions in
phosphate buffer

Ratio [Am/AB']: [Am'] k (10-2sec’!) Correlation coefficient
1:0.25 1.258 + 0.049 0.99689
1: 0.50 2.325 + 0.029 0.99985
1: 0.75 3.325 £ 0.047 0.99956
1:0.85 3.846 + 0.038 0.99871
1: 1 4476 + 0.022 0.99996
I:2 4.524 + 0.054 0.99945
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In vitro translation

We tested the concept of computational gene in an in vitro
translation system. As structural gene of the computa-
tional gene we took the human inhibitor of DNA binding
1 (hID1) gene [34] comprised of two exons (452 bp and
115 bp) separated by one intron (239 bp). Its original
intron sequence was modified to construct the initial and
accepting final sites: the intron was split into two parts (by
HindIIl digestion), releasing intact exons and the
upstream promoter region. The conserved splicing sig-
nals, i.e., 5'-splice signal, AG/GTRAG (995), CTSAY
branch point (1213), strong poly(Y) signal between
branch point and 3'-splice signal consisting of 13/14 pyri-
midines (1218), and an NYAG/G 3'-splice signal (ACAG/
G, 1232) were used as constants in the computational
gene and remained unchanged. Two 16 nt long ssDNAs
(overhang A, 5'-GGCCGCAATTCCAAAC-3', and over-
hang B, 5'-CAATTCCAAATGAGCT-3') were attached to
the released free overhangs after enzyme digestion, leav-
ing 12 nt free overhangs, complementary to the 24 nt long
activated diagnostic signal AB' (5'-CATTTGGAATTGGTTT-
GGAATTGC-3"). Note that the ligation point between
overhangs A and B is located precisely at the mismatched
positions in the diagnostic signal AB' (Figure 2B). Addi-
tion of the mutated DNA and diagnostic complexes,
whose diagnostic signal is complementary to the single
stranded overhangs in the initial and final accepting state,
led to successful self-assembly of the double stranded
long fragment, resembling the expected size of the gene of
interest [see Additional file 5]. A viable functional gene
was assembled in an in vitro translation system (Figure 3).
All the components, the diagnostic complex (Am/AB'), the
mutated DNA (Am'), and the non-assembled gene frag-
ments (Figure 2), were mixed together and added simulta-
neously to an eukaryotic in vitro translation system and
the reaction proceeded for 3.5 h at the optimal conditions
(for details see Methods section). The addition of mutated
DNA (Am' single strand) initiated the programmed cas-
cade reaction specified by the path: (i) mutation detec-
tion, (ii) gene self-assembly and linking, and (iii)
transcription and translation, yielding a 155 amino acid
long protein (17.3 kDa) as output. The size of the output
was verified by a control reaction, containing the intact
hID1 gene (Figure 3, positive control lane). Even thought
the yield of the output is very low (weak band, Figure 3),
it points out the potential for feasibility of the model.
Without a released diagnostic signal no self-ligation of the
therapeutic gene could be detected (Figure 3, self-ligation
control). The in vitro translation system is representative
of intact transcription/translation machinery in the cell
and the results from this experiment suggest that success-
ful self-assembly of the computational gene and transla-
tion into a viable product (protein or anti-drug) might
occur in living cells.
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Figure 3

One-step assembly of the functional gene in eukaryo-
tic in vitro translation system. The mutated DNA, the
diagnostic complex and the non-assembled gene components
were mixed in equimolar ratio and added to the in vitro trans-
lation reaction (lane: one step self-assembly). The translation
product with a molecular mass of 17.3 kDa is marked by
asterisk. Reaction containing only the intact hID| gene
served as positive control (lane: positive control); reaction
lacking the mutated DNA was used to test the self-ligation of
the diagnostic complex (lane: self-ligation control). The low
concentration of the output product severely restricted the
detection techniques that can be used to detect the transla-
tion product, i.e., in this case only by radioactivity. Note that
the eukaryotic transcription/translation coupled system gives
two high background signals at 10—13 and 28 kDa. The back-
ground that arises from the in vitro translation kit itself was
tested in a negative control reaction containing pIVEX vector
without any insert (lane: negative control). P and S denote
pellet and supernatant, respectively.

If the promotor-containing fragment starts transcription
before the gene self-assembly (hence leading to an incom-
plete mRNA transcript), the reliability of the computation
would not be affected. In eukaryotic cells, quality control
mechanisms ensure that an mRNA molecule is complete
before translation is initiated. These mechanisms include
cleavage and polyadenylation of the 3' end of proper RNA
transcripts protecting them from cellular degradation
[35].

Generalisation
The diagnostic rule (1) can be generalised to n > 1 disease-
related mutations,

if proteinX_mutated_at_codon_Y; and... ... and proteinX_mutated_at_codon_Y,
then produce_drug fi

This rule can be realized by using an (n + 2)-state n-sym-
bol automaton (Figure 1C). In the (i - 1)-th state, the
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input symbol given by the i-th mutation lets the automa-
ton transit into the i-th state. The automaton can be
implemented by two partially dsDNA molecules, ssDNA
molecules related one-to-one with the mutations, and fur-
ther (complementary) ssDNA molecules necessary for
self-assembly. The functional gene will be self-assembled
only if the n-th (final) state is reached, that is, if all n diag-
nosed mutations are present [see Additional file 6]. In this
way, computational genes may be used for the diagnosis
and therapy of diseases related to mutation of transcribed
genetic material. The rule (2) may even be generalised to
involve mutations from different proteins allowing a
combined diagnosis and therapy. Furthermore, computa-
tional genes are extendable to prokaryotic genes evidenc-
ing the generality of the principle. A prokaryotic model
could release several different output molecules in
response to different environmental conditions [see Addi-
tional file 7]. Diagnostic rule (2) can be implemented by
linear self-assembly that was successfully demonstrated in
the Adleman's first experiment [36], and recently has been
used to implement in vitro finite small-state automata
[37].

Conclusion

Our work demonstrated the basic principles of computa-
tional genes and particularly, their potential to detect
mutations, and as a response thereafter to administer an
output that suppresses the aberrant disease phenotype
and/or restores the lost physiological function. In this
way, computational genes might allow implementation in
situ of a therapy as soon as the cell starts developing defec-
tive material. Computational genes combine the tech-
niques of gene therapy which allows to insert a healthy
gene into the genome replacing an aberrant gene, as well
as antisense technology mediating gene silencing. In addi-
tion, a computational gene can theoretically implement
general m-state n-symbol automata and could be designed
to solve all types of finite state applications at the molec-
ular level, thus offering tremendous advantage for broader
applicability than previous approaches [3-6], whose com-
plexity is limited to fewer states and symbols. Clearly, in
vivo application of computational genes is the ultimate
goal, but before this some hurdles need to be overcome,
i.e., the internalisation of the computational gene into the
cell, its longevity, and its integrity in the cell. The issue of
integrating computational genes into cellular regulatory
pathways is directly linked to other biomolecular comput-
ing approaches in which gene regulation is the basis for
making computations [38]. Computational genes provide
a major step towards bringing molecular computers to
work inside living organisms, to detect and correct physi-
ological abnormalities, and to administer healthy solu-
tions.
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Methods

DNA manipulations

The hID1 gene (pBLAST49-hID1, Invivogen) was sub-
cloned from into the pIVEX 2.3d vector (Roche-Applied-
Science). The resulting pIVEX-hID1 plasmid was mutated
(Quickchange, Stratagene) using conservative replace-
ments (no change in the amino acid sequence) to intro-
duce the necessary restriction sites for generating initial
and final accepting states and to modify both termini with
Notl and Sacl restriction sites [Additional file 2].

In vitro translation

The plasmid pIVEX-hID1 was expressed in in vitro transla-
tion TNT T7 coupled reticulocyte lysate system (Promega)
changing thereby the procedure provided by the manufac-
turer as follows: To the transcription/translation reaction
mixture provided in the kit (total volume of 251) 241 T7
RNA polymerase, 14 T4 DNA Ligase (New England
Biolabs) and 2 x4l 35S-methionine (Amersham) were
added. The self-assembly reaction contained 24l digested
hID1, overhang A, overhang B, Am/AB' and Am', pre-
mixed in equimolar concentration and added to the final
concentration of 0.4 M to the in vitro translation reaction.
The reaction for testing the self-ligation of the computa-
tional gene contained all the components as described for
the self-assembly reaction, except for the Am' strand. The
positive control reaction was supplied with 2zl intact
pIVEX-hID1 plasmid, and the negative control reaction
contained only 241 pIVEX vector. The reactions were car-
ried out at 30°C for 3.5 h. The translation product was
resolved on 15% SDS-PAGE and detected by autoradiog-
raphy.

Strand exchange

The full sequences of the oligonucleotides Am, Am', and
AB' are included in Additional file 6. Equimolar amounts
of Am and AB' dissolved in 150 mM sodium phosphate
buffer pH 7.4 were denatured at 95°C for 30 min and
slowly cooled down to 37°C with 1°C step to form stable
dsDNA complexes. The displacement reaction was initi-
ated by addition of the displacing strand Am' in different
molar ratios to 1M Am/AB' duplex and was monitored at
260 nm [39]. The rate constant was determined by fitting
the experimental data to a first-order reaction equation as
described elsewhere [40,41]: (A,- Ay) = (A, - Ag)(1 - ),
where ¢ is time, and A, A, and A_, are the absorbance val-
ues at time ¢, zero and infinite time, respectively. The melt-
ing curves of the 1M dsDNA-duplexes Am/Am' and Am/
AB' were monitored at 260 nm in phosphate buffer (see
above) or in the presence of Ficoll 70 (150 g/L) mimick-
ing the crowded environment in the cells [33].
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Additional material

Additional file 1

A simple two-state one-symbol automaton implementing the rule (1).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-365-S1.pdf]

Additional file 2

Model for diagnosis and therapy of pathogenic mutations. A) Diagnostic
process. A diagnostic complex is a dsSDNA molecule resembling a short
part of the functional gene of interest, in which one of the strands is intact
(diagnostic signal) and the other bears the mutation to be detected (muta-
tion signal). In case of a pathogenic mutation, the translated mRNA pairs
to the mutation signal and triggers the release of the diagnostic signal. B)
Therapy process. The released diagnostic signal completes the structure of
the functional gene so that a wild-type protein or an anti-drug is provided
by the transcription and translation machinery of the cell.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-365-2.pdf]

Additional file 3

Displacement of the Am from the Am/AB' duplex. Different ratios of
[Am/AB'[: [Am'] were tested as outlined in the figure legend. The oligo-
nucleotides were dissolved in 150 mM sodium phosphate buffer (pH =
7.4) and added to 1pM [Am/AB'] and the change in the absorbance at
260 nm was recorded at 37 °C. Displacement curves are presented as nor-
malized inverted values of the changes of the absorbance over the time.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-365-53.pdf]

Additional file 4

Melting curves of mismatched (Am/AB') and perfect (Am/Am'). The
melting curves of Am/AB' and Am/Am' complexes were obtained by
denaturing of 1uM single stranded Am and AB' or Am and Am' at 95°C
for 30 minutes, followed by a slow cool down to 37°C with 1°C step. The
melting curves were monitored at 260 nm in 150 mM sodium phosphate
buffer (pH = 7.4) (panel A) and in 150 mM sodium phosphate buffer
(pH = 7.4) containing 150 g/L Ficoll as crowding agent (panel B). The
melting curves in the presence of the crowding agent were monitored till
75°C due to increased bubbling of the solution at high temperatures and
increased signal-to-noise ratio.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2105-8-365-S4.pdf]
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Additional file 5

Verification of the computational gene constructs. Lane 1: Product A (926
bp). Lane 2: Product B (653 bp). Lane 3: Part B with ligated overhang B
(final accepting state), followed by HindIIl digestion. Lane 4: Part A with
ligated overhang A (initial state), followed by Hindlll digestion. Lane 5:
complete functional gene (final acepting state, initial state, and AB'
strand). The higher band appearing at 1.9 kb (lane 4) is presumably an
AA-dimer.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-365-55.pdf]

Additional file 6

A simple two-state two-symbol automaton implementing the rule (2), for
n=2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-365-S6.pdf]

Additional file 7

Prokaryotic computational gene. Due to the peculiar arrangement of

prokaryotic genes in operons, a prokaryotic model could release several dif-

ferent output molecules in response to different environmental conditions,
making even more complex computations possible. The key patterns of the
operon are the constants of the computational gene (DNA-polymerase,

operator-binding segments, and start and stop codons).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-8-365-S7.pdf]
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